1.6.2 Editing a program Chapter 2

You can edit your programs quickly and easily by using the screen editor. To
do this, display the program to be edited on the screen, by using the LIST or
EDIT command. Then move the cursor to the location you want to edit your
program text. You must edit only one program line at a time, and press P R OGRAMMIN G
the key after completing the editing. If you forget to press the

key, the line in the program memory will remain unchanged even though the
line on the screen appears to be altered.

2.1 Program Lines and Line Numbers

BASIC regards a program as comprising a collection of lines. Each line con-
sists of a line number and a statement. For example, when you key in

Jo, A=10 RETURN |

Line number Statement

from the keyboard, BASIC stores the statement ‘A = 10”’ in program memory
with a line number of 10 as its label. When you execute the RUN command,
BASIC interprets and executes the program lines in program memory sequen-
tially in numerical order.

You must specify the destination of the GOTO or GOSUB statement with a
line number. You must also specify the line number when modifying, deleting,
or printing a portion of a program.

NOTE:
BASIC executes all program lines in numerical order unless the program flow
is changed by the GOTO, GOSUB, or IF...THEN...ELSE statement.

A line can be a maximum of 255 characters long including the line number.
Within this limit, a line can contain two or more statements, which must be
separated by colons (:). Line numbers must be integers between 0 and 65529.

The use of the AUTO command is convenient when entering two or more pro-
gram lines. When the AUTO command is executed, BASIC will automatically
generate a new line number each time you press the key, saving you
from having to enter line numbers. To terminate the AUTO command, press
the + [c]or (see the description of the AUTO command).

124 21
- www fastio.com L

http://www.fastio.com/

2.2 Constants and Variables

BASIC handles two types of data: constants and variables. Constants represent
with numeric or alphabetic characters the actual values of some object (e.g.,
length, weight, amount of money, etc.). Variables are labels used to represent
values.

Consider an example of depositing one million in a bank at an annual interest
rate of 5 percent over a period of three years. The future value of the invest-
ment can be calculated using the following formula:

(Principal) X (1 + Interest/100)\(Year)
1,000,000 x 1.05°

(Total value after 3 years)

I

Let us use the variable N for the compounding year and S for the future value
after N years. The above formula can be expressed as shown below where the
principal 1000000 and interest rate 1.05 are constants.

$ =1,000,000 x 1.05"

Future value..........coeueeneee

Using the above formula, you can find not only the future value after three
years but also future values after any years by assigning appropriate values to
N. The program will look like this:

19 INFUT N Gets the year.

20 85=1000000%1.05 "N Calculates future value after N years and assigns the result to S.

29 FRINT S
4¢ END Terminates the program.

Displays the value of S on the screen.

After entering the above program, key in:

RUN

BASIC will then run the program and display the prompt:
e |

Eter a year.

Press the key, and the program evaluates the expression then displays
the result on the screen as follows:

1. 1S5762E+06

NOTE:
1.15762E + 06 represents 1.15762 x 10°

You can apply the above program to various situations by assigning the varia-
ble F to the principal and R to the interest rate. To do so, modify lines 10 and
20 as follows:

10 INFUT N,F,K
20 §=F* (1+R/100) "N

Run the program using the RUN command. Enter variable values in the order
N (year), F (principal), and R (interest rate in %), separated by commas. For
example:

The use of constants and variables are described on the following pages.

http://www.fastio.com/

HliPor

2.2.1 Constants
Constants are classified as follows:

String constants Decimal
Numeric constants { Integer type ¢ Octal
Hexadecimal

Single precision
Real type { Double precision

(1) String constants

String constants are enclosed in double quotation marks when they are entered
into a program, The CHR$ function must be used to handle double quotation
marks as string constants. String constants must not exceed 255 characters.

Examples:

FRINT "HELLO™---HELLO
FRINT "I SAID "iCHR$(34)i"HELLO";CHR% (34)
-1 SAID "HELLO"

(2) Numeric type constants

Numeric constants are either positive or negative numbers or 0. Negative num-
bers must always be preceded by a minus (—) sign but positive numbers can
be preceded by a plus (+) sign simply when desired.
@Integer constants
Integer type constants are integers from —32768 to +32767. Use one of
the following forms to represent integers:
¢ Decimal form: Decimal numbers from 0 to 9 followed by a % mark.
e QOctal form: Octal numbers from 0 to 7 preceded by & or &O.
The range of values that BASIC can handle is from
&0 to &177777.
¢ Hexadecimal form: Integers represented by characters 0 to 9 and A to
F preceded by &H. A, B, C, D, E, and F represent
10, 11, 12, 13, 14, and 15 in decimal, respectively.
The range of values that BASIC can handle is from
&HO to &HFFFF.

24

- www fastio.com

(@Real type constants
Real type constants can be subdivided into single- and double-precision
constants.
(i) Single-precision constants have three forms. Single-precision constants
are rounded to 6 digits for display or printout.
(a) Numbers with not more than seven significant digits
Example: 3489.0
(b) Numbers represented using E (the exponent can take values from
—38 to 37).
Example: 235.988E —7=235.988 x 10~ 7 = 0.0000235988
Mantissa E;;t;;\ent
(¢) Numbers followed by a !
Example: 279.9!
(i) Double-precision constants have three forms. BASIC displays or prints
double-precision constants as 16 digits.
(a) Numbers with 8 to 16 significant digits
Example: 345692811
(b) Numbers represented using D (the exponent can take values from
—38 to 37).
Example: —1.09432D —6= —(1.09432 % 10~ %)= —0.00000109432
(¢) Numbers followed by a #
Example: 3489.0#

~ Precision of numeric data

The range of values that can be internally represented inside the computer is
limited. The precision of numeric values increases as the range of values to be
taken increases. PX-4 BASIC supports the following types of precision:

Integer type

Single precision

Double precision

.~ Among numbers of the above precision types, double-precision real numbers

provide the highest precision but occupy the most memory space and take the
most processing time. If you know in advance that your program uses only in-
tegers, you need not use single- or double-precision representation. Use the most
appropriate data representation according to the processing to be performed.

2-5

http://www.fastio.com/

2.2.2 Variables
(1) Variable names

A variable name is a sequence of 1 to 40 alphanumeric characters which begins
with an alphabetic character. BASIC does not distinguish between upper- and
lower-case alphabetic characters. Reserved words cannot be used as variable
names. Reserved words are keywords which are used to represent BASIC state-
ments and functions (see Appendix I “RESERVED WORDS’*). If a reserved
word is used as a variable name, BASIC displays an error message ‘SN Error
‘“ on the screen and terminates the execution. The first two letters of variable
names must not be FN. If a variable name beginning with FN is used, BASIC
will call a user-defined function.

(2) Variable types

You must specify types of variables as with constants. BASIC treats variables
having the same variable name but with and without a type declaration charac-
ter as different variables. The type of a variable is identified by the type decla-
ration character at the end of each variable. Variables with no type declaration
character are assumed to be of single precision type.

You can declare a variable type without a type declaration character, by using
type declaration statements such as DEFINT, DEFSTR, DEFSNG, and
DEFDBL. For details on these statements, see Chapter 3 “COMMANDS AND
STATEMENTS.”

The BASIC type declaration characters for variables are described below.
@$: String variable ‘
Used to identify variables which are to be loaded with character strings.
Example: A$ = “ABC”
@%: Integer variable
Used to identify variables which are to be loaded with integers.
Example: A% = 300
@ 1. Single-precision variable
Used to identify variables which are to be loaded with single-precision real
numbers.
Example: A! = 12.34
@ #: Double-precision variables
Used to identify variables which are to be loaded with double-precision real
number.
Example: A# = 12.3400001525

2-6

- www fastio.com

(3) Array variable

When data items are to be processed in a program, as many variables as the
data items must be prepared. When handling data items of similar type, it is
often convenient to give a single name to the group of data items by using vari-
able to refer to them collectively. In this case, each data item can be identified
using one or more index expressions. A variable used to refer to such a group
or table of data'items is called an array variable. The number of data items
(elements) of an array variable is specified by placing the number (for a single-
dimension table) enclosed in parentheses after the variable name. Array varia-
bles are declared by using the DIM statement. For example, a group of ten string
variables can be collectively allocated by declaring an array variable of ten ele-
ments by using the DIM A$(9) statement. This statement has the same effect
as declaring ten separately named string variables A$(0) to A$(9).

The number enclosed in parentheses is called a subscript of the array variable.
You can specify the base of the subscript, i.e., whether the subscript begins
with 0 or 1, by using the OPTION BASE command. The default base value
is O (see the description of the OPTION BASE command).

A$(0) |AS(1) |A$(2) [AS(3)|A$(4) |AS(5) [AS(6) |AS(7) |A%$(B) |AS(9)

DIM statements for declaring array variables should normally be placed at the
beginning of the program.

The ERASE command is used to clear the memory area allocated for array
variables.

In the above example, a one-dimensional array variable is shown. You can
declare a two-dimensional array variables by specifying two subscripts enclosed
in parentheses in the DIM statement. For example, the statement DIM A$(20,
20) causes BASIC to reserve a memory area for 21 x 21 string variables as-
suming that an OPTION BASE 0 statement has been executed.

IA$(0.0)]A${0.1}/A${0.2)] A$(0.20)
AS(1L.ONAS(1.TY 7 ..

2-7

http://www.fastio.com/

You can reserve as large an area for array variables as memory permits. You
may also use integer type variables as array subscripts.

BASIC assumes a maximum subscript value of 10 when an array variable is
used without the use of a DIM statement.

(4) Type conversion

BASIC will perform type conversion as required when loading numeric values
into numeric variables, except between string and numeric type data. If an at-
tempt is made to convert between string and numeric type variables, BASIC
displays an error message ‘““TM Error’’ on the screen and terminates processing.

@When loading numeric variables with constants of another type
Example 1:
i AY%=855.8
20 PRINT A%
RUN
Sé
Ok

When a real type constant is loaded into an integer type variable, it is con-
verted to an integer type by being rounded to the tenth place.

Example 2:
10 A#=12.34
20 FRINT A#
run
2, 340600015258789
Ak

@Arithmetic operations
Example 1:
10 ? 10/3
20 7 16/3%3H
KRUN

Terererer

3. 33333
9.99999976415814221
Ok

The equation 10/3 is performed in single precision. Its result is converted
to double precision before being multiplied by 3, that is, the result is con-
verted to the higher degree of precision.

2-8

www fastio.com

ok

Example 2:

1@ PRINT 10#/3
26 PRINT 1o#/ 373

The arithmetic 10/3 is performed in double precision. The precision of the
result is compared with that of the multiplier 3; consequently, the multipli-
cation is carried out at the higher precision, i.e., double precision.

Example 3:

16 Al=10a/3

20 R#é=10#/3

TG IF A!'>B# THEN SO ——————— Comparison is performed at the higher precision,
.40 FRINT "1@#/g_".5# + END .i.e., double precision

5@ PRINT "1a/3= "iA!

T RUN

1o/ Z= 3, 33IFIIFIIIEEISS

PRINT A
. 3.33333

- A#=A!
FRINT A#
3.3333TTRSTBLO04AT4
Ok

@Type conversion in logical operations
When a noninteger numeric value is issued in an operand of a logical oper-
ation, it is converted to integer type by being rounded to the tenth place
before the operation begins.

19 A=10.5 AND 12.3
26 PRINT A
RUN

29

http://www.fastio.com/

Example 1:

2.3 Arithmetic Operations

(1) Expressions 1o A=la/o
. LT oy wil T
Expressions are defined as variables or constants, or combinations of vari- ' e PRINT A
ables and constants combined with operators to yield a single value. RUN
. . . L /o Ervor
BASIC provides the following five operators: 1.79141E+38
: Ok

o Arithmetic operators
Relational operators
Logical operators Example 2:
Functional operators
String operators |

29 PRINT A

(2) Operator types

(1) Arithmetic O
: Ui
Operator Operation Sample expression | Explanation S Error
A Exponentiation AAB Places A to the power of B. See (i). LTTALALE
— Negation —-A o ke
* Multiplication A*B
/ Division A/B See (i).
+ Addition A+B (ii) When the divisor or dividend is noninteger, it is rounded to the tenth
- Subtraction A-B : : _ place, to form an integer before the division is carried out.
MOD Remainder A MOD B Gives the remainder of A divided by
of division B. See {ii). :
\ Integer division A\B Gives the quotient of a division, with 19 A=10.%5 MOD 2.5

a truncated fraction. See {iii).

26 FRINT A

The precedence of the arithmetic operators are as follows: RUN

. Parentheses

. Function

. Exponentiation

. Signs (unary +, unary —)
*, /,\, MOD

+, — (binary)

~y

Qi

.O\':IIAUJNH

(i) When a division by 0 is performed, BASIC displays a ‘/0 Error’’ mes-
sage on the screen and continues processing. It returns the maximum
value that the computer can handle. The same result will be returned
if an exponentiation operation results in zero being raised to a negative
power.

2-10 2-11

Ij
Wi DF - wwwy fastio.com
Nt

http://www.fastio.com/

(iii) When the divisor or dividend of an integer division is a noninteger, it
is rounded to the tenth place to form an integer before the division is
carried out, and only the integer part of the quotient is returned.

Example 3:

10 A=10%2.0
20 FRINT A

run

-

Ok

(iv) When the result of an operation cannot fit in the memory area reserved
for the variable storing the result, BASIC displays an ‘‘OV Error’’ mes-
sage on the screen, and continues or terminates processing depending
on the type of the operation.

19 A=5"100
20 PRINT A

RUN

Vv Ervror
1.78141E+38

Qi

(2)Relational operators

Operator Sample expression Explanation
= A=B A is equal to B.
< >or>< A< > orA><B 6 A is not equal to B.
< A<B A is smaller than B
> A>B A is greater than B.
<=or< A<=orA=<B A is smaller than or equal to B.
>=or =< A>=orA=>B A is greater than or equal to B.

The result of relational operations is either true (— 1) or false (0). Relation-
al operations are used to alter the program flow depending on various con-
ditions (see the descriptions of the IF...THEN...ELSE and IF...GOTO
statements).

For example, in evaluating the expression
2-12

- www fastio.com

X+Y<(T-1)/2,

BASIC calculates X +Y and (T-1)/Z then compares the results of the preced-
ing calculations. If the result of the former is smaller than that of the latter,
the true value (—1) is returned.

NOTE:

The equal sign is used as a relational operation only in the conditions clause
of the IF statement. In addition to being used to indicate equality, the equal
sign is also used to indicate the assignment of a value to a variable (see the
LET statement).

Example:

19 B=7 : C=3
29 A=p:C
o PRINT A

When the above program is executed, —1 is displayed on the screen. On
line number 20, the result (— 1 or 0) of the relational operation B> C is placed
in A. Since B>C is true, when executed this program displays — 1 on the
screen. Change line number 0 to:

1é B=8 : C=7

BASIC will display 0 because B<C is false.

, @Logical operators

Logical operators are used in two forms:
(i) <operand> logical operator <operand>
®* When the <operand> is either a numeric constant or a variable, the
logical operator performs bit manipulation on two or more operands
according to the logical relation determined by the operator and returns
either 1 or O for each bit.

The logical operators in this form are:

NOT (Negation) A NOT A
1 o
o 1

2-13

http://www.fastio.com/

AND (Logical product) A B A AND B The numeric value specified by the <operand> is converted to a 16-bit
1 1 1 signed binary number in two’s complement form before being submitted
1 0 0 . to the logical operation. Positive integers from 0 to 32767 are expressed as
0 1 0 0000000000000000 to 0111111111111111. Negative numbers from —1 to
0 0 0 —32768 are expressed as 1111111111111111 to 100000000000000. The bit
in the leftmost position indicates the sign of the number. A 0 in this bit iden-
tifies a positive number and a 1 a negative number.
OR (Logical sum)} A B A OR B
1 1 1 PRINT NOT = 3=0000 0000 0000 0011
1 0 1 i} NOT 3=1111 1111 1111 1100
0 1 1 Ok
0 0 0
FRINT 1 AND 2 1 =0000 0000 0000 0001
® 2=0000 0000 0000 0010
1AND 2= 0000 00
XOR (Exclusive or) A B A XOR B Ok 0000 0000 0000
1 1 0
1 0 1 A -
FRINT 3 AND = 3=0000 0000 0000 1111
Y 1 1 - 2=0000 0000 0000 0010
0 0 0 Ok 3AND 2=0000 0000 0000 0010
IMP (Implication) A B A IMP B FRINT & OR S 6=0000 0000 0000 0110
1 1 1 7 5=0000 0000 0000 0101
1 o o Ok 6 OR 5=0000 0000 0000 0111
0 1 1
0 0 1
FRINT 2 XOR S 2=0000 0000 0000 0010
= §=0000 0000 0000 0101
Ok 2 XOR 5=0000 0000 0000 0111
EQV (Equivalence)} A B A EQV B
1 1 1
1 Y o FRINT & IMF @ 3=0000 0000 0000 0011
0 1 0 -4 0=0000 0000 0000 0000
0 0 1 Ok 3IMP 0=1111 1111 1111 1100
<operand > can take val'ues from — 32768 to 32767. Any values other than FRINT = EQV 4 20000 0000 0000 0010
integers are rounded to integers. -7 0=0000 0000 0000 0000
Ok 2EQV 4=1111 1111 1111 1001
2-14 2-15

- www fastio.com

http://www.fastio.com/

(ii) <operand> logical operator <operand>
e When the expressions in the <operand> are connected by relational
operators, the logical operator performs logical operations on the
results (true or false) of the relational operations and returns a true
(— 1) or false (0) result. The logical operators in this form are the same

as those given in (i).

NOT (Negation) Result of relational operation{A} NOT A
True (— 1) False (0)
False (0} True (- 1)
AND ({Logical product} Result of relational operation{A) | Result of relational operation(B) A AND B
True (= 1) True {~1) True {-1)
True (—1) False {O)False (0)
False (0) True (- 1) False (O)
False (0) False (0) False (O)
OR (Logical sum) Result of relational operation{A)} | Result of relational operation(B} A AND B
True {—1) True (— 1) True (—1)
True {— 1} False (0) True (—1)
False {0} True (—1} True (- 1)
False (0) False (O} False (0)
XOR (Exclusive or) Result of relational operation{A) | Result of relational operation(B) A AND B
True (~1) True (- 1) False (0}
True {~1) False (0) True {—1)
False (0) True {—1) True {~1)
False (0) False {0) False {0}
IMP Result of relational operation{A} | Result of relational operation{B} A AND B
True (- 1) True (—1) True (—1)
True (—1) False (0) False {0)
False {0} True (-1} True (~ 1)
False (0} Faise (0) True (~1)
EQV (Equivalence) Result of relational operation(A) | Result of relational operation(B) A AND B
True {—1) True (— 1} True (- 1)
True (- 1) False {0} False (O}
False {0} True (-~ 1) Faise (0
False (0) Felse (0) True (-1}

100 IF

F - www fastio.com

D200 AND Fod4 THEN 8

2-16

o

The above program line causes control to transfer to line 80 because the
results of relational operations D <200 and F < 4 are both true and the logi-
cal operation performed on these results also gives a true value.

100 IF J<10 OR ESO THEN 50

The above program line causes control to transfer to line 50 because the
result of the OR operation is true if either J<4 or K<0 is true.

Functions

A function performs a predefined operation on the given parameters and
returns the result of the operation. For example, SIN(X) returns the sine
of numeric value X in radians. PX-4 BASIC provides a number of func-
tions. The BASIC functions are described in detail in Chapter 3.

You can define your own functions by using the DEF FN statement. See
Chapter 3 for further information.

String operators
(i) The *“+°* string operator concatenates character strings together.

19 A$="FILE" : H$="NAME"
26 PRINT As+BE$

39 PRINT "NEW "+A$+" "+B$
RUN

FILENAME

NEW FILE NAME

[B]%

(ii) Character strings can also be compared in the same way as numeric
values are, by using relational operators. BASIC compares two strings
by matching them one character at a time starting at the leftmost charac-
ter position. It regards two characters which match in all character po-
sitions as equal. If a mismatch is found in a character position, BASIC
terminates the comparison and regards the character string with the
higher character code value in that character position as the larger string.
When one character string is phsically shorter than the other, and the
character positions of both strings match, the longer character string
is regarded as larger string. Blanks are also compared in the magnitude
of their code (see Appendix J, “CHARACTER CODES”).

2-17

http://www.fastio.com/

Example 1:

"AA”<“AB’
*FILENAME” = "FILENAME”
*X$T>TX#”

*kg” >°“KG”

“SMYTH” <"SMYHE"

Example 2:

12 As="alpha"

29 BH="beta"

39 IF A%:B$ THEN 69

40 PRINT A%:" is lower than "iB$
59 END

&0 PRINT B#:" iz lower than "1A%E

RUN
alpha is lower than heta
Ok

2-18
waww fastio.com

2.4 Files

The PX-4 computer treats its input/output devices as files. This section briefly
describes the input/output devices that the PX-4 can handle and also shows
how BASIC identifies them.

2.4.1 File Specification

‘A file is identified by means of a file specification which consists of a drive
name, a file name, and a file extension.

(1) Drive name
The drive name identifies the input/output device on which a file is to be mount-
ed for processing. The default drive is the logged in drive.

The relationship between the input/output devices and the drive names is shown
below.

Al it a e aes RAM disk

3 3 PP SPeN ROM capsule-1
et aeas ROM capsule-2
DLELF G Floppy disk

| 2 TP PPPPPP Microcassette
T P TP RAM cartridge

.. ROM cartridge-1
K s ROM cartridge-2
SCRN: . aaes LCD display
i 5} S\ (RN Printer
COMBO:....eieiiiieciivveereeeeerieanes RS-232C

Te0).Y § E O SIO
COM2:....eiiviiiiereieirieneeeeenenenns RS232C
SIO
6767 K E R Cartridge serial
KYBD:...oiiirinireniniininrnenenenenanenes Keyboard
167, N) U External cassette
2-19

http://www.fastio.com/

(2) File name

The file name identifies a file on a single input/output device. A file name is
made up of one to eight alphanumeric characters followed by a period and a
1- to 3-character file extension (or file type). When we refer to a file name,
we normally include the file extension.

You need not specify a file name for the keyboard, RS-232C port, and those
input/output devices which cannot handle more than one file at a time.

(3) File extension

The file extension is usually used to indicate the use of a file (e.g., for storing
programs or data). The file extension can consist of one to three alphanumeric
characters. The LOAD and SAVE commands assume a file extension of BAS
when no file extension is specified. The file name and extension must be sepa-

rated by a period.

Example:

SAEVE MEak

The above command saves the program in the currently selected program area
onto the RAM disk with a file name of PROG1 and a file extension of BAS.

2-20

- www fastio.com

Drive D

2.4.2 File number

A file must be given a file number by the OPEN statement when it is to be
used by a program for input/output processing. The program performs in-
put/output operations to and from the file via the memory area (buffer) as-
sociated with the file number that is uniquely assigned to the file. The association

- between the file and the file number is released by the CLOSE statement.

File numbers begin with 1. The maximum file number is determined by the
/F:<number of files > parameter that is specified when BASIC is cold-started.

* 3 is assumed when the /F: parameter is omitted.

File number
#1

D: FILEBAT DO<=———~ #2

\\O—l— 43

Program

Memory

et us consider an example program for handling input/output. If the /F:
arameter (i.e, the number of files that can be opened at a time) is specified
s 4 at BASIC start-up time, we can specify integers 1 to 4 as file numbers.

@The first code segment creates a file on the RAM disk with a file name of
OUTDTI1.DAT, and we have decided to make the file number 1.
@The second code segment reads data from the file INDT1.DATA on the
floppy disk. Since file number 1 is already being used for the output file,
we must select a second file number for this file from file numbers 2, 3,
and 4. Here we have selected file number 2.

@The third code segment reads data from the file OUTDT1.DAT on the RAM
disk. We can use any number from 1 to 4 for this file. We used file number 3.

221

http://www.fastio.com/

OUTDT1.DAT === File number 1

OPEN -~ == — Output- = = — = —= CLOSE
INDT1.DAT == File number 2 “A:QUTDT1.DAT’' ~=—e= File number 3

O- 0 O0—O

OPEN-——-=—- Input- = == ==~ CLOSE OPEN—= === Input- ===~ CLOSE

100 OFEN 07 81, A OUTDT L. DAT?

FO0 OFEN CIM #E, A INDTL. DATY

250 CLOSE #1

00 CLOSBE $#IZ

A0 OFEN "IT,#I,"A:0UTDT1.DAT"

500 CLOSE #3

2-22

F - www fastio.com

2.4.3 Input/output devices

The PX-4 computer is furnished with a number of input/output devices. These
devices can be accessed by using standardized 1/0 statements and functions.
A brief description of the PX-4 1/0 devices follows.

@LCD display

The LCD display is an write-only device which is used to show data and
program contents. When using it as a file, specify SCRN: as the drive name.

@Keyboard

The keyboard is an read-only device used to receive data. When using it
as a file, specify KYBD: as the drive name.

(3)RAM disk

The RAM disk is used to store programs and data. The RAM disk is pari
of the PX-4 main memory which simulates a floppy disk but provides far
higher input/output processing speed than normal floppy disk drives. Its
drive name is A:. The size of the RAM disk can be specified during system
initialization. The contents of the RAM disk are preserved when the PX-4
is powered off.

@RS-232C, SIO, and cartridge serial ports

The PX-4 computer can exchange data with a variety of external devices
(e.g., QX-10, PX-8, etc.) via their communications facilities such as the
RS-232C, SIO, and cartridge serial interfaces. See Chapter 6, ‘‘Data Com-
munications Facilities’’ for details. The drive names COMO: to COM3: are
reserved for these interfaces.

@ROM capsule

The ROM capsule is read-only device which reads programs and data stored
in the computer. It may also be used as part of main memory. The drive
name of the ROM capsule is B: or C:.

2-23

http://www.fastio.com/

2.4.4 Other peripheral devices

The PX-4 computer also includes a buzzer and a clock. These devices cannot
be used as files so they are not assigned drive names. The following statements
and functions are available for these devices:

Buzzer: BEEP, SOUND

Clock: TIMES$, DATES, DAY

2.4.5 Microcassette drive (Optional)

The optional microcassette can be used to store data and programs in the same
way as the RAM disk. Not only as a storage device, but also as an input/out-
put device. The microcassette is assigned the drive name of H:.

The PX-4 controls files on the microcassette by using a directory (a table used
to store information about the files). It reads this directory into memory from
the microcassette tape whenever performing an I/0 operation (i.e., read or write)
on the microcassette. This procedure is known as mounting. Once the directo-
ry is loaded, the PX-4 accesses the files on the microcassette based on the direc-
tory information in memory. It alters the contents of the directory in memory
each time it writes data onto the microcassette tape. This means that you have
to save the contents of the directory back onto the tape before removing the
microcassette from the cassette deck following an I/O operation. This proce-
dure is known as remove. The mount and remove procedures can be carried
out in the system display mode; however, they may also be performed from
within a program by using the BASIC REMOVE and MOUNT commands.

The directory of a new microcassette tape must be initialized (DIRINIT) be-
fore use. For detailed handling procedures of the microcassettes, refer to Sec-
tion 2.8, ‘““Microcassette Handling’’ in the PX-4 Operating Manual.

Although microcassettes can be opened in the random mode, they do not allow
accesss. I/0 operations on microcassette random data files must be carried out
in record number sequence. The PX-4 can access only one microcassette file
at a time. For example, if one microcassette file is opened in the input mode
and then another microcassette file is opened, the PX-4 can only access the lat-
ter file. Once a file is opened for output, no other files can be opened until
the opened file is closed.

2-24

F - www fastio.com

The file specification for microcassette files has the following format:
[H:][(< options >)][< file name >][. < extension>]

_¥ou can specify two types of options for microcassette files:

@ {S: Stop mode

N: Nonstop mode
When this option is omitted, the microcassette file is processed as follows:

(i) When the file is opened in the input (‘‘I’’) mode
Data is read from the file in the mode in which the data was written.

(ii) When the file is opened in the output (‘‘O’’) mode
Data is written to the file in the stop mode.

(iii) When the SAVE command is used
Data is written to the file in the nonstop mode.

(iv) When the random (*‘R’’) mode is specified in the OPEN statement
If the file name specified in the OPEN statement exists on the microcas-
sette, data is read from that file in the mode in which the data was writ-
ten. If the OPEN statement is used to create a new file, data is written
to the file in the stop mode.

rewinding the tape (verify mode).

N: Specifies that no CRC check is to be made (nonverify mode). When
this option is omitted, the mode specified in the system display mode
is becomes active.

@ {V: Specifies that when the file is closed, a CRC check is to be made after

Example:

SEVE Hr (B8Y TEST. BAS"

When specifying only option @, place a blank in the position where option
is to be specified.

4 NOTE:
. When an item keyboard is installed on the PX-4, the system display cannot be
4 obtained, so the microcassette drive cannot be controlled manually.

2-25

http://www.fastio.com/

2.4.6 RAM cartridge (Optional)

The RAM cartridge is an external storage device which allows both input and
output. Like the RAM disk in the main unit, it is used to store data and pro-
grams. The RAM cartridge is optional and connected to the main unit via a
cartridge interface.

Since the RAM cartridge is battery-backed up, it can preserve data for up to
one year when detached from the main unit. The RAM cartridge has a capacity
of 16KB and the assigned drive name is I:.

2.4.7 Printer (Optional)

This optional printer is a write-only device which is used to print data and pro-
gram listings. It is assigned the drive name LPTO: when used as a file.
See Appendix N.

2.4.8 Floppy disk (Optional)

Floppy disks are commonly used auxiliary storage devices for storing data and
programs. They can be used for both input and output operations. The floppy
disk drives for the PX-4 are given the drive names D:, E:, F:, and G:.

2.4.9 ROM cartridges (Optional)

ROM cartridges are read-only external storage devices which are attached to
the main unit via the cartridge interface. The drive names J: and K: are reserved
for the ROM cartridges.

2.4.10 External audio cassette

The PX-4 can use a commercial audio cassette tape recorder as an external
storage device by connecting it with an optional cable (#732). The audio cas-
sette tape recorder is used as a sequential input/output unit and assigned the
drive name CASO:. Its file specification has the format:

CASO:[< option >][< file name >]|. < extension>]
The option must be either the stop or nonstop mode.

[S: Stop mode

N: Nonstop mode
2-26

F - www fastio.com

5

The audio cassette recorder allows no manual operation; it is only controlled
through BASIC commands. The BASIC commands that support the audio cas-
sette record are: OPEN, CLOSE, INPUT #, LINE INPUT #, PRINT #, PRINT
USING, SAVE, LOAD, LOAD?, LIST, RUN, MERGE, MOTOR, BLOAD,

BSAVE, EOF, and INPUTS.

~Examples:

GAVE "CASO: FROGRAM. BAS"
SGAVE "CASo: (S) PROGRAM. BAS"

0 Connecting a cassette recorder to the PX-4
¢ The REM (remote) terminal need not be used when saving onto or loading from

a cassette tape. When handling a data file, however, data cannot be written
to the cassette file unless the REM terminal is used and the S (stop mode) op-

. tion is specified in the file specification. Since the PX-4 reads data from a cas-
.. sette file one block at a time, it must be able to control the starting and stopping

: the cassette recorder with the REM terminal in order to position the read/write
" head at the next block.

 When the REM terminal is activated, the PLAY button on the cassette record-

r is disabled and tape will not move when the PLAY button is pressed. To

’ start the recorder when the REM terminal is used and the PLAY button is pressed

own, execute the MOTOR ON command. To stop the tape, execute the MO-
OR OFF command.

!Saving a program onto cassette tape
0 save a program onto a cassette tape, press down the REC and PLAY but-
ons on the tape recorder then execute the following command:

SAVE ““CAS0:[(< option >)] < file name >[. <file extension>]"’[,A | P]

AS is assumed if <file extension> is omitted and nonstop mode (N) is as-

sumed if <option> is omitted. '

2-27

http://www.fastio.com/

® Program verification

After a program is saved on a cassette tape, a check should be made to verify
whether the program has been saved properly. To do this, rewind the tape up
to the point where the program saving started (by visually checking the tape
counter), then press down the PLAY button, and execute the command:

LOAD?[“CASO:[< file name > . <file extension >]’’]

Program verification is not achieved by comparing the program in memory with
that which has been saved on tape. Instead, the LOAD? command loads the
saved program while making CRC checks, and displays the error message ‘10
Error” on the screen if it detects a CRC check error.

* Loading a program
To load a program, rewind the tape up to the point where the program was
saved, press down the PLAY button, and execute the command:

LOAD[““CASO:[< file name > . < file extension > 1’1

BASIC will load the program into memory in the mode in which it was saved
if <option> is omitted. If < file name>. < file extension> is omitted, BAS-
IC will load the first file found.

¢ Input/output to and from a data file

When <option> is omitted in an I/0 statement executed for a data file, if
the file is opened in the input (“I’’) open mode, it will be read in the mode
in which the file was created. The file will be written in the stop (S) mode if
the file has been opened in the output (*‘O”’) open mode.

2-28

ChihPDF - www.fastio.com

2.5 Error Messages

BASIC displays error messages whenever it detects errors during execution of
BASIC statements, commands, and functions. If an error is detected while ex-
ecuting a BASIC program, BASIC immediately interrupts the program execu-
tion and returns to the command mode. You can prevent your program from
being interrupted by such errors by including in your program some error han-
dling routines which use the ON ERROR statement and the ERROR and ERL
functions. See Appendix K, “ERROR CODES AND MESSAGES”’ for a full
description of the BASIC error codes and messages.

2-29

http://www.fastio.com/

	./brm2_01.tif
	./brm2_02-03.tif
	./brm2_04-05.tif
	./brm2_06-07.tif
	./brm2_08-09.tif
	./brm2_10-11.tif
	./brm2_12-13.tif
	./brm2_14-15.tif
	./brm2_16-17.tif
	./brm2_18-19.tif
	./brm2_20-21.tif
	./brm2_22-23.tif
	./brm2_24-25.tif
	./brm2_26-27.tif
	./brm2_28-29.tif

