Chls

)

CHAPTER 3 CP/M I (BDOS, BIOS) CONTENTS

3.1 PIN
3.1.1
3.1.2
3.1.3
3.1.4

3.2 BDO
3.2.1
3.2,2
3.2.3
3.2.4

3.3 BIO
3.3.1
3.3.2
3.3.3

3.4 BIOS Details

General ..ccecececcccccsccccccnccs
Memory AddresSing ceeeeccecccccees
Constructing a CP/M System .ecese.
Terminating CP/M ceeeeccscecacnssns

General .eeeccevsccsscsccscsccnscns
BDOS Function Operation Flow
BDOS FUNCtiONS .eeesesccccccccccos
BDOS EYXYYOLS seeceesccscsccsccssccscss

General ® O 06 05 060 0 0 9 00 0SSO OO O LSO OSDS
BIOS Function Operation FlOW ee...
BIOS Hook ® ® 6 O 00 00 8 Q ® 5 & & & 05 8 00 600

® 9 © 066 00 & 008 ¢ OO OO LSOO LSO NLe NS

3.4.1 Programming Notes on the Use of
BIOS FUNCLiONS cececcctscscsccsnscs
3.4.2 BIOS ENtries cseececeecccccccsccncs
3.4.3 BIOS Functional Descriptions
3.5 Keyboard .eececececsscocsscsccsccsscscacnes
3.5.1 General ..ececccscccccccscccccccns
3.5.2 Keyboard Functions .eeececececscsee
3.5.3 Standard Keyboard ..cceceeeeccocascs
3.5.4 Item Keyboard .cceeeecceccccccccces
3.5.5 Work Areas for Keyboard
ProCeSSINg eceeeceeccsccccccoscsoscces
3.5.6 Key Code Charts ..ceeeecsccccccces
3.5.7 Hard Code ChartsS cieeeeecscecsccscs
3.6 LCD Display (CONOUT DetailS) seeeesccsccse
3.6.1 General .eeeeecesccscsscscccscsnns
3.6.2 Screen ModeS .eeececsscccsccnsscns
3.6.3 Virtual SCreen ..eeeeecceccccccccs
3.6.4 Graphics Display ceeeececcecacocne
3.6.5 CONOUT (BIOS) eesecsccscsssscscsas
3.6.6 Character Generator .ececeecsccceces
3.6.7 Miscellaneous Considerations
3.6.8 Screen-related WOrk Areas .ceecesee

v fastio.com

11-56

IT-58
I1-58
I1-60
II-64
I1-66

II-68
IT-68
I1I-68
II1-70
I1-73

11-82
11-82
11-82
I1-85

I1I1-95

I1-95
I1-97
I1-99

11-182
11-182
I1-182
I1-183
11-187

I11-197
11-212
I11-224

11-230
I1I1-239
I1-231
I1-238
I11-243
I1-245
11-258
I11-265
11-279

http://www.fastio.com/

, ClibPDF

TOS/MIOS Operations

File Control

Processing

General ® 0000000000000 00rs0000c000

/

1

2

3 Tape File Control Block (T-FCB) ..
4 USIiNg MTOS tuveesoececoaccccoosess
5 MTOS FUNCLIONS 4eeoecocnccnonocees
6 USING MIOS tuiteeeeeocasocsoaccsees
7 MIOS FUNCLIONS seeeeesccocaccoceas
8 Work Areas Related to MCT

@08 0s00000 00000000000

3.8 Disk IMage StOrage eeeeceeeccecssccscscasee
3.8.1 GeNneral .iceecrecccccccccccanncces

3.8.2 Logical to Physical Drive
ASSIgNMENt teeeeeeceecsocosasccces

3.8.3 Disk Details
3.8.4 Disk-related

- www fastio.com

LU I IR B B BU R B I 2 ST N I S S

WOYK AXre€as ceeeeeeees

O BYtE coceeccceerseocscccancacasanancnces
9.1 GeNeral ..iciecesscecococsosnscnns
9.2 Modifying the I/0 Byte ceesesasens
9.3 I/0 Byte COoNntentsS eceeececssscocees

-57

I1-284
I1-284
II-285
I1-292
I1-294
I1-304
IT1-319
I1-321

II1-334

I1-339
I1-339

I1-34¢9
II-345
I1-362

II1-365
I1-365
II-365
II1-365

http://www.fastio.com/

Chihigm

CHAPTER 3 CpP/M I (BDOS, BIOS)
3.1 PINE CP/M
3.1.1 General

The PINE operating system is an extended version of Standard CP/M
Version 2,2. The new system modules of the PINE CP/M have been
introduced in Chapter 2. In this chapter, the extended functions
are described in full depth.

The structure of extended CP/M is shown in Figure 3.1.1.
PINE extended CP/M is provided with the following features:

1. Extended BIOS has thirty BIOS entries in addition to
the standard BIOS entries to support expansion devices such
as RS-232C interface, SIO, cartridge SIO, clock, buzzer, RAM
disk, and ROM and RAM cartridges.

2. Most of OS programs are executed in ROM, leaving a large
user area.

3. Frequently used application programs are executed in ROM,
leaving a large user ‘area.

4, Various types of memory- -related devices (main RAM, ROM
capsules, ROM and RAM cartridges, microcassette, etc.) are
available as disk drives. " This provides the PINE user with
great operational ease.

li-58

wvvwfastio.com

http://www.fastio.com/

Application

Section 3.2 | Section 3.7
[Boos] [_wmTOS

..

Sectios 3.3 ~ 3.6

% Extended §§
g B10S BIOS 22 MIOS

Expansion Standard : Micro
devices devices cassette

Fig. 3.1.1 CP/M Organization

I-59

ChihPDF - www.fastio.com

http://www.fastio.com/

3,1.2 Memory Addressing

The PINE supports four types of banks shown in Figure 3.1.2.

The four banks are:

- System bank -- Contains O0S ROM and the first half of RAM.
- - Bank @ -- Contains the entire RAM.
1 - Bank 1 -- Contains BASIC ROM (as shipped from the
] factory) and part of RAM.

- Bank 2 -- Contains application ROM and part of RAM.

The CP/M modules (CCP, BDOS, and BIOS) are loaded on bank 4 (all
RAM) as they are on ordinary CP/M machines., This means that PINE

application programs can use the CP/M functions in the same way
as under standard CP/M.

i Only the entry points to the BDOS and BIOS functions are loaded

in RAM to reserve as large a RAM area as possible for application
programs. Actual BDOS and BIOS operations are performed in 0S5
ROM.

Each BDOS and BIOS function is provided with two entry points
] for convenience in executing application programs which run on
g both banks 1 and 2.

Figure 3.1.3 gives the RAM memory map for the PINE.

iI-60

Ccht www fastio.com

http://www.fastio.com/

Bank Systen 0 1 2
T~ 8KB | 16KB .| 32KB 8KB | 16KB | 32KB
FFFF ’
RAM | RAM | RAM RAM | RAM RAM
EQ00 |
RAN ~ ROM1 | ROMT | ROM1 | ROM2 | ROM2 | ROM2
C000 | (BASIC)
RAM
A000 |
.
8000
6000 |
ROM
4000/ ® RAM | RMM | RAM | RAM | RAM | RaM
2000
0000
Note: The bank 1 of the standard PINE contains BASIC.

ChihPDF - www.fastio.com

Fig. 3.1.2 Bank Structure

1-61

http://www.fastio.com/

FFFF

System area

RSYSPR
EBOO RBIOS?2
£ADD RBDOS2 (2568)
System screen,
user—-defined (5123»
£800 characters :
VRAM1 (2KB)f
£000 1
VRAM2 (2kB)|
0800 "
Virtual 2K8)|
0000 screen
Item key table (1KB)j
; CC00
RAM disk
(26KB)
6400
RBIOS1 (2568)
6200 RBDOS1 _ (2568)]
CCP
TPA
0100
0000

Clih Pl v\ fastio.com

System common area 1
(not changed through
bank switching)

O X =T

System common area 2
(accessible only to
modutes on the system
bank or bank 0)

ONORONORCI oo R

Relocated from 0S ROM.

The addresses at which these
modules are relocated differ
depending on the RAM disk
capacity.

Fig. 3.1.3 RAM Memory Map

(RAM disk =

1-62

26KB, user BIOS area = 0KB)

http://www.fastio.com/

Notes:

1. Either bank 1 or 2 has three dlfferent organizations
depending on the ROM capacity (8KB, 16KB, or 32KB). When
power is turned on, the system determines the organization
of each bank by reading from the header area the capacity
of ROM on the corresponding bank.

2. The contents of RBDOS1 and RBDOS2, and those of RBIOS1 and
RBIOS2 are exactly the same,

Load-and-go programs must call RBDOS1 or RBIOS1 (ordinary
BDOS or BIOS call) to ask for system services.

ROM-based programs must call RBDOS2 or RBIOS2 (at a fixed
address) because RBDOS1 or RBIOS1 may be located on the
background bank. e

3. The amount of memory reserved for the virtual screen is
fixed regardless of the virtual screen size. This means
that changes in the virtual screen size do not affect the
CP/M size.

4. The user BIOS size is initially set to @. If the user BIOS
is specified, however, the area for the user BIOS is
reserved between the RAM disk area and the item table area.

5. The system area used by the PINE is divided into the
following two types:

- System area for which initial values are set only when
predetermined conditions are satisfied.
- System area simply used as a temporary work area.

The system area of the first type is subdivided into three
types called RSYSAR1l, RSYSAR2, and RSYSAR3, respectively.

RSYSARLl: Initialized at system initialize time.

RSYSAR2: Initialized at system initialize or reset time.

RSYSAR3: Initialized at system initialize, reset, or
WBOOT time.

RSYSAR4: Not initialized.

RSYSARS5: Stack and buffer.

See also:
- Section 4.1, "User BIOS"
- Section 4.4, "Bank Switching”
- Section 4.6, "Executing a ROM- based Program"
- Section 6.1, "Memory Map"

1-63

ChihPDF - www.fastio.com

http://www.fastio.com/

3.1.3 Constructing a CP/M System

SHIFT/GRPH/Reset

| SYSTEM INITIALIZE |

1. Load initial values set up at
system initialization (RSYSAR1)
2. Set time and sizes of RAM disk

and user BIOS. Fig. 3.1.4 System Flow Chart
Resel SW Power_on
RESET POWER ON
1. Load resident portion of the 1. Check for cartridges.

2. Check for devices.

systen. (RSYSPR
ysten. (RSYSPR) (RAM disk, Item keyboard etc.)

2. Load initial values set up at
system reset. (RSYSAR2)

3. Load RBIOS 1 or 2

4. Check for cartridges

5. Check for diveces

- JMP O &
(oot | [wBooT |
Set current drive (a:) 1. Flush TF buffer
Set 1/0 byte 2. Set cursor type

Set KB type
Display CP/M SIGN ON message
Set initial values for PF and
arrow keys.

AN

4 4

[Actions common to BOOT and WBOOT |
1. Close RS-232C
2. Specify jump address for BDOS WBOOT
3. Load RBDOS 1 or 2
4. Load initial vailues set up at WBOOT
(RSYSAR3)

3

1i-64

Chibh Pk v fastio.com

http://www.fastio.com/

Continued from the previous page .
(Actions common to BOOT and WBOOT)
4

Resident ?

I No .
No fi. Load CCP
nu specified = 2. Set PF and allow keys

J1 Yes

Menu
! | ;rocessi;; l =>
TPA at 100H

4
(bank 0) CP/M CCP

Yes

* CP/M is loaded into
RAM through the
operations in the
boxes enclosed in
the targer boxes.

i-65

ChihPDF - www.fastio.com

http://www.fastio.com/

Chb P

3.1.4
cp/M

1.

Terminating CP/M .

is interrupted during processing by: \

Pressing the STOP key. \\\\\\

1) Purpose: e

To inform the system of the depression of the STOP key.

2) System action:

Clears the buffers for the keyboard (75¢8 slave CPU) and
BIOS, sets the stop flag BRKFLG (0F@19H) to on, and returns
g3H.

Pressing the CTRL and STOP keys.

1) Purpose:

To terminate the’current I/0 operation immediately.

2) System action:

Clears the keyboard buffer, sets the CTRL/STOP flag CSTOPFLG
(0F@lAH) to on, and returns 03H. The I/0 operation is
terminated immediately through the CTRL/STOP flag.

Turning off the power switch.

1) Purpose:

To turn off power in the restart mode (when a standard
keyboard is installed).

2) System action:

Continues the I/0 operation till the end of the current unit
of work, terminates processing, and turns off power. Stops
the buzzer (beep processing) immediately. The system
performs a warm boot when power is turned on the next time.
Turning off the power switch while holding down the CTRL key.
1) Purpose: -

To turn off power in the continue mode.

2) System action: ;

Continues the I/0 operation till the end of the current unit
of work, reserves all parameters necessary to continue the
processing, and turns off power in the continue mode. The
system continues processing at the next power on starting at
the point where power was turned off.

The arrival of the auto power off time.

1) Purpose:

This function is provided to turn off power when the system
has been waited for entry from the keyboard for a specified
period of time. The function saves power by automatically
turning off power when the user forgets to do so.

2) System action:

Preserves all parameters necessary to continue the
processing and turns off power in the continue mode. The
system continues processing at the next power on starting at
the point where power was turned off,

- The detection of a power failure.

1) Cause:

The battery voltage drops below a predetermined level,

2) System action:

Turns off power in the continue mode as in the action for 4.
Pressing the reset switch.

1) Purpose:

To cold start the system when the program hangs up. If the
CP/M size or the RAM disk is destroyed, however, the system
does not start normally.

2) System action:

11-66

vww . fastio.com

http://www.fastio.com/

ChhPDF

Performs a boot operation., The system reserves the RAM
disk and user BIOS areas but restores the BIOS entries to
initial values. The system also resets the 7508 slave CPU
(keyboard parameters are set to default values).

8. Pressing the reset switch while holding down both the right
SHIFT and GRPH keys (when a standard keyboard is installed)
or the STOP and INIT keys (when an ITEM keybcard is
installed).
1) Purpose:
To initialize the system. The system starts unless the
slave CPU is not in a hang-up state.
2) System action:
Initializes the system and resets the slave CPU (keyboard
parameters are set to default values). The system starts
1/0 operations from the beginning.

9. Resetting the slave CPU.
1) Purpose:
To start the system when the slave CPU is in a hang-up
state.
2) System action:
Initializes the entire system including the slave CPU.

Reference:
The following system areas are reserved for the STOP and
CTRL/STOP keys and used as flags:

- BRKFLG (@F@19H) 1 byte

The STOP flag indicating whether the STOP key has been pressed.
This flag is set when a keyboard interrupt occurs and reset by
CONIN or CONST (if no entry has been made from the keyboard).
g@H: STOP key not pressed.
Nonzero: STOP key pressed.

- CSTOPFLG (OF@lAaH) 1 byte

The CTRL/STOP flag indicating whether the CTRL/STOP keys havebeen
pressed. This flag is set by a keyboard interrupt and reset by
CONIN or CONST (if no entry has been made from the keyboard).

ggH: CTRL/STOP keys not pressed.

Nonzero: CTRL/STOP keys pressed.

1-67

- www fastio.com

http://www.fastio.com/

ChhPm

3.2 BDOS Operations
3.2.1 General

As mentioned in Section 3.1, the operating system for the PINE is
derived from the standard CP/M Version 2.2.

PINE BDOS is located in two places in RAM. This feature offers
the following advantages:
- The upper limit of available RAM is indicated so that
ordinary CP/M applications can execute without modification.
- The user can call BDOS from a ROM-based program without
being aware of bank switching.

PINE expansion devices, especially microcassette, have several
operational restrictions.

This section discusses BDOS operations focusing on the items
unique to the PINE.

3.2.2 BDOS Function Operation Flow

When BDOS is called by a PINE application program, control is
first transferred to the entry point to the BDOS in RAM. Then
the 0S switches banks and calls the real BDOS in 0S5 ROM. Upon
completion of processing, the 0S switches the bank back to the
original bank that was used when BDOS was called and returns
control to the application program with return information loaded
in registers.

The BIOS used by the BDOS in ROM calls the BIOS in OS ROM.
The procedure for calling BDOS differs depending on the type of
the application program.
- Load~and-go programs call "JMP RBDOS1" at address @@05H.
- ROM-based programs call "JMP RBDOS2" at address @FF9¢H.

Both Load-and-go and ROM-based programs use BDOS functions
exactly the same way.

Figure 3.2.1 illustrates the operation flow from a BDOS call
to the return of control to the application program.

11-68

v fastio.com

http://www.fastio.com/

System bank Bank 0 (all RAM) Bank 1 or 2

_ JHP RBOOSZ | FFOOH | JAP RBDOS2 ——
: E(Bank switching) § §
. _RBIOS2 _: @ RBI0S2 {_RBIOS2
RS = RBD0S2 | @~@< | _RBDOSZ ~—
EQOOH | |
®
@6
‘ o | ® (CALL RBDOS)| @
TFFFH
<Application
BDOS RBDOST
RBDOS | FoK>
@ |® CCP
O
BIOS @
(CALL BDOS)
@
<0S ROM> 0005H [JNP RBDOST [=—=— |
0000H , e

Fig. 3.2.1 BDOS Call Operation Flow

1-69

ChihPDF - www.fastio.com

http://www.fastio.com/

3.2.3 BDOS Functions

PINE application programs use the same interface as ordinary CP/M
application programs when calling BDOS.

This subsection lists the BDOS functions with a brief
description. Refer to "CP/M 2.2 Interface Guide" for detailed
information about the use of BDOS functions.

Table 3.2.1 BDOS Calls

umben Function Name Input Output
0 System Reset C: O None
1 Console Input C: 0 A : Input char
2 Console OQutput C: 024 None
£ : Output char
3 Reader Input C: 03 A : Input char
4 Punch Qutput C: 044 None
E : Output char
5 List Output C : 05H None
£ Outpur char
6 Direct Console 1/0 C : O6H A : Input char (input)
E : OFFH (input) . None
: Qutput char
(output)
7 Get IOBYTE C:0m A : IOBYTE
Set I0BYTE ¢ : o8 None
E : T0BYTE
9 Print String C: 0% None
DE : Address at which
the string is
- stored.
10 Read Console Buffer | C : OAH Loads the buffer with
OE : Buffer address entry from the console,
" Get Console Status C : OBH A : Console Status
12 Get Version Number ¢ : OCH HL : Version Number
13 Reset Disk System C : ODH None
14 Select Disk C : OEH None
E : Disk number
15 | Open File C : OFH A : Directory code
OE : FCB address

1I-70

Clila]i= www fastio.com

http://www.fastio.com/

Nunben Function Name Input Output
16 Close File C:10H A : Directory code
DE : FCB address
17 Search for First C: 1 A : Directory code
DE : FCB address
18 Search for Next C: 124 A : Directory code
19 Delete File C: 13H A : Directory code
DE : FCB address
20 Read Sequential C: 1M A : Return code
DE : FCB address
21 Write Sequential C: 15H A : Return code
DE : FCB address
22 Create File C: 16H A : Directory code
DE : FCB address
23 Rename File C: 1M / A : Directory code
DE : FCB address
24 Get Login Vector C: 184 HL : Login vector
25 Get Disk Number C: 194 A : Disk Number
26 Set DMA Address C: 1M None
DE : DMA address
27 Get Allocation C: 1BH HL : Allocation address
Address
28 Write Protect Disk C: 1CH None
29 Get R/0 Vector C: 1CH HL : R/0 vector
30 Set File Attributes | € : 1EH A : Directory code
DE : FCB address
31 Get DPB Address C: 1M HL : DPB address
32 Set/get User Code C: 204 A : None (Set)
E : OFFH (Get) : User code (Get)
: User code (Set)
33 Read Random C: 2 A : Return code
DE : FCB address
34 Write Random C: 2 A : Return code
DE : FCB address
35 Compute File Size C: 24 FCB r0, r1, r2
DE : FCB address
36 Set Random Number C: 244 FCB r0, r1, r2
DE : FCB address

ChhPDF -

www fastio.com

-71

http://www.fastio.com/

meer Function Name Input Qutput
37 Reset Disk Drive C : 25H None
DE : Drive vector
38
39
40 Random Write with € : 28H A : Return code
Zero File DE : FCB address ‘
251 | Verify File C : OFBH
DE : T~FCB
252 | Remove Tape ¢ : OFCH
253 | HMount Tape C : OFDH
254 Read Tape ID C : OFEH
2551 Create Tape C : OFFH
Directory DE : T~FCB

Note: Functions 251 through 255 comprises Extended BDOS (MTOS)
for microcassette. See Section 3.7, "MTOS/MIOS Operations" for
details.

W72

3
Chih POEERY v fastio.com

http://www.fastio.com/

ChhPDF -

3.2.4 BDOS Errors
BDOS errors are divided into the following categories:

1. Bad Sector error
1) Cause: :
An error was found while reading or writing a disk.
2) Action:

Terminate processing by pressing STOP or CTRL/C. If any

other key is hit, the system continues processing,
ignoring the BAD SECTOR error.

2. Select error
1) Cause:

An attempt was made to address a drive beyond the specified

randge or a drive that was not ready.
2) Action:

Press any key. The system sets the drive to the currently

logged in drive.

3. R/0 error

1) Cause:

An attempt was made to write a read-only disk,

2) Action:

Press any key. The system performs a warm boot.
4, File R/0O erxror

1) Cause:

An attempt was made to write a read-only file.

2) Action:

Press any key. The system performs a warm boot.

A drive is reported as not ready when:

1. Floppy disk drive power is off.

2. The floppy disk drive cable is not connected.
3. No disk is inserted.

4. No cartridge is installed.

5. No ROM capsule is installed.

Table 3.2.2 shows the relationship between disk devices and

errors,

1-73

www fastio.com

http://www.fastio.com/

Cause RAM disk | ROM capsule |External | Micro- BDOS
RAM cartridge ROM cartridge RAM disk | cassette | action

Checksum error O - - - Bad Sector

Directory full | O - 0 o |Returns with
A = OFFH

Disk full o - o o |Returns with
A = OFFH

Write _ o - _ R/0

processing

Attempt to write

write-protected O - O O R/0

device

End of tape encoun- _ '_ _ O Bad Sector

tered during write

File not found o O o o Returns with

in directory A = OFFH

File not found - - - O Bad Sector

Drive not ready| O O O O Select

No cassette found _ _ _ '®) Bad Sector

during read or mount

No cassette

found during - - - ®) Bad Sector

write or remove

O - probable
— -« Not probable

Table 3.2.2 BDOS Error Recovery Actions

11-74

Clih PRI /vy fastio.com

http://www.fastio.com/

ChhPDF -

As described above, BDOS can indicate four types of error
conditions. Since these errors are handled totally under BDOS
control, they may destroy the current screen image or initiate a
warm boot on receipt of user response from the keyboard after
displaying the error. '

One of the countermeasures to avoid this is to make the
application program report and handle error conditions by itself.

The application program can achieve this by taking the following

two measures adainst the error:

1. Receiving BDOS error information in a return code.

2. Rewriting the jump vector for BDOS error processing and
performing use-supplied error processing.

(1) Receiving BDOS error information in a return code
1) Procedure
The application program can receive any BDOS error
information in registers by calling location $@12H (SETERR)
in 0S ROM (system bank). It can also have BDOS return any
error information by calling location @@15H (RSTERR) in 0S8
ROM.

The application program must use BIOS CALLX (WBOOT + 66H) to
directly call the routine in OS ROM.

2) Return codes
The A and H registers are loaded with the following return
codes when SETERR is executed:

Register
Error A H
BAD SECTOR 10FFH 0O1H
BAD SELECT |OFFH 02H Standard CP/M
R/Q DISK OFEH 0O3H BDOS errors
R/0 FILE OFFH O4H
MCT ERROR OFFH 88& MCT only

When the H register is loaded with @8H, the return code
corresponding to the CP/M return information is also loaded
in the A register,

For Bad Sector errors, BDOS stores more detailed error
information in system area BIOSERROR (@F52BH).

1-75

www fastio.com

http://www.fastio.com/

BIOSERROR (@F52BH) 1 byte

Loaded with one of the following information at the end of a
BIOS disk read or write:

@0H: Normal termination
F1H: Read error

@2H: Write error

@3H: Write protect error
g4H: Time-out error

g5H: Seek error

@g6H: Break error

@7H: Power off error

@g8H: Mount error

GFEH: Other errors

[| O VA I |}

3) Programming notes .

a. Once SETERR is executed, BDOS only returns error status
and performs no error processing until RSTERR or WBOOT is
executed.

b. When SETERR is executed, the results are not guaranteed
unless the application program performs its own error
checking and recovery processing.

I-76

ChihP® sy fastio.com

http://www.fastio.com/

(2) Rewriting the jump vector for processing BDOS errors
1) Procedure .
The jump vector for BDOS error processing is located at the
beginning of BDOS in RAM. The application program can
perform its own error processing by changing the contents
of the jump vector.

The address and contents of the jump vector are shown below.
(The address of RBDOS1 can be obtained from the contents of
@d6H and @@7H.)

Address Data Contents
RBDOS1+03H | DW PERERR |Address of parameter error
processing routine (Bad Sector)
RBDOS1+05H | DW SELERR |Address of Select error
processing routine (Bad Select)
RBDOS1+07H |DW RODERR |Address of R/0 Disk error
[processing routine (R/0 Disk)
RBDOS1+09H | DW ROFERR |Address of R/0 File error
processing routine (R/0 File)

2) Programming notes

a. Since the stack area for the BDOS is used during BDOS
processing, it is necessary to restore the stack area for
the application program when returning control directly
to the application program,

b. Note that bank @ (all RAM) is selected during BDOS
processing when rewriting the jump vector from a ROM-
based program,

c. When rewriting the jump vector from a ROM-~-based program,
keep in mind which bank the program is using because the
jump vector may be located in the background bank of the
bank on which the ROM-based program resides.

d. The user error processing routine must not contain any
BDOS call if it is to return control to the system (BDOS)
after error processing.

e. Switch the active bank to the system bank before returning
control to the system.

n-77

ChihPDF - www.fastio.com

http://www.fastio.com/

0012
0015

EBO3
EBOS
EBOC
EB63
EB69

0005
FF90

F52B
FS2E

1000
1000

0100
0100

0103
0106

0106

D =

0118
011B
011F
0121
0124
0127

C

IhPDREE

31
cD

c3

1000

0108

0106

01E2
013B

0147
05

OF
EE

21 0012
FF

F52E
EB69

01DA
5B 0006

0008
EB63

o fastio.com

'

SETERR

FTITL]

FTTT]

kX EE

% *
BDOS ERROR RECOVERY SAMPLE PROGRAM
*%

NOTE :
<> assemble condition <>

-280
< loading address <>
.PHASE 100H

<> constant values <>

EERKKK KKK KK R R

EQU 00012H . SETERR routine address
RSTERR EQU 00015H . RSTERR routine address
QBOOT EQU OEBO3H . WBOOT entry address
CONIN EQU OEBOSH ; CONIN entry address
CONOUT EQU OEBOCH . CONOUT entry address
LDIRX EQU OEB83H ; LDIRX entry address
CALLX EQU OEB69H ; CALLX entry address
RBDOS1 EQU 00005H ; RBDOS1 entry address
RBDOS2 EQU OFF90H ; RBDOSZ entry address
éIOSERROR EQU QF52BH ; BIOS error information
DISBNK EQU OF52EH . Distination bank
MAINSP EQU 10008 ; Stack pointer
BDOSSP EQU 1000H ; Stack pointer
: *RERK EERKERRKRREEKRKE RN EREF
SELECT BDOS ERROR RECOVER
: *x EREERKRE
START:
LD SP ,MAINSP . Set stack pointer.
' CALL SELERR . S8elect error recover type,.
LOOP:
: *
B USER PROGRAM
: 22 L2 2]
: NOTE ,
This part is user program.
JP LOOP . Loop permanent.
: *x L2222 20
: SELECT BDOS ERROR RECOVERY
: R
: NOTE
H Select BDOS error recovery type.
; 1. Using SETERR and RSTERR
; 2. Replacing BDOS error vector
E <> entry parameter <>
; NON
: <> return parameter <>
; NON
; <> preserved registers <>
: NON
; CAUTION :
H If BREAK key is pressed, then WBOOT
SELERR:
LD HL ,MSG01 ; Select error recover message.
CALL DSPNSG ; Display message.
’ CALL KEYIN ; Get input key code.
SUB 31H ; Using SETERR?
JR Z,ERRO10 . Yes.
DEC A ; Using error vector?
JR Z ,ERR100 . Yes
JR SELERR : Others, then retry.
! CALL SETERR ROUTINE.
ERKOI0:
LD IX .SETERR ; Set calling address.
LD A.OFFH . Select system bank.
LD (DISBNK) ,A ;
CALL CALLX ; Call SETERK.
RET
; CHANGE ERROR VECTOR.
ERR100:

LD BL.VECTOR ;
LD DE, (RBDOS1+1)
INC DE

INC DE ;
INC ;
LD BC, 00088 ;
LD A,00H ;
CALL LDIRX ;
RET ;

11-78

New error vector address.
Get error vector address.
RBDOS1 top addr. + 3

; Transmite byte no.

Select bank 0 (RAM bank).

; Change error vector.

http://www.fastio.com/

KERKKERRR KRR T RRATREE E AR R RN E KKK AR R KRR RKR S

DISPLAY MESSAGE
AR RRKEE RN KRR R R R R KRR R AR KRR R AR AR R KRR RE KRR KRR

NOTE :
Display message until fine OOH.

<> entry parameter <>
: Message data top address
<> return parameter <>
NON

<> preserved registers <>
NON

CAUTION
013B DSPMSG
013B 7E LD A, (HL) i Get data 1 byte.
013C BT OR A 3 End of data?
413D cg RET z i Yes.
G13E 4F ! Lp C,A ; Set display data.
013F ES PUSH HL 3 Save pointer,
0140 €D EBOC CALL CONOUT ; Display message 1 byte.
U143 El PoP HL i Restore pointer.
0144 23 INC HL : Update pointer.
0145 18 F4 JR DSPMSG . Loop until find 0.
INPUT A KEY DATA
XXX * EEREERAEXRKE RS
5 NOTE
) Get inputed key data.
<> entry parameter <>
H NON
: <> return parameter <>
: NON
H <> preserved registers <>
' NON
: CAUTION :
H 1f BREAK key is pressed, then WBOOT
0147 KEYIN: -
0147 CD EBOS CALL CONIN ; Get inputed key code.
014A FE 03 CcP 03H ; Break code?
014C CA EBO3 JP Z,W¥B0OT ; Yes, then WBOOT.
014F c9 . RET
EEERKRRKKEEES
; BDOS ERROR RECOVERY
M EREXERXEXEERES
; NOTE
B BDOS error recovery
<> entry parameter <>
H Error type 1
H A : Error type 2
: <> return parameter <>
: NON
H <> preserved registers <>
H NON
: CAUTION :
H If BREAK key is pressegj. then WBOOT
0150 ERRCHK : '
0150 4F LD C.A ; Save return code.
0151 7C LD AH . Error type.
0152 B7 OR A ; Normal end?
0153 28 10 JR Z ,BDOSER ; Yes.
0155 3D ' DEC A . ; Bad sector?
0156 28 20 JR Z ,BADSEC : Yes.
0158 3D DEC A ; Bad select?
0159 28 33 JR Z .BADSEL . Yes.
0158 3D DEC A . Read only disk?
015C 28 3A JR Z .RODISK T Yes.
015E an DEC A ¢ Read only file?
U15F 28 41 JR Z.ROFILE . Yes.
0161 D DEC A . Micro cassette error?
0162 26 45 JR Z MCTERR . Yes.
0164 €9
: BDOS ERROR INFORMATION.
0165 BDOSER:
06165 C5 PUSH BC ; Save return code.
0166 21 0238 LD HL ,M§G04 . BDOS error code message.
0169 €D 013B CALL DSPMSG . Display message.
016C C1 POP - BC . Restore return code.
616D 3E 30 ’ LD A,30H ; Change error code to ASCII.
016F 81 ADD AC ; Return code + 30K
0170 4F LD C.A H
0171 CD EBOC CALL CONOUT ; Display return code.
0174 CD 0147 CALL KEYIN . Input any key.
0177 Ccs RET :
! BAD SECTOR
0178 BADSEC:
0178 3A F52B LD A, (BIOSERROR) : BIOS error type.
017B 87 ADD WA . Get message address.
017C 21 0250 LD HL,MSGO5 ; Message table top address.
t-79
ChhPDF - www fastio.com

http://www.fastio.com/

C

017F
0181
0182
0183
0184
0185
0186
0187
018A
018D

018E
N186E
©191
0194
0197

0198
0198
019B
019E
01A1

0142
01A2
01A5
01A8
01AB

01AC
01AC
01AF
01B2
01B5

01DA
01DA
01DC
01DE
01E0

01E2
01E2
01E3
01ET7
01EB
01EF
01F3
01F7
01FB
01FF
0203
0204
0208
020C
0210
0214
0218
0219
021D
0221
0225
0229
022D
0231
0235
0238
0239
0239
0238
023F
0243
0247
024B
024F
0250
0250

21

D
(&)

21
CD
cD
€9

00

013B
0147

02F8
0138
0147

0308
0138
0147

031C
013B
0147

0330
013B
0147

1000
0178
0106

1000
018E
0106

1000
0198
0106

1009
01A2
0106

L fastio.com

LD B,00H ;. Get target message pointer.
LD C.A :
ADD HL,BC H
LD E,(HL) . Get target message address.
INC HL H
LD D, (HL) :
EX DE,HL . Set message address to HL.
CALL DSPMSG ; Display message.
CALL KEYIN ; Input any key.
RET ;
; BAD SELECT.
éADSEl;
LD HL ,MSGO6 , Bad select messape.
CALL DSPMSG . Display message.
CALL KEYIN ; Input any key.
RET i
READ ONLY DISK.
RODISK: -
LD HL ,M5G07 : Read only disk message.
CALL DSPNSG ; Display message.
CALL KEYIN ; Input any key.
RET .
; READ ONLY FILE.
ROFILE:
LD HL ,MS5GO8 ; Read only file message.
CALL DSPMSG ; Display message.
CALL KEYIN ; Input any key.
RET :
; MICRO CASSETTE ERROR
MCTERR
LD HL .NSG09 . Micro cassette error message.
CALL DSPMSG . Displav message.
CALL KEYIN ; input any Kkey.
RET .
XBADSEC:
LD SP,BDOSSP ; Set stack pointer.
CALL BADSEC . Bad sector error.
Jp LOOP ; Return to user program.
XBADSEL:
LD SP,BDOSSP . Set stack pointer.
CALL BADSEL ; Bad select error.
JP LOOP : Return to user program.
XRODISK:
LD SP.BDOSSP ; Set stack pointer.
CALL RODISK : Read only disk error.
Jp LooP : Return to user program.
XROFILE
LD SP,BDOSSP ; Set stack pointer.
CALL ROFILE ; Read only file error.
Jp LooP ; Return to user program.
; NEW ERROR VECTOR
VECTOR:
XBADSEC ; Bad sector
Dw XBADSEL ; Bad select
DW XRODISK ; Read only disk
DW XROFILE ; Read only file
MESSAGE
NSGO1
DB ocH
DB ‘Select BDOS error recover type.',6ODH, 0AH
DB ' 1 -- Using SETERR',0DH,0AH
DB f 2 -~ Replacing error vector' ,0DH,O0AH
DR 00H
MSGO4:
DB ODH, OAH
DB 'BDOS return code is ’
00H
MSGOY:
DW MSGOS50

1-80

http://www.fastio.com/

C

031C
031E
0322
0326
032A
032E
032F
0330
0330
0332
03386
033A
033E
0342
0346
0349

69
72

65
72

71
&F

72

64
2E

74
2E

61
2E

20
oD

64
6C
69
oD

IhPDF - www . fastio.com

MSG050 :

MSGO51 :

MSG052:

MSG053:

MSGUS4

MSGO55:

MSGO56 :

MSGO57:

NSGO6 :

MSGUT:

MSGOS8 :

HM5G09:

DB

DB
bB

DB

DB
DB

bB

DB
DB

b8

bl
DB

pB

DB
bB

DB

DB
DB

DB

DB
b

DB

DB
DB

bB

DR
DB

DB

DB
DB

DB

DB
DB

DB
END

MSGO51
MSG052
MSGO53
MSGO54
MSGO55
MSGO56 |
MSGO57

ODH, 0AH
'Normal return.’',bODH,0AH

00R

ODH, 0AH
‘Read error.',0DH,0AH

008

ODH, OAH
'Write error.' ,(0DH,0AH

OO0H

ODH, 0AH
'Write protect error.',0DH,04H

UUH

ODH . GAH
'Time over error.',0DH,U0AH

00B

ODH.GAH
’Seek error.’',0DH,0AH

00H .

ODH , 0AH
'Break error.’ ,0DH,0AH

00N

ODH, 0AH
‘Power off error.’,0DH,0AR

00H

ODH, 0AR
'Bad select.',ODH,0AH

O0H

ODH , UAK
'Read only disk.’,0DH,0AH

00H

ODH, 0AR
'Read only file.' ,0DH,0AH

00H

ODH, OAH
'Micro cassette error.’,0DH,0AH

00H

-81

http://www.fastio.com/

ChibPDOIS

3.3 BIOS Operations

3.3.1 General

The major BIOS operations are carried out in 0S ROM of the system
bank as BDOS operations are,

The PINE OS provides two entry points to BIOS in RAM to enable
ROM~based programs to use BIOS without being aware of the banks.

PINE extended BIOS allows the user to have easy access to
PINE-unique peripheral devices such as serial interfaces, a
clock, buzzer, or expansion 1/0 units (ROM/RAM cartridge, MCT,
etc.).

PINE BIOS is provided with user BI0S and a hook to user BIOS to
facilitate system extension by the user.

3.3.2 BIOS Function Operation Flow
3.3.2.1 Outline

When a-call to BIOS is made from an application program, the PINE
0S8 takes the following actions as when a BDOS call is made:

1. Switches the active bank to the system bank within the BIOS
in RAM.

2, Calls the real BIOS in OS ROM.

3. Upon completion of BIOS processing, switches the bank to the
one that was active when the BI0S call was made, and returns
control to the application program with return information
and data loaded in registers,

The procedure for calling BIOS differs depending on the type of
the application program.

1. The load-and-go program calls a BIOS function by specifying
its address obtained by adding the function offset to the
JMP WBOOT addres (0000H).

2. The ROM-based program directly calls the entry in the BIOS
jump table in RBIOS2 (@EB@@H - OEBFFH).

In both cases, the called function operates exactly the same way.

1-82

vy fastio.com

http://www.fastio.com/

3.3.2.2 PREBIOS and PSTBIOS

The PINE introduces PREBIOS and PSTBIOS for processing BIOS calls
without disruption due to interrupts and thus increasing system
reliability.

There are some cases when the PINE cannot successfully resume the
execution of a program, which is interrupted by an interrupt
occurring during execution of a BIOS call, when control is
returned from the interrupt servicing program if the interrupt is
processed immediately.

This problem can be avoided if interrupts are disabled before the
execution of any BIOS call and processing of any interrupts
occurring during the execution of the BIOS call is performed
after the BIOS call has been terminated. This is controlled by
PREBIOS and PSTBIOS.

PREBIOS and PSTBIOS are automatically executed whenever a call to
BIOS is made via the BIOS vector in RAM.

(1) PREBIOS

PREBIOS sets on three flags indicating that BIOS processing is in
execution, that alarm processing is disabled, and that power off
processing is disabled.

(2) PSTBIOS
PSTBIOS resets the flags that are set by PREBIOS and performs any

alarm or power off processing that is held pending during BIOS
processing.

See Sections 2.5, 2.9, and 4.7 for detailed information.

11-83

ChihPDF - www.fastio.com

http://www.fastio.com/

System bank

)

Bank 0 (RAM)

i _RBIOS2 ===
: RBDOS2 :

PSTBI0S ®

BIOS

PREBIOS O

<0S ROM>

Chih PDIER v\ fastio.com

RBI0S?

@

RBDOS2

RBI0S1

RBDOS1

ccp

(CALL BIOS)

.| JMP WBOOT

-84

Bank 1 ro 2

@ < R0 ———

~@®
EO00H:

—RBO0S2

@

©

(CALL BIOS)

Application
ROM>

Fig. 3.3.1 BIOS Call Operation Flow

http://www.fastio.com/

3.3.3 BIOS Hook

The PINE extended BIOS contains a hook to BIOS in addition to
user BIOS. The BIOS hook permits the user to update or modify
existing BIOS processing routines. This subsection explains how
to use the BI0S hook.

3.3.3.1 Relationship of the BIOS hook to BIOS

The BIOS hook is referenced immediately before control is
transferred from OS ROM on the system bank to a BIOS function.
Figure 3.3.2 shows the relationship of the BIOS hoot to BIOS in a
flowchart form. Note that only steps 3 through 8 in Figure 3.3.2
are taken when BIOS is called from BDOS.

1i-85

ChihPDF - www.fastio.com

http://www.fastio.com/

ClihPD=E. v fastio.com

BIOS call from application program

{ D
Switch to BIOS stack
I ®
Switch to system bank
Call jump table entry
in 0S ROM
L e
Compute BIOS function
entry address
! ®
Execute PREBIOS
! . ®
BIOS hook]
l D —
Execute BIOS function
{ @ _
Execute PSTBIOS
! @
Restore original bank
! ©
Restore original stack

__Jfunction

Processing
common to
to the BIOS
functions.

Processing
unique to each

Processing
common to
the BIOS

functions.

!

Return to application program

Fig. 3.3.2 BIOS Processing Flow

11-86

Executed in 0S ROM
of the system bank.

http://www.fastio.com/

Step

Action

Description

Switch to BIOS
stack

- Save the the current stack
pointer to USRSBI.

- Switch the stack pointer to BIOS
stack.

Switch to system
bank :

- Check the BIOS function number.
-~ Translate the DMA address to the
system DMA address.

- Check the current I/0 byte and
place its contents in RIOBYTE.

- Switch the active bank to the
system bank after saving original
bank information.

Call jump table
entry in 0S ROM

- Call the corresponding jump table
entry in OS ROM determined by the
BIOS function number.

Compute BIOS
function entry
address

- Obtain the address at which the
BIOS function is to be started
based on the address of the called
jump table entry.

Execute PREBIOS

- Carry out the PREBIOS processing
described in 3.3.2.1.

BIOS hook

- Call the BIOS hook entry
(@FFE7H) .

-~ The register contents remain

the same as when the BIOS function
was called.

Execute BIOS
function

- Call the corresponding BIOS
function processing routine based
on the BIOS function entry address
obtained in step 4.

Execute PSTBIOS

- Carry out the PSTBIOS processing
described in 3.3.2.1,

Restore original
bank

- Restore the bank information
saved in step 2 and switch the bank
to the original bank.

- Copy the data at the DMA address
when the called function is read.

19

Restore original
stack

- Restore the stack pointer saved
in step 1.

ChihPDF - www.fastio.com

1-87

http://www.fastio.com/

—

1k

ChbPDIs

The following system areas are shared by the BIOS functions:

RIOBYTE (OGF529H) 1 byte
- I1/0 byte save area.
- The I/0 byte format is presented in Section 3.9,

OLDBNK
- Bank

wonouon

USRSBI
- Area

BIOSFN
- Area

0o

SAVEIX
- Area

SAVEIY
- Area

(@F52CH) 1 byte
information save area.
@FFH: System bank

@g@H: Bank @

@l1H: Bank 1

G2H: Bank 2

(OF535H) 2 bytes
for saving the user stack for BIOS.

(GF537H) 1 byte

for storing a BIOS function number
@gH: BOOT .

@3H: WBOOT

.

8AH: CONTINUE

(0F540H) 2 bytes

"I/0 Byte."

for storing the contents of the IX register pair.

(BF542H) 2 bytes

for storing the contents of the 1Y register pair.

-88

rfastio.com

http://www.fastio.com/

3.3.3.2 Using the BIOS hook

The procedure given below shows how to call BIOS through the BIOS
hook.

(1) Hook processing routine logic

BIOS functions are always called through the BIOS hook.

The hook processing routine, therefore, must check for extended
BIOS functions.

Sample hook processing routine:

Sample hook processing routine
O]

Switch stack pointers

{ ®
Save registers

{
Compute 8105] @
function number

1
Extended > @ No
BIOS function ?
L Yes ®
Fxtended BIOS processing
¢ ®
Restore registers
Il
Restore stack @
pointer and return

-89

ChihPDF - www.fastio.com

http://www.fastio.com/

SIEDE - W

Step

Action

Description

Switch stack
pointers

- The stack pointer currently points
to the system BIOS stack area.
If the routine is to use a large

stack area, it must reserve its own
stack area.

Save registers

- Registers are currently loaded
with parameters. The registers
that are to be used by the routine
must be saved.

Compute BIOS
function
number

- Compute the BIOS function number
of the called routine.

- How to compute:

Find the BIOS function number from
the starting addresses of the
called BIOS routine and the BIOS
jump table.

Step 1 - B BIOS hook | W
stack return address (H)
pointer B BIOS routine] (L)(L)

starting address (H) |
| BIOS post process- | (L)
ing routine address | (H)

0007H | BIOS jump table | (L)(E)
0008H | starting address W |

Subtracting the value of (B) from
(A) results in the offset of a BIOS
function (80H, @3H, ...) with
respect to the BOOT entry.

o fastio.com

1-90

http://www.fastio.com/

ChhPDF -

Step

Action

Description

Check for BIOS
function

Compare the specified function
number with the function number
computed in step 3 to determine
whether the given BIOS function is
an extended one. The specified BIOS
function is found to be a standard
BIOS function if the following
condition is met:

(a) - (B) = 3n

“where n is the specified function

number.,
: n
n
n

@gH ... BOOT
@lH ... WBOOT
@2H ... CONST

W onn

n 2DH ...

CONTINUE

Extended BIOS
processing

- Perform the extended BIOS function.
- The user-supplied routine must be
placed here.

Restore
registers

- Restore the registers saved in
step 2,

Restore stack
pointer
and return

- Restore the stack pointer saved
in step 1.

~ Return. On return, control is
passed to the main 0S BIOS section.

- When you don't want to utilize the
BIOS function in the 0S, pop the
stack level two levels (4 bytes)
and return. You will find that item
7 in Fig. 3.3.2 is skipped, and
operation goes directly to item 8.

wvvwfastio.com

1-91

http://www.fastio.com/

ChbP s

3,3.3.2 Rewriting the BIOS hook

The user can rewrite the BIOS hook by modifying its jump address.

FFE8H | BIOS hook (L)
FFE9H jump address (H)

The BIOS hook jump address is initialized to EF1FH. Address
EF1FH contains the RET instruction.

Rewrite addresses FFE8H and FFE9H with the starting address of
the new hook processing routine. Subsequently, any BIOS calls
will be routed through the new BIOS hook processing routine.

3.3.3.3 Programming notes

(1) since the system bank is selected when control is transferred
to the BIOS hook, the hook proce551ng routine must be placed at
location 8000H or higher. It is desirable that a separate user
BIOS area be reserved and the hook processing routine be
implemented in that area.

(2) The BIOS hook is also given control by BIOS calls that are
invoked by BDOS.

(3) The hook processing routine cannot call BIOS or BDOS
functions. To use a BIOS function, directly call the BIOS
function on 0S ROM. No BDOS call can be made from the hook
processing routine.

(4) When placing return information in IX and 1Y, save the
contents of the IX and 1Y registers 1nto SAVEIX (@FS540H) and
SAVEIY (0OF542H), respectively.

-92

ww L fastio.com

http://www.fastio.com/

H REREKKKEERKREKK
; BIOS HOOK SAMPLE PROGRAM

P L e e et L
| NOTE

i <> assemble condition <>

.Z80

; <> loading address <>
' _PHASE 1008

s <> constant values <>

FFES BIOSHK EQU OFFESH ; BIOS hook address
CB0OO LOADADDR EQU O0CBOOR ; Extend BIOS load address
0000 WBOOT EQU 00000H ; Warm boot address

; BIOS HOOK DATA WRITE

0100 START:

0100 31 016D LD SP,MAINSP, . Set stack pointer.
0103 CDh 0120 ' CALL UBSZCHECK - . Check User-BIOS size.
0106 DA 0000 Jp C,WBOOT ; Size error, then WBOOT.
0109 21 0126 ' LD HL,LOADDATA . Extend BIOS routine load.
010C 11 CBOO LD DE, LOADADDR H
010F 01 0027 LD BC,LOADSIZE B
0112 ED BO LDIR 1 .
0114 21 FFES8 ' LD HL,BIOSHK . Change BIOS hook data.
0117 11 CBOO LD DE, LOADADDR H
011A 73 LD {HL) .E . Set low address.
011B 23 INC HL ;)
011C 72 Lp {HL).D . Set high address.
011D C3 0000 ' Jp WBOOT :
REEREREERERAENRERR KRR R IR RRE R AR RN R AKX RN
H USER-BIOS SIZE CHECK
N (T2 2323222222 22 80
; NOTE :
<> entry parameter <>
; NON
R <> return parameter <>
H CY : return information
: =0 : size 0.K.
; -= 1 : size N.G.
N <> preserved registers <>
H NON
<> constant values <>
EF2D USERBIOS EQU OEF2DH
0001 UBSIZE EQU 001H
0120 UBSZCHECK :
0120 3A EF2D ' LD A, (USERBIOS) ; USER-BIOS size --> A
0123 FE 01 cp UBSIZE ; Check USER-BIOS size.
0125 c9 RET
: EEERAXEEKKERRKRKKR
g EXTEND BIOS ROUTINE
: A *
: NJTE : This routine must be loaded to OCBOOH
: <> entry parameter <>
H Depend on each BIOS parameters
; <> return parameter <>
: NON
. <> preserved registers <>
H LL
' <> constant values <>
CcCcoo EXBIOSSP EQU 0CCOOH . Extend BIOS stack area (20H}
CBEO SAVESP EQU EXBIOSSP-20H . BIOS stack save arga (02H)
0003 CONINF EQU 03H ; CONIN tunction number
0009 TARGETBIOS EQU CONINF*3 ; Target BIOS function number
0007 B10SJPTB EQU 000078 . BIOS jump table address
CB1F ILZXBIOSE EQU EXBIOSR-EXBIOS+LOADADDR
; EXBIOSR addr in USER-BIOS area
0126 LOADDATA ©
0126 EXBIOS:
0126 ED 73 CBEO ’ LD (SAVESP) ,SP ; Save BIOS stack pointer.
012A 31 CCoo LD SP,EXBIOSSP ; Set new stack pointer.
012D E5 PUSH HL . Save registers to new stack.
012E D5 PUSH DE :
012F F5 PUSH AF :
0130 2A CBEO ' LD BL, (SAVESP) ; Get default BIOS JUMP address.

11-93
C

IhPDF - www . fastio.com

http://www.fastio.com/

0133 23 INC HL

0134 23 INC HL H
0135 SE LD E, (HL) H
1 0136 23 INC HL R
2 0137 56 LD D, (HL) :
9 0138 2A 0007 LD HL, (BIOSJPTB} ; Get BIOS jump table top addr.
013B EB EX DE,HL H :
013C B7 OR A ; Carry clear.
013D ED 52 8BC HL,DE ; Calculate offset value.
013F 70 LD AL
0140 FE 09 CcP TARGETBIOS ; Target BIOS call ?
0142 C2 CBIF JP NZ,EXBIOSE : No.

H You can insert your own extend-BIOS routine
; in thas part.:

0145 EXBIOSR: .

0145 F1 POP AF . Register restore.

0146 DI POP DE) :

0147 El POP HL :

0148 ED 7B CBEO LD SP, (SAVESP) . Recover stack pointer.

014C c9 RET . Return to 05-BlOS process.

0027 LOADSIZE EQU $-LOADDATA ; Extend-BIOS loading size
014D ! DS fOH ;" Stack area for main routone

016D MAINSP EQU s
' END

11-94

C

IhPDFE o fastio.com

http://www.fastio.com/

	./osrm2_056.tif
	./osrm2_057.tif
	./osrm2_058.tif
	./osrm2_059.tif
	./osrm2_060.tif
	./osrm2_061.tif
	./osrm2_062.tif
	./osrm2_063.tif
	./osrm2_064.tif
	./osrm2_065.tif
	./osrm2_066.tif
	./osrm2_067.tif
	./osrm2_068.tif
	./osrm2_069.tif
	./osrm2_070.tif
	./osrm2_071.tif
	./osrm2_072.tif
	./osrm2_073.tif
	./osrm2_074.tif
	./osrm2_075.tif
	./osrm2_076.tif
	./osrm2_077.tif
	./osrm2_078.tif
	./osrm2_079.tif
	./osrm2_080.tif
	./osrm2_081.tif
	./osrm2_082.tif
	./osrm2_083.tif
	./osrm2_084.tif
	./osrm2_085.tif
	./osrm2_086.tif
	./osrm2_087.tif
	./osrm2_088.tif
	./osrm2_089.tif
	./osrm2_090.tif
	./osrm2_091.tif
	./osrm2_092.tif
	./osrm2_093.tif
	./osrm2_094.tif

