Chh

3.6.2.2 Memory map
Figure 3.6.2 shows the memory map for the screen-related areas.

VRAM 1 is the VRAM for the user screen and located in the shared
system area (at OGEOOOH and above). It holds data in bit image;
that is, each bit in VRAM 1 corresponds to a single dot on the
LCD.

VRAM 2 is used by the system screen, When the screen mode is
switched from user to system screen mode, the bytes in VRAM 2 have
one-to-one correspondence with dots on the LCD.

The user-defined character area is used to store the fonts of the
user-defined characters.

FFFFH

EAQOH User-def ined

character area 192bvtes (32 characters x 6 lines)

E940H

System screen 320bytes (40 characters x 8 lines)
E8OOH

VRAMI1 2k bytes
EOOOH

VRAM?2 2k bytes
D80OOH

User screen 2k bytes (80 characters x 25 lines)
DOOOH

'\L ~

~ o~

O00O0H

Fig. 3.6.2 Screen-related Area Memory Map

11-230

B vy fastio.com

http://www.fastio.com/

ChhPDF

3.6.2.3 VRAM structure

On the following pages are descriptions of the structure and

the use of VRAM.

Each bit in VRAM corresponds to a single dot on the LCD panel.
The relationship between the LCD panel and VRAM is shown in

Figure 3.6.3.

Not displaved
32 bytes L, currently
240 dots r__dgfij Relative
P P e e — address with
010 1] 2 29'1 30 | 31 | «respect to
; + VRAM start-
1 :32 314 61. 62 | 63 ing address
64 . :
dots | 2 /.64 |65 |66 93,/ 94 |95
\ VRAM \
; (Y-direction offset = 0) !
liowgonzmi 204$|2046F0481

,//é/g/; 3 2\\\\

confnguratlon of 1byte

one to one correspondence
[TIIIN {
_
|
1
i
|
LCD panel i
¥ i
(240 dots x 64 dots) !
|
|
1
i
e

Fig. 3.6.3 Relationship Between VRAM and LCD Panel

1-231

- www fastio.com

Tt <o o'

[l]

http://www.fastio.com/

The address at which display of VRAM data on the LCD panel begins
is determined by:

- VRAM starting address (LSCRVRAM)

- Y direction offset (LVRAMYOF)

The Y-direction offset indicates the vertical correspondence
between VRAM and the LCD panel. Display begins at the location
offset dots away from the VRAM bottom and wraps around to the
VRAM top when it reaches the VRAM bottom. The system uses

this feature when performing a vertical scroll.

Figure 3.6.4 illustrates the relationship between the VRAM
relative addresses and the LCD panel when the offset is set to
two dots.

D] T U S =

0 (64| 65 | 66 93

i VRAM 3

! (Y-direction offset =2) :
61 01620172018 2045

L : This is
620 1} 2 29! «the first

; ; row of VRAM,
63 132 | 33 | 34 61

(i Relative address with
respect to VRAM start-
ing address

Fig. 3.6.4 Relationship Between VRAM and LCD Panel (When Y-
direction Offset = 2)

L The following system areas are used to control VRAM display:

LSCRVRAM (@F294H) 2 bytes

. - Contains the starting address of the VRAM (VRAM 1 or VRAM 2)

i whose contents are currently being displayed on the LCD display.
f The address must be 88@0H or higher and must be on a 2K-byte

L boundary.

i LVRAMYOF ($F2ADH) 1 byte

| - Contains the VRAM Y-direction offset.

t 0 < LVRAMYOF = 63

| The offset value is usually a multiple of 8.

-232

BISER /\ v\ fastio.com

http://www.fastio.com/

ChhPDF -

3.6.2.4 Switching the screen mode

The PINE OS supports two screen modes: the system screen mode
used by the system and the user screen mode used by the user.
Mode switching is automatically carried out by the 0S whenever
required. The 0OS has subroutines for this purpose.

(1) System screen mode

The system screen mode is the one in which the system screen is
used with VRAM2. This mode is used mainly by the system. The
system handles the switching to this mode as a kind of interrupt
generated in the user screen mode, This mode is used by system
display, alarm screen, and power fail screen functions.

(2) User screen mode

The user screen mode is the one in which the user screen is used
with VRAM1l. This mode is available to the user. Normal screen
display is performed in this mode.

(3) Mode switching

Screen modes can be switched using the XUSRSCRN and XSYSSCRN
subroutines. The entry addresses of these subroutines are found
in the 0S jump table (see Section 4.2, "Jump Tables").

XUSRSCRN -- Switches the screen mode to user screen.
XSYSSCRN -~ Switches the screen mode to system screen.
(4) Note

The user may also use the system screen in the system screen
mode. When the system screen is used by the user, the contents
of the system screen will be lost if 1) the system display is
made by means of the CTRL and HELP keys, 2) the alarm screen is
displayed at an alarm/wake time, or 3) the power fail screen is
displayed to signal a voltage drop condition. The screen mode is
switched back to user screen when the screens is exited.

The screen is always in the user screen mode when the POWER is

powered on whether the power-off state is in the continue mode or
restart mode.

11-233

wvvwfastio.com

http://www.fastio.com/

3.6.2.5 System screen

The system screen is used mainly by the system to display the
system display, alarm screen, and power fail screen. It consists
of 8 lines of 40 characters. . This size is fixed.

The system screen is shown in Figure 3.6.5.

The system screen is functionally equivalent to a user screen
whose size is fixed at 48 characters x 8 lines.

In the system screen mode, the cursor always moves in the
tracking mode and thus does not move out of the screen,

40 characters

1 0 1 2 3949 Relative address
with respect to
8 |2 40 41 42 1 791 the system screen
lines : starting address
81280281282 319

Fig. 3.6.5 System Screen Structure

System screen data is stored in the form of character generator
codes.

11-234

vy fastio.com

http://www.fastio.com/

» ClibPDF -

3.6.2.6 User screen

Although the PINE has a physical display screen of 48 characters
by 8 lines, it provides larger virtual screens to meet the needs
of the applications programs which require larger screens. See

3.5.3 for the virtual screen.

The user screen size may be in the
lines to 88 characters by 25 lines

The structure of the system screen

User screen data can be read using

range from 49 characters by 8
or 40 characters by 50 lines.

is shown in Figure 3.6.6.

the BIOS RDVRAM routine.

¢ characters
1 0 1 2 3 C-1 94— Relative address
with respect to
? C C+1 C+2 C+3 2C-1 the user screen
starting address.
R lines 31 2 2041 | 2C+2 | 20+3 3C-1
User "y
screen
R (R0 (R;:)C (R:;)C (R:;)C - 8 <R <50
C = 40ro 80

Fig. 3.6.6 User Screen Structure

User screen data is stored in the form of character generator

codes.

wavvw fastio.com

11-235

http://www.fastio.com/

3.6.3 Virtual Screen
3.6.3.1 Outline

The PINE uses the concept of virtual screen which allows the user
to use a screen larger than it actually is (48 characters x 8
liens). The virtual screen may as large as 8¢ characters by 25
lines or 40 characters by 58 lines.

The portion of the virtual screen that is actually displayed is
referred to as a window (40 characters x 8 lines) through which
the part of the virtual screen can be viewed.

3,6.3.2 Virtual screen structure

The structure of the virtual screen is shown in Figure 3.6.7.
!
The virtual screen may be 40 or 80 characters wide. 1Its length may
be any value in the range from 8 to 50 lines provided that (width
x length) does not exceed 2000. ’

The window size is fixed at 49 characters by 8 lines. The entire
contents of the virtual screen can be viewed by scrolling the
window up and down or right and left over the virtual screen.

1 Virtual screen
1 (character image)
| 8 characters
1 \ PP W i n d OW
VRAM
Riined | | (40 cgaﬁ‘g;g'? X > (bit inage)
LCD
(40 characters x
8 lines)
{ 3
40 characters : 8 <R =50
C = 40 or 80
C characters When C = 40, R may be up
to 50.
When C = 80, R may be up
to 25.

Fig. 3.6.7 Virtual Screen Structure

1-236

Clih P& vy fastio.com

http://www.fastio.com/

3.6.3.3 Scroll modes

The window scrolls over the virtual screen in the following three
modes:

- Tracking mode

- Nontracking mode

- Horizontally nontracking mode

The window moves, as the cursor moves, in different manners
depending on the scroll mode. '

The scroll mode can be specified from the keyboard or using
commands (ESC segquences).

(1) Tracking mode

In this mode, the window scrolls following the cursor. If the
mode is switched from nontracking to tracking when the cursor is
out of the window, the window automatically moves up to the point
where the cursor is stationed. The tracking mode.is valid in
both vertical and horizontally directions.

(2) Nontracking mode

In this mode, the cursor does not follow the cursor movement.
The window remains in the current position even when data is
written into the virtual screen.

The display changes when the cursor moves out of the virtual
screen, which triggers an automatic window scroll. However, the
cursor in the virtual screen stays in the original position.

(3) Horizontally nontracking mode

This mode is valid only when the virtual screen is 8¢ characters
wide. 1In this mode, the window follows the cursor movement only
vertically and does not follow horizontally.

(4) Specifying the scroll mode
The scroll mode can be changed by pressing the SHIFT and INS keys

simultaneously or sending an ESC sequence to the LCD through the
BIOS CONOUT routine.

The mode changes cyclically from tracking to nontracking, from
nontracking to horizontally nontracking, from horizontally
nontracking to tracking, and so on as the SHIFT and INS keys are
pressed. See Section 3.5, "Keyboard" for the SHIFT and INS keys.

The scroll mode can also be set by sending an ESC sequence (ESC +
95H) via the BIOS CONOUT routine. See the descriptions of the
ESC sequences for how to set the scroll mode.

: A
The system area shown below indicates the current scroll mode.

LSCROLMD (@F2A3H) 1 byte

- Current scroll mode

ggH: Tracking mode

g1H: Nontracking mode

g2H: Horizontally nontracking mode

i ounu

11-237

ChihPDF - www.fastio.com

http://www.fastio.com/

3.6.3.4 Scrolling the window

The window can be scrolled by 1) moving the cursor, 2) using
commands (ESC sequences), or 3) manipulating keys.

{1) Horizontal cursor movement

When the virtual screen is 80 characters wide and in the tracking
mode, the window scrolls right and left following the horizontal
movement of the cursor.

The horizontal scroll step (w) may be 20 or 48 columns. It can
be specified using the ESC sequence "SET SCROLL STEP" (ESC +
94H) .

The window scroll margin (m) may be in the range from ¢ to 10.
This can be specified using the ESC sequence "SET SCROLL MARGIN"
(ESC + 98H). The the scroll margin is valid only when the
horizontal scroll step is set to 28 columns.

Figures 3.6.8 and 3.6.9 show the relationships between the cursor
and the window. !

1 — 40 .

| 'm : Scroll margin.

E Window E 0 <m=10
An attempt_iééhﬁédé_fb ___________ ﬂﬁ-éfféﬁﬁf_iéé made to
position the cursor in position the cursor in
(41-m)th column. (20+m)th column.

e 21 % 60._____ ,

| Window |
An attenpf.iéé-iéﬁé’fﬁ—f -------- r&ﬁ_éfféﬁﬁf_ﬁéé made to
position the cursor in position the cursor in
(61-m)th column. (40+m) th column.

i S .80

Window

Fig. 3.6.8 Cursor Movements and the Window (When w = 20)

11-238

ChibhP K%\ fastio.com

http://www.fastio.com/

ChhPDF -

1 AD. |

m: Scroll margin.

i Window E 0sm=s10
An attempt was made to ‘ "~ 7An attempt was made to
position the cursor in position the cursor in

41th column. 40th column.

=
>
o
o
z

Fig. 3.6.9 Cursor Movements and the Window (When w = 48)

(2) Vertical cursor movement

The vertical scroll step for cursor movement is always set to
1. Whenever the cursor moves beyond the window vertically, the
window scrolls one line up or down. The window remains in the
current position in the nontracking mode, however.

The vertical scroll step specified by "SET SCROLL STEP" has no
effect when the cursor is moving. It is valid only when the
window scrolls vertically.

(3) Scrolling under command control
The window can be scrolled vertically or horizontally using
commands (ESC sequences).

Horizontal scroll is valid only when the virtual screen is 8¢
characters wide. 1In other cases, nothing takes place when
horizontal scroll is specified.

Horizontal scroll can be initiated birsending the ESC sequence

"SCROLL RIGHT (LEFT) N CHAR" (ESC + 92H or 93H). The scroll step

can be specified using the ESC sequence "SET SCROLL STEP" (ESC +
94H) .

In the horizontal scroll mode, the cursor remains in the current
position and only the window moves over the virtual screen.

Vertical scroll is valid when the virtual screen length is other
than 8 lines. Nothing will take place if its length is set to 8

lines.

l.
Vertical scroll can be started by sending the ESC sequence
"SCROLL UP (DOWN) M LINE" (ESC + 96H or 97H). The scroll step
can be specified using the ESC sequence "SET SCROLL STEP" (ESC +

94H) .

In the vertical scroll mode, the cursor remains in the current
position and only the window moves over the virtual screen.

(4) Scrolling under key control

In PINE OS, scrolling of the window in the horizontal and
vertical directions can be controlled using special keys.

I1-239

www fastio.com

http://www.fastio.com/

SHIFT/ — Scrolls the window 2§ columns to the right.
SHIFT/ « Scrolls the window 20 columns to the left.
SHIFT/ 1 Scrolls the window one line up.

SHIFT/ { Scrolls the window one line down.

CTRL/— Scrolls the window 48 columns to the right.
CTRL/ « Scrolls the window 40 columns to the left,
CTRL/ 1 Scrolls the window eight lines up.

CTRL/ ! Scrolls the window eight lines down.

Any combination of these keys causes the window to scroll without
moving the cursor. See Section 3.5, "Keyboard" for details.

(5) System areas used for controlling window scrolling

LSCROLX (@F2A4H) 1 byte
- Indicates the horizontal scroll step. The scroll step must be
20 or 49 columns. The default value is 20 columns.

LSCROLY (@F2A5H) 1 byte
-~ Indicates the vertical scroll step. The scroll step must be
1 to 8 lines. The default value is one line.

LLMARGIN (GF2DFH) 1 byte
- Indicates the left margin. The left margin must be @ to 10
columns. The default value is 5 columns.

LRMARGIN (OF2E@H) 1 byte

- Indicates the right margin. The right margin must be § to 18
columns. The default value is 5 columns.

11-240

ClihFin vy fastio.com

http://www.fastio.com/

3.6.4 Graphics Display
3.6.4.1 Outline

Graphics data can be written directly into VRAM either in the
system screen mode or in the user screen mode.

Graphics data may be mixed with character data in the same
screen. If a portion of the currently displayed graphics data
goes off the window as the window scrolls, that portion of data
is deleted. That is, graphics data will not be redisplayed when
the window scrolls back to the original position.

3.6.4.2 Graphics coordinates

The graphics screen is made up of 239 dots by 63 dots with
coordinates (@,0) or origin assigned to the upper left corner of
the LCD display screen.

As described in 3.6.2., the Y-direction offset value (in
LVRAMYOF) must be taken into consideration when establishing the
correspondence between VRAM and LCD..

Figure 3.6.4 shows the correspondence between VRAM and LCD viewed
from the LCD's standpoint and Figure 3.6.10 shows that viewed
from the VRAM's standpoint.

The address of coordinates (X, ¥Y) in:VRAM can be obtained using
the formula

{(y + ¥) mod 64} * 32 + (X / 8)
where § = X =< 239, § = Y = 63, and y is a Y-direction offset.
The integer part of the result is the relative address with
respect to the top of VRAM. The fractional part designates the
bit position of the coordinates in the relative address.

32 bytes
240 dots
1 0 | 1860 | 1861 | 1862 1889
111890 | 1891 | 1892 1919 This row
corresponds

64 | 2 0 1 2 29 “ to the top of
dotsy the LCD panel.

J6"3 1830 | 1831 | 1832 1859

L K

(- Number of bytes from

the top of the LCD.

Fig. 3.6.18 Relationship Between VRAM and LCD Panel (When Y-
direction Offset = 2)

-241

ChihPDF - www.fastio.com

http://www.fastio.com/

Ccht

3.6.4.3 Writing graphics data

Graphics data can be displayed on the screen by calling the BIOS
PSET routine or by writing the data directly into VRAM.

(1) BIOS PSET

The BIOS PSET routine performs a specified logical operation
(AND, OR, XOR) on the VRAM data and the specified data on a byte
basis. See Section 3.3, "BIOS Operations" for further
information.

(2) Writing data directly into VRAM

Data can be written into VRAM directly with ease when the user
screen is used because VRAM is located in the shared system area
(RAM area at location @E@@GH and above).

The formula given on the previous page is used to find the VRAM
address into which the data is to be written. Its absolute RAM

address can be obtained by adding the VRAM starting address
(LSCRVRAM) to the VRAM address.

1-242

N fastio.com

http://www.fastio.com/

3.6.5 CONOUT (BIOS)
3.6.5.1 Outline

The PINE CONOUT BIOS routine controls the keyboard, LEDs, and
buzzer as well as the LCD.

The description that start at the next page hold when the CON:
field of the I/0 byte is set to LCD.

The pages that follow lists the functions of the PINE CONOUT BIOS
routine. A full descriptions of the CONOUT functions are found
in 3.6.5.3, "CONOUT specifications."

Code Function code Function

02H Screen left ESC+92H | Scroll right n char

O5H Erase end of screen ESC+93H | Scroll left n char

06H Screen right ESC+94H | Set scroll step

OTH Bell ESC+95H | Set scroll mode

08H Back space ESC+96H | Scroll up m line

09 Tab / ESC+97H | Scroll down m line

0AH Line feed ESC+98H | Set scroll margin

0BH Home ESC+AGH | INS LED on

OCH Clear screen & Home ESC+ATH | INS LED off

ODH Carriage return ESC+A2H | CAPS LOCK LED on

10H Screen up ESC+A3H | CAPS LOCK LED off

114 Screen down ESC+A4H | NUM LED on

1AH trase end of screen ESC+ASH | NUM LED off

18H Escape (ESC) ESC+BOH | Function kev check mode on
1CH | Cursor right ESC+B1H | Function key check mode off |
1DH Cursor left ESC+DOH | Set screen size

1EH Cursor up ESC+D2H | Direct display

1FH Cursor down ESC+DAH | Locate top of screen

ESC+D5H | Locate bottom of screen
ESC+'%" | Access CGROM directly ESC+D6H | Select cursor kind

ESC+" (' | Block reverse ESC+D7H | Find cursor

ESC+'+" | Clear screen & Home ESC+EQH | Set download character
ESC+'0’ | Reverse on ESC+FOH | Keyboard repeat on/off
ESC+'1" | Reverse off ESC+FIH | Set keyboard repeat
£SC+'2" | Cursor off start time

ESC+'3" | Cursor on ESC+F2H | Set keyboard repeat interval
ESC+'=" | Set cursor position time

ESC+'C' | Set character-set table || ESC+F3H | Set arrow key code
ESC+'P’ | Screen dump ESC+FAH | Set scroll key code
ESC+'T" | Erase end of line ESC+F5H | Set control key code
ESC+'Y' 1 Erase end of screen ESC+F6H | Clear key buffer
ESC+7BH | Secret ESC+F7H | Set key shift

ESC+70H | Noh secret -

ESC+90H | Partial scroll up
| ESC+91H_| Partial scroll down

11-243

ChihPDF - www.fastio.com

http://www.fastio.com/

ClihP=

3.6.5.2 How to use the CONOUT function

Entry address: WBOOT + @9H or @GEBOCH-
Entry parameter: C = Qutput data
Return parameter: None.
How to use:
The BIOS CONOUT routine inputs a function code and data. The
function code and data are distinguished by their numeric
values as shown below:
- Function code: @OH - 1FH
1BH (ESC) + nl + n2 + --- + nk
- Data: 20H - OFFH

AAAA
=W N
— o — —

The CONOUT routine does nothing but preserves the original
state when it detects an invalid function code or parameter
in the ESC sequence received. The routine does not check the
ESC sequence for parameter errors until it receives all
parameters.

3.6.5.3 CONOUT specifications

This large subsection describes the operations that the PINE 0S
performs when it receives commands through the CONOUT BIOS
function. 3

The word "screen" here refers to either the user screen if the
screen is currently in the user mode and to the system screen if
the screen is in the system mode.

"The cursor goes out of the window" here means that the cursor is
located literally outside the window when the cursor moved in the
vertical direction and, when the cursor moved in the horizontal
direction, that the cursor moves beyond the window whose sides
are delineated by the scroll margins.

- §2H Screen left
Moves the window one screenful of columns to the left over the
screen.

The left edge of the window is aligned with that of the screen
when an attempt is made to move the window beyond the left end of
the screen. The cursor remains in the original position on the
screen.

- @5H Erase end of line

| Clears with spaces to the end of the line from the current cursor

position (inclusive) on the screen. The cursor remains in the
original position on the line.

- g6H Screen right
Moves the window one screenful of columns to the right over the
screen,

The right edge of the window is aligned with that of the screen
when an attempt is made to move the window beyond the right end

| of the screen. The cursor remains in the original position on

the screen.

i - 074 Bell

Sounds the buzzer at 880 Hz for one second. CONOUT is not exited

L until the buzzer stops.

W-244

vy fastio.com

http://www.fastio.com/

ChhPDF -

- @8H Backspace
Moves the cursor one column to the left on the screen.

The cursor moves to the end of the previous line when it is at
the beginning of the line when this function is executed. The
cursor does not move when it is in the home position (upper left
corner) of the screen. How the window behaves when the cursor
goes out of the window depends on the scroll mode.

- @9H Tab

Searches for the next tab position starting at the current cursor
position on the screen forward and positions the cursor in the
first tab position encountered.

If no tab position is found on the line, the function moves the
cursor to the beginning of the next line., If the cursor is at
the bottom of the screen when this function is executed, the
function positions the cursor at the beginning of the line. How
the window behaves when the cursor goes out of the window depends
on the scroll mode. ’

Tab position = (1 + 8%*n) column - n =0, 1, 2, ~--

- @AH Line feed
Moves the cursor down one line on the screen.

If the cursor is on the bottom line of the screen when this
function is executed, the function scrolls the screen one line
down (deletes the first line on the screen and puts a blank line
at the bottom of the screen) and moves the cursor one line down.
How the window behaves when the cursor goes out of the window
depends on the scroll mode.

- @BH Home
Positions the cursor to the home position (upper left corner) of
the screen.

How the window behaves when the cursor goes out of the window
depends on the scroll mode,

- @CH Clear screen & home
Clears the entire screen with spaces and performs the Home
function (@GBH).

- @DH Carriage return
Moves the cursor to the first column on the current line,

How the window behaves when the cursor goes out of the window
depends on the scroll mode,

When this function is executed immediately after the cursor is
moved from the last column into the first column on the next line
as the result of displaying a character (2¢H - @FFH), the
function positions the cursor in the first column on the previous
line. "

~ 10H Screen up
Moves the window one screenful of columns down over the screen.

The last line of the window is aligned with the bottom of the
screen when an attempt is made to moves the window across the

bottom of the screen. The cursor is held in the original
position on the screen.

11-245

www fastio.com

m r+rmrt W3 — g

b4

Q =00 wn o -

Qe D —~0 Q-

http://www.fastio.com/

- 11H Screen down
Moves the window one screenful of columns the screen.

The first line of the window is aligned with the top of the
screen when an attempt is made to moves the window across the
top of the screen. The cursor is held in the original

position on the screen.

- 1AH Erase end of screen

Clears to the end of the screen from the current cursor position
(inclusive) on the screen. The cursor stays in the original
position on the screen.

- 1BH Escape
Initiates an ESC sequence. The commands entered in the form of
an ESC sequence are described later.

- 1CH Cursor right
Moves the cursor one column to the right on the screen.

If the cursor is in the last column on a line when this function
is executed, the function positions the cursor in the first
column on the next line. The function does nothing if the cursor
is in the last column on the last line, How the window behaves
when the cursor goes out of the window depends on the scroll
mode.]

- 1DH Cursor left

Performs the same function as Back space (@8H).

- 1lEH Cursor up
Moves the cursor one line up on the screen,

This function does nothing if it is executed when the cursor is
positioned on the first line of the screen. How the window
behaves when the cursor goes out of the window depends on the
scroll mode.

- 1FH Cursor down
Moves the cursor one line down on the screen.

This function does nothing if it is executed when the cursor is
positioned on the last line of the screen. How the window
behaves when the cursor goes out of the window depends on the
scroll mode.

- 20H - OFFH Character display

Displays the character associated with the given character code
in the current cursor position and then moves the cursor one
column to the right.

If the cursor is in the last column on a line, this function
displays a character and positions the cursor in the first column
on the next lihe. If the cursor is-in the last column on the

last line when the function is executed, the display

automatically scrolls one line down and the cursor is placed at
the beginning of the next line. How the window behaves when the
cursor goes out of the window depends on the current scroll mode.™

1I-246

ChihPDFEER v fastio.com

http://www.fastio.com/

ChhPDF -

- ESC '%' Access CGROM directly

Reads the character specified by the given code from the character

generator and displays it in the cursor position on the screen.

The cursor is positioned in the same way as when the character
display function (2¢H - @FFH) is executed.

<Command sequence>
lst byte: ESC

2nd byte: '3%' n: Code
3rd byte: n @ggd =< n = @FFH
- EsC 'C' Block reverse

Displays the specified length of data in reverse video starting
at the specified position on the screen.

The reverse video function is cancelled when the data displayed
in reverse video goes out of the window during scrolling.

<Command sequence>
1st byte: ESC

2nd byte: 'C' Y: Y-coordinate 1 =y = 8

3rd byte: Y X: X-coordinate 1 = X = 4¢

4th byte: X n: Number of characters displayed in
5th byte: n (H) reverse video.

6th byte: n (L) 1 = n = 320

- ESC '#*!' Clear screen & home

Performs the same function as Clear screen & home (gCH).

<Command segquence>
l1st byte: ESC
2nd byte: '*!

- ESC 'g' Reverse on
Turns on the reverse display mode and displays the subsequent
output characters in reverse video,

The reverse video function is cancelled when the data displayed
in reverse video goes out of the window during scrolling.

<Command sequence>
1st byte: ESC
2nd byte: '@’

- ESC '1" Reverse off
Turns off the reverse display mode.

<Command sequence>
lst byte: ESC
2nd byte: 'l'

- EsC '2' Cursor off

suppresses the cursor display. The cursor can subsequently move
around, though invisible.

<Command sequence>

1st byte: ESC
2nd byte: '2° -

H-247

www fastio.com

<
]
4
4

1% A% 2 om

N = A

http://www.fastio.com/

- ESC '3! Cursor on
Displays the cursor.

<Command sequence>
1st byte: ESC
2nd byte: '3

- EsC '=' Set cursor position

Specifies the cursor position on the screen and positions it in
that position.

When the cursor goes out of the window in the tracking mode: =
- If the cursor moves in vertical direction: This function
scrolls the window so that the cursor is positioned on the
fourth line of the window. If the window goes off the
screen, the function aligns the bottom or the top of the
window with that of the screen.

- If the cursor moves in the horizontal direction: This
function does not move the window if the cursor position
after the move will be within the window. If the cursor
goes off the window, however, the function scrolls the
window in increments of the scroll step specified.

When the cursor goes out of the window in the nontracking mode:
The function does not scroll the window.

{Command sequence>
1st byte: ESC
2nd byte: '='

m ow position
3rd byte: m+1lFH 1

n

1

R
= m =< Number of lines on the screen
: Column position
<= n = Number of columns on the screen

4th byte: n+lFH

- ESC 'C Set character set table
Sets up the character set for the given language.

The default language is set by DIP switches. This function does
not affect the characters already displayed on the screen.

{Command sequence>

lst byte: ESC ID: Character set identification character
2nd byte: 'C' 'U': USA '‘W': Sweden

3rd byte: ID 'F': France 'I': Italy

'G': Germany 'S': Spain

'E': England 'N': Norway

'D': Denmark .

;- ESC 'P' Screen dump
¢ Outputs the currently displayed VRAM data to the printer.

iSee BIOS SCRNDUMP for details.
{<Command sequence>

. lst byte: ESC

i 2nd byte: 'P!

1'-ESC ‘! Erase end of line
i Performs the same function as Erase end of line (#5H).

i {Command sequence>

i 1st byte: ESC
f 2nd byte: 'T'

1i-248

v fastio.com

http://www.fastio.com/

ChhPDF -

N
- ESC 'y! Erase end of screen
Performs the same function as Erase end of screen (laH).

{Command sequence>
lst byte: ESC
2nd byte: 'Y!

- ESC 7BH Secret
Displays characters in the secret mode.

In this mode, characters are converted to spaces when directed to
the screen for display.

<Command sequence>
lst byte: ESC
2nd byte: 7BH

- ESC 7DH Nonsecret
Cancels the screen mode.

{Command sequence>
1st byte: ESC
2nd byte: 7DH f

- ESC 994 Partial scroll up e
Scrolls m lines starting at the nth line up by one line. -

This function erases the data on the nth line and changes the
data on the (n+ m - 1)th line to spaces. If (n+ m - 1) is
larger than the number of lines on the screen, the function

automatically adjusts the value of m so that (n+ m - 1) matches
the maximum line number.

The cursor is held in the original position on the screen.

<Command sequence>

lst byte: ESC n: Number of the line at which scroll starts.
2nd byte: 90H 1l = n =< Number of lines on the screen
3rd byte: n - 1 m: Scroll range

4th byte: m 1 = m =< Number of lines on the screen
- ESC 91H Partial scroll down

Scrolls m lines starting at the nth line down by one line.

This function erases the data on the (n+m-1)th line and changes
the data on the nth line to spaces. If (n+ m - 1) is

larger than the number of lines on the screen, the function
automatically adjusts the value of m so that (n + m - 1) matches
the maximum line number.

The cursor is held in the original position on the screen.

<Command sequence>

1st byte: ESC n: Number of the line at which scroll starts.

2nd byte: 91H l = n = Number of lines on the screen

3rd byte: n - 1 m: Scroll range

4th byte: m 1 = m =< Number of lines on the screen
11-249

wvvwfastio.com

http://www.fastio.com/

- ESC 93H Scroll right n char

Moves the window to the right in the increment of the horizontal
scroll step specified,

The right edge of the window is aligned with that of the screen

if an attempt is made to move the window beyond the right end of
the screen. The cursor remains in the original position on the

screen.

<Command sequence>
lst byte: ESC
2nd byte: 92H

- ESC 93H Scroll left n char

Moves the window to the left in the increment of the horizontal
scroll step specified.

The left edge of the window is gligned with that of the screen
if an attempt is made to move the.window beyond the left end of

the screen. The cursor remains in the original position on the
screen.

<Command sequence>
lst byte: ESC
2nd byte: 93H

- ESC 94H Set scroll step
Specifies the number of lines or columns the window is to be
moved in a single scroll operation.

{Command sequence>

1st byte: ESC n: Number of columns to scroll
2nd byte: 94H n = 20 or 4¢

3rd byte: n m: Number of lines to scroll
4th byte: m l =m= 8

The default values of n and m are 20 and 1, respectively.

- ESC 95H Set scroll mode
Specifies the scroll mode.

{Command sequence>

lst byte: ESC M: Scroll mode

2nd byte: 95H @@H: Tracking mode

3rd byte: M @1H: Nontracking mode

@2H: Horizontally nontracking mode

The default mode is horizontally nontracking mode.

- ESC 96H Scroll up m lines

Moves the window up in the increment of the vertical scroll step
-specified.

The top of the window is aligned with that of the screen if an
attempt is made to move the window beyond the screen. The cursor
is held in the original position on the screen.

{Command sequence>
L 1st byte: ESC
i 2nd byte: 96H

1-250

chr oo fastio.com

http://www.fastio.com/

. N
- BESC 97H Scroll down m lines

Moves the window down in the increment of the vertical scroll
step specified.

The bottom of the window is aligned with that of the screen if an
attempt is made to move the window beyond the screen. The cursor
is held in the original position on the screen.

<Command sequence>
lst byte: ESC
2nd byte: 97H

- ESC 98H Set scroll margin
Specifies the horizontal scroll margin.

<Command sequence>

1st byte: ESC

2nd byte: 98H n: Scroll margin
3rd byte: =n @ =n < 10

The default values of n is 5.

- ESC AQH INS LED on
Turns on the INS LED.

The INS LED is the third LED from the top on the standard
keyboard and the third LED from the left on the item keyboard.

{Command sequence>
lst byte: ESC
2nd byte: BAOH

- ESC 0AlH INS LED off
Turns off the INS LED.

<Command sequence>
1st byte: ESC
2nd byte: 0AlH

- ESC AZ2H CAPS LOCK LED on
Turns on the CAPS LOCK LED.

The CAPS LOCK LED is on the top of the standard keybocard and in
the leftmost position on the item keyboard.

{Command sequence>
1st byte: ESC
2nd byte: GAZH

- ESC A3H CAPS LOCK LED off
Turns off the CAPS LOCK LED.

<Command sequence>
1st byte: ESC
2nd byte: @A3H

- ESC A4H NUM LED on
Turns on the NUM LED.

The NUM LED is in the next to top position on the standard
keyboard and in the next to leftmost position on the item
keyboard.

11-251

ChihPDF - www.fastio.com

http://www.fastio.com/

{Command sequence>
1st byte: ESC
2nd byte: OA4H

- ESC AS5SH NUM LED off
Turns off the NUM LED.

{Command sequence>
lst byte: ESC
2nd byte: O@AS5H

- ESC BOH Function key check mode on
Turns on the mode (PF key check mode) in which PF keys return
their inherent codes instead of the defined strings.

See BIOS CONIN for details.

3 . <Command sequence>
E I 1lst byte: ESC /
; . 2nd byte: OBOH’

- E5C B1lH Function key check mode off
Cancels athe PF key check mode.

When a defined PF key is pressed after this function is executed,
the associated string is returned.

{Command sequence>
lst byte: ESC
2nd byte: @B1H

- ESC DOH Set screen size

Defines the user screen size. This function does nothing in the
system screen mode.

When the screen size is specified, the function reserves that
size of area in memory and executes Clear screen & home (9CH).
The CP/M size remains unchanged even when the screen size is
changed.

{Command sequence>

lst byte: ESC n: Number of screen lines
2nd byte: @DOH 8 = n =< 58

3rd byte: n m: Number of screen columns
4th byte: m m = 40 or 8¢

m* n < 2048
| The default setting is 8¢ columns by 25 lines.

L - ESC D2H Direct display
. Displays the specified character in the specified position in the
| window.

. The portion of the display data that is scrolled out of the

l window is deleted. The character to be displayed must be

| specified in character generator code. The cursor is held in the
. original position on the screen.

. (Command sequence>
i lst byte: ESC
I 2nd byte: @D2H

L 3rd byte: ¥ Y: Line number 1 =Yy = 8
i 4th byte: X X: Column number 1 = X = 49
< n = @FFH

t 5th byte: n n: Character code @0H

11-252

ClihE W fastio.com

http://www.fastio.com/

ChhPDF -

- ESC D4H Locate top of screen N
Positions the window at the beginning of the screen.

The cursor is held in the original position on the screen.

<Command sequence)
1st byte: ESC
2nd byte: @D4H

- ESC DB5H Locate bottom of screen
Moves the window to the end of the screen.

The cursor is held in the original position on the screen.

<Command sequence>
1st byte: ESC
2nd byte: @DSH

- ESC D6H Select cursor kind
Selects the type of the cursor.

<Command segquence>

1st byte: ESC n: Type of the cursor

2nd byte: @D6H @gH: Block and blink

3rd byte: n @lH: Block and nonblink
@2H: Underline and blink
@3H: Underline and nonblink

The default is block and blink.

- ESC D7H Find cursor
Moves the window over the screen so that the cursor line will
appear in the window.

This function does nothing when the cursor is already in the
current window. It moves the window in the same way as Set
cursor position (ESC '=').

<Command sequence>
lst byte: ESC
2nd byte: GD7H

- ESC E@H Set download character
Defines user-defined characters with the codes GE@H to @FFH.

<Command segquence>

l1st byte: ESC n: Character code
2nd byte: QEGH PEGH = n =< QFFH
3rd byte: n P(l) - P(8): Character pattern

4th byte: P (1)

5th byte: P(2) 5 4 1.0
6th byte: P(3) :
7th b}l:te: P(4) g . 8(1) 88
8th byte: p(5) . QL0 M LI S I ..
9th byte: P(6) 6 1:0: 0 0. 1:0
1@the byte: P¢7) 7 170 19770
Lien byte: (8) sl AR)
9| 000000 1:.0
10 Ll :1:0:0:0: 1: 0
11 00000000070

6 x 8 dot pattern (pattern for 'A')

I1-2563

wvvwfastio.com

http://www.fastio.com/

- ESC F@H Keyboard repeat ON/OFF
Controls the keyboard repeat function.

<Command sequence>

lst byte: ESC n: Repeat switch status
2nd byte: OF@H @PH: Repeat ON
3rd byte: n @1lH: Repeat OFF

The default setting is Repeat ON for the standard keyboard
and Repeat OFF for the item keyboard.

- ESC FlH Set keyboard repeat starting time
Specifies the keyboard repeat starting time

{Command sequence>

lst byte: ESC S: Repeat starting time (in 1/64 sec increments)
2nd byte: @F1H g =8 = 127
3rd byte: S

! . .
The default value is approximately 656 msec (S = 42).

- ESC F2H . Set keyboard repeat interval time
Specifies the keyboard auto repeat interval.

<Command sequence>

lst byte: ESC S: Repeat interval (in 1/256 sec increments)
2nd byte: @F2H° g = 8§ < 127
3rd byte: S

The default value is approximately 70 msec (S = 18).

- ESC F3H Set arrow key code
Defines the arrow key codes.

When an arrow key is pressed after this function is executed,
the corresponding code is returned. See Section 3.5, "Keyboard"
for detailed information.

<Command sequence>
1st byte: ESC

2nd byte: @F3H : nl - n4: Arrow key code

3rd byte: nl UgH = nl - n4d = OFFH
4th byte: n2 nl: Code of -

5th byte: n3 n2: Code of «

6th byte: n4 n3: Code of 1

n4d: Code of |
The default setting is nl = 1CH, n2 = 1DH, n3 = 1EH, and n4 = 1lFH.

For the item keyboard, the arrow key code cannot be changed.

- ESC F4H Set scroll key code
Defines codes for the SHIFT + arrow key combinations.

When a SHIFT/arrow key sequence is entered after this function is

executed, the corresponding code is returned. See Section 3.5,
"Keyboard" for detailed information.

1I-254

Clib i Loy fastio.com

http://www.fastio.com/

ChhPDF -

<Command sequence>
lst byte: ESC

2nd byte: @F4H nl - n4: SHIFT/arrow key code
3rd byte: nl g9H =< nl - n4d < @FFH
4th byte: n2 nl: Code of SHIFT/—
5th byte: n3 n2: Code of SHIFT/«
6th byte: n4 n3: Code of SHIFT/?

nd: Code of SHIFT/ |
The default settings are nl = gF8H, n2 = GF9H, n3 = PFAH, and nd =
@FBH.

- ESC FS5SH Set CTRL key code
Defines codes for the CTRL + arrow key combinations.

When a CTRL key sequence is entered after this function is
executed, the corresponding code is returned. See Section 3.5,
"Keyboard” for details.

<Command sequence>
1st byte: ESC

2nd byte: @FS5H nl - n4: CTRL/arrow key code
3rd byte: nl PfH =.nl - n4 =< OFFH
4th byte: n2 nl: Code of CTRL/ -

5th byte: n3 n2: Code of CTRL/+

6th byte: n4 n3: Code of CTRL/ 1

nd: Code of CTRL/ |
The default settings are nl = @FCH, n2 = @FDH, n3 = QFEH, and n4d =
JFFH.

- ESC F6H Clear key buffer
Clears the keyboard buffer to delete the type ahead key codes.
The data in the 7508 buffer remains unaffected.

{Command sequence>
1st byte: ESC
2nd byte: @F6H

-~ ESC F7H Set key shift
Defines the key shift modes.

<Command sequence>

lst byte: ESC n: Shift mode

2nd byte: @F7H @9H =< n =< Q@FFH
3rd byte: n

The keyboard shift modes are defined on a bit basis. A 1 in a bit
turns on the shift mode for the corresponding shift key.

Bit 7 (MSB) CTRL
6 GRPH
5 _—
4 NUM
3 _—
2 CAPS
1 SHIFT (L)
g (LSB) SHIFT (R)

For the item keyboard, nothing takes place when a shift mode is
specified.

-255

wvvwfastio.com

http://www.fastio.com/

Clils

3.6.6 Character Generator

The PINE has

o

character generator in 0OS ROM.

1 ggH - 7FH 5 8 dot character fonts

; 80H - 9FH 6 8 dot character fonts

] 5 8 dot character fonts
6

8 dot character fonts

OAQH - ODFH
§EGH - OFFH

KoM XX

PEOH through @FFH are used by the user to define user-defined
characters. The fonts for the user-defined characters are stored

., in the user-defined character definition area. Initially, the
fonts for UEGH and QELlH are defined by the system. Other codes
are initialized to spaces.

1 3.6.6.1 Font format

i4 A font is made up of 5 or 6 bytes. Fonts are stored sideways as
! shown below: |

76543210 76543210

+01O NN 00 +0 |00 1 1011111 1 1| (Fonts for 'A" and 'B’)
1100010010 1101001001
4 2100010001 2101001001
{00000 3101004001
" 410414 1G0 (00110110

Q Since characters are displayed on the LCD in 6 x 8 dot font, a

§0H code is appended to the end of each 5-byte font data to form
a 6 x 8 dot font.

3.6.6.2 Character sets

The PINE supports the character sets for the languages of the
following countries.

USA ASCII
France
Germany
England
Denmark
Sweden
Italy
Spain
Norway

The user can change the character set using the ESC sequence "Set
character set table." The initial value is set by DIP switches.
See Section 7.2, "DIP Switches" for further information.

i1-256

By fastio.com

http://www.fastio.com/

3.6.6.3 Character generator codes arranged by country

The BIOS CONOUT routine converts character codes into character
generator codes of the specified country and displays it on the
LCD. The routine also places data in the user or system screen

in the form of character generator codes.
~N

Table 3.6.11 shows the relationships between the character codes and
the character generator codes arranged by country.

Code U.S.A. France |Germany | England | Denmark | Sweden ltaly Spain Norway
23H 23H (#) | 23H (#) | 23H (#) | OFH (£) | 23W (#) | 231 (#) | 231 (#) | 18H (Pt) | 23H (#)
24H 24H ($) | 24H ($) | 24H ($) | 24H ($) | 24H ($) | 180 () | 24H ($) | 24H (%) | 18H (9
404 40H (@) | OOH (3) | O3H (§) | 40H (@) | 40H (@) | 16H (E) | 40H (@) | 40H (@) | 16H (E)
5BH 5BH ([) | O1H (°) | 08H (A) | 5BH ([} | 10H (&) | 08H (A) | OTH (°) | 1CH (i) | 10H (&)
5CH | BCH(\) | O2H (C) | O9H (O) | BCH (\) | 11H (@) | 09H (O) | 5CH (\) | 1DH (N) | 11H (@)
5DH SDH (1) | O3H (8) | OAH (0) | 5DH () | 12+ (A) | 12r (A) | 04 (&) | 1EH (o) | 121 (A)
5EH BEH () | BEH () | BEH () | BEH () | BEH (U) | OAH (U) | BEH () | BEH () | OAH ({)
60H B6OH () | BOH () | BOH (') | BOH (") | BOH () | O4H (&) | OBH (U) | B6OH () | O4H (8)
7BH 7BH {{) | O4H (&) | OBH (&) | 7BH ({) | 13H (s} | OBH (&) | OOH {&) | O7H () | 13H (=)
7CH 7CH (1) | OBH (G) | OCH (6) | 7CH (1) | 14H (@) | OCH (6) | 19H (d) | 1FH (A) | 14H (o)
7DH 7DH (}) | O6H (&) | ODH (G) | 7DH (}) | 15H (8) | 15H (&) | O6H (&) | 7DH (}) | 15H (8)
7EH JEH () | O7H () | OEH (B) | 7EH () | 7FEH () | ODH (G) | 1AH (i) | 7EH (1) | ODH (i)

Table 3.6.11 Relationships between ASCII Codes and Character

ChhPDF -

Generator Codes

-257

wvvwfastio.com

http://www.fastio.com/

3.6.6.4 Character generator code charts

The pages that follow list charts of the character generator data
(fonts).

Font data can be read using the 0S utility XFONTGET. For more
information, see Section 4.2, "Jump Tables."

’ Character generator code chart
orway
n 0/1{2]3]|4]5|6]7|8|9|A|BIC|D|E|F
81 () § ola{#|s|0|e@|P| |pH]O A
eH(E’) 1] ° gt |1]1AlQlalaq) <
o (45) 2l s |A[” [2|B|R|b|rFe
H (@) | 3|8|=|#|3|C|S|c|s|*
2H(A)f 4lelels|alo|T|dlt|He
Ar (O) § S5juolda|%|5|E|Ule]|u p
i | 6le|Cl&BIFIVITIVI]I®
7 &1" | 7T|G|Wig|w| 14
3H (ee) §
8lA|[X| (|8|H|X|h|[x [|«
b | olofoD {o|1]Y]i|y[Hy
5H(a)¢ Aloli [« JizlilztH |+
DH (i) § Bla|Pt|+]|:|K|[|k| (|1
| Cla|], |<iL|N[1]: IR .
Dja|RN|=|{=[M|]|m|} \mmfX
Ele]el. |[>IN[A|n|~B |+
FIE|A]|/|?2]|0|—-|0o|A|@|t
1-258
CMJ'; wAMMfasmwnm>n

http://www.fastio.com/

O0H OlIH 02H 03H 04H 05H oeH O7H
000 O
O
.
08H 09H OAH OBH OCH ODH OEH OFH
O
O O] O
o |
I0H 11H 12 H I13H 14H I5H 16H I7H
O O 0 o,
O ., D
&
.
I8H I9H 1AH IBH ICH IDH IEH IFH
Q ol
00 .
)
20H 2IH 22H 23H 24H 25H 26H 27H
&
O o
O |
O
.
Ol
ool
28H 29H 2AH 2BH 2CH 2DH 2EH 2FH
Q
L o a Q : OO
L O o QT
e L L
O
30H 3IH 32H 33H 34H 35H 36H 37H
- K 00
O O i
0).
Q >
0 o, O
38H 39H 3AH 3BH 3CH 3DH 3EH 3FH
| T OO >,
] I N OO 0o
Q | o0 o
| o,
11-259

ChihPDF - www.fastio.com

http://www.fastio.com/

40H 41H 42H 43 H 44 H 45H 46 H 47H

) 0.0, YOO
Ol () .
O () X0)|
p ¢
48H 49H 4AH 4BH 4CH 4DH 4EH 4FH
b, ® ® O o) K Y |
. o . O
o A\ o A
O
. O O () ()
3 50H 51H 52H 53H 54H 55H 56 H 57H
‘}) C))
. 0 o
Y o
4 a
B 0
z o S
C
58H S59H 5AH 5BH S5CH 50H 5EH 5FH
i 2 K
o) O
Oo @ QO 0 c
3
., O
A K K K
60H 61H 62H 63H 64H . 65H 66H 67H
|
.) >, .))
() o,
D,
68H 69H 6 AH 6BH 6CH 6DH 6EH 6FH
.
O O
o,
() O
, .. o) 0,0, ¢) 9,
70H 7IH 72H 73H 74 H 75H 76H) 77H
3 K ‘00,0,
O Q
: D, L | |
‘ ld O
E KX "¢ [
78H 79H 7AH 7BH 7CH 7DH 7EH 7FH
O Q OOO O
0 e] u O O
o, D
K ., o, Q
o,
11-260

bPDF - ¥ v fastio.com

http://www.fastio.com/

BOH 8IH 82H 83H 84H 85H 86H 87H
n __8
seH 89H BAH 8BH 8DH 8EH 8FH
O L1
)
L o le]
)
|| Q
o)
o] l
90H 9IH 92H 93H 95H 96H 97H
U &
e ol 0 L o
]]] u o ‘)
i
: | 1 I
98H 99H 9AH 9BH ocH 90H 9EH 9FH
1| e
| 100 0 0
.
ole K .)
AOH AlH AZ2H A3H A4H ABH AG6H A7TH
f
L
ABH A9H AAH ABH ACH ADH AEH AFH
BOH BiH B2H B3H B4H B5H BeH B7H
B8H BOH BAH BBH BCH BDH BEH BFH

ChihPDF - www.fastio.com

11-261

http://www.fastio.com/

Ll i KA [}

0 S N O O

I

| WD S5USY U SN G A S

| SN S RS S5 S S o |

! S S D NEEDY NI S

L S Al

el PD

COH CIH C2H C3H caH C5H C6H C7H
C8H C9H CAH CBH CCH CDH CEH CFH
DOH ~_DIH D2H D3H D4H D5H DeH D7H
D8H D9H DAH DBH DCH DDH DEH DFH
EOH EIH E2H E3H E4H ESH EGH E7H
E8H E 9H EAH EBH ECH EDH EEH EFH
FOH FIH F2H F3H F4H F5H F6H F7H
[
20000
F8H F9OH FAH FBH FCH FDH FEH FFH
11-262
vy fastio.com

http://www.fastio.com/

ChhPDF -

3.6.7 Miscellaneous Considerations
3.6.7.1 1Initializing screen-related parameters

The screen-related parameters include the following:
(1) User screen size
(2) Window scroll mode
(3) Cursor display on/off
(4) Cursor type

=

These parameters are initialized at reset and warm boot times.

The timing of parameter initialization is illustrated in Figure
3.6.12,

System Initialize Restart Power on
Reset WBOOT
Initialize parameters Initialize parameters
(1) through (4) (3) and (4)

L]

No

Menu displayed ?
e

Yes

[nitialize parameters
(1) through (4)

CCP or Application

Fig. 3.6.12 Parameter Initialization Timing Diagram

11-263

wvvwfastio.com

3

m =2 1 O I in

e s bem 1.V RS LA

http://www.fastio.com/

The screen-related parameters are reserved in the system area in

such a format that they can be directly set up using the CONOUT
BIOS function.

CONSCRN1 (@EFF3H) 8 bytes

- Screen parameter 1

This area is used to specify the user screen size and the window
scroll mode,

1st byte: ESC (1lBH)

2nd byte: @D@H

3rd byte: Number of screen lines
4th byte: Number of screen columns
5th byte: ESC (1BH)

6th byte: 95H

7th byte: Scroll mode

8th byte: @gH

‘ The first four bytes specify the screen size. The initial
4 . value is 8@ columns by 25 lines.

The fifth to seventh bytes specify the window scroll mode. The
initial value is horizontally nontracking mode,

See the descriptions of the ESC sequences for details.

CONSCRN2 (@EFFBH) 6 bytes

- Screen parameter 2

This area ds used to specify cursor display on/off and the cursor
type.

1st byte: ESC (1BH)

2nd byte: Cursor display on/off
3zd byte: ESC (1BH)

4th byte: 9D6H

5th byte: Cursor type

6th byte: @FFH

The first two bytes specify whether the cursor is to be turned on
or off. The initial value is cursor display on (33H, '3').

The third to fifth bytes specify the cursor type. The initial
value is block and blink.

gFFH identifies the end of the parameters.

H-264

Clllole®ISE /' fastio.com

http://www.fastio.com/

ChhPDF -

3.6.7.2 Cursor display during execution of BIOS CONOUT

When BIOS CONOUT receives a command such as displaying a
character, moving the screen, or changing the cursor mode, it
turns off the cursor before processing the command and turns it
on after completing the execution of the command.

Consequently, the cursor would flicker if such a command is
controlled by CONOUT. This can be avoided in two ways:

- Turns off the cursor while CONOUT is processing.

- Obtain the address of the subroutine in CONOUT, that actually
processes the command and call that subroutine directly.

(1) Turning off the cursor

Turn off the cursor using ESC + '2' before displaying a character
or moving the screen.

(2) Obtaining the actual command handling subroutine address
Execute the pertinent command using CONOUT and look into the
function address area LFKADDR (OF2A8H) to get the address of the
actual command processing subroutine. ‘

Once the address is obtained, cursor turning on/off processing

can be bypassed by directly calling the address in 0S ROM via
BIOS CALLX.

Note that the command processing subroutine does not control the ?

cursor. That is, the cursor does not move forward as characters
are displayed on the screen., (Use this technique when displaying
characters in one part of the screen while having the cursor
blink in another part of the screen.)

In practice, direct execution is carried out by calling 0S ROM
procedures as explained below.

(a) When an ESC sequence has parameters (when including ESC there
are more than 3 bytes of data), LESCPRM (F2ACH) is called after
setting the parameters. Furthermore, at this time the last
parameter is put into the C register.

(b) When an ESC sequence does not have parameters (for example
ESC + 'P'), it is sufficient to simply make a call.

(c) To display a character (20H - FFH), the call is made after
putting the parameter into the C register.

(d) In the case of a control codes (#@0H - 1FH), it is sufficient
to simply make a call.

II-265

wvvwfastio.com

o T m o o W

e et FA O bed Y e

http://www.fastio.com/

3.6.7.3 Multiple Use of Virtual Screens

As mentioned earlier, in principle it is possible to use only two
types of screen, the user screen and system screen, however for
simple applications it is also possible to use a number of

additional screens.
Here we will explain methods for multiple use of virtual screens,
and some points to note.

(1) Concepts

The operating system maps a window in the virtual screen onto the
LCD. Accordingly, it is possible to use different virtual
screens within an application program, by providing buffers for
use by the virtual screens, and specifying the buffers with the
system area display parameters. In Figure 3.6.12 mapping is
executed by the operating system, and switching is controlled by
the application program.

Virtual screen 1

. § Window 1
(Mapping) ¢
Lo s |

virtual screen 2

e

Window 2

Fig. 3.6.12 Multiple Use of Virtual Screens

t (2) Procedure

b For multiple use of virtual screens, the following two methods
are available.

(a) Multiple use of virtual screens only,]
. (b) Multiple use of virtual screer- d VRAM.

iThe main difference between (a) and (b) above, is whether or not
. graphic data and inverse displays etc. can be preserved when the
. screen is switched.

11-266

WL Fastio.com

http://www.fastio.com/

(a) Multiple use of virtual screens only.
This procedure is used when only character data is to be used.
The procedure is illustrated in Figure 3.6.13.

Switch ON cursor

@
Initialize screen
da}a

I il
E | @
| <: switch screen? N0
! /
I >
! Yes @ 1
| 3
i ® << End program ? j§9— d
[Switch OFF cursor 3
i Yes
I
l @
| Restore screen data
; Replace screen data
|
| End
| ®
! Redisplay screen
:
%
|
|
|
|
|
|
i
|
|
|
L

Fig. 3.6.13 Procedure for Switching Screen

11-267

ChihPDF - www.fastio.com

http://www.fastio.com/

Cl

(b) Mulfiple use of virtual screens and VRAM.

This procedure is used when character data and graphic data are
used mixed together.

The procedure is illustrated in Figure 3.6.14

@
Initialize screen
da}a

— .
! i @
} <: switch screen? MM
! /
|
} Yes | \@
E ® <i End program? /§9~
! Switch OFF cursor
{ Yes
|
{ ; ®
| ® Restore screen data
i\ Replace screen data
i
| End
| ®
! et LCD display
2
i
|
} Switch ON cursor
!
|
{ Next procedure
S |

Fig. 3.6.14 Procedure for Switching VRAM

1I-268

fovvwy fastio.com

http://www.fastio.com/

ChhPDF -

Step

Process

Content

[nitialize screen
data

* When use is to be made of VRAM or
virtual screen areas other than areas
previously prepared by the system, the
areas to be used are initialized by
this process beforehand.

* The data area for replacement of
system area display parameters is
initialized beforehand. The display
parameters are 39 byteS of data from
LSCADDR(F290H) to LESCPRM(F2BGH).

| Switch screen ?

* Tests if condition requiring screen
mode to be changed is satisfied or not.

Switch OFF cursor

* A display screen operation is to be
carried out, so this process switches
OFF the cursor beforehand.

Replace screen data

* Replaces system area display

parameters(39 bytes from F290H) with
previously prepared data.

Redisplay screen

* In the case of virtual screen
replacement only,a call is made to
XREDSP (redisplay) in the 0S jump
table. .

* In the case of VRAM replacemt, the VRAM
address and offset value in the Y
direction are output through a port.

Switch ON cursor

* Switches ON the cursor when the
display screen operation has been
completed.

* The cursor is switched ON using the
BIOS CONOUT.

wvvwfastio.com

11-269

http://www.fastio.com/

Step Process Content

7T | End program ? * Tests if application program should
finish or not.

8 | Restore screen data * When the application program is
terminated, LSCADDR(F290H)is restored
to DOOOH and LSRVRAM (F294H) is
restored to EQOOH.

* Termination of the application program
with the virtual screen and VRAM still
in the state set hy the application
program must be avoided.

L (3) Points to Note
. When processing involving switching of screens is carried out,
| attention must be given to the following points.

(a) In cases in which the position of the virtual screen or
position of the VRAM is changed, care must be taken not to input

. Restart/Power off.
l This is to avoid misoperation when the application program which

will next be execn* d modifies screen size etc.

| During switching of screens, it is necessary for either Continue
§ mode to have been previously set, or for Power off to have been
forbidden at the application level.

t (b) When the position of the virtual screen or position of the

| VRAM is changed, RAM locations must be reserved from 80@¢H

t upward.

i Also, the leading VRAM address must be specified on an 8¢¢H (2k)
i byte boundary.

1-270

vy fastio.com

http://www.fastio.com/

ChhPDF -

3.6.8 Screen-related Work Areas

DSPFLAG (QEFB6H) 1 byte

- LCD display flag

@@H: LCD display off
8@H: LCD display on

BLNKSTAT (QEFB7H) 1 byte
- Blink state flag
= @@gH: Blink disabled
= 8@H: Blink enabled
This flag is examined by the blink processing routine,

BLNKCNT (@EFB8H) 1 byte

- Blink counter

This counter is incremented by one when an gverflow interrupt is
generated. The cursor is displayed in reverse video when
BLNKTIME is reached.

BLNKRVRS (@EFBY9H) 1 byte

- Indicates the cursor status during blinking.
= @@H: Cursor display on
= (FFH: Cursor display off

BLNKTIME (QEFBAH) 1 byte

- Specifies 'the blink interval time.

The initial value is @4H. With this setting, cursor display is
switched between normal and reverse video every 500 ms or so.

LSCADDR (@F290H) 2 bytes
- Starting address of the buffer for the currently displayed screen
The screen buffer size is stored in LSCSIZE.

8¢0¢H = LSCADDR =< (FFFFH

LSCSIZE (@F292H) 2 bytes
- Screen buffer size
§ = LSCSIZE =< 2048
LSCSIZE is equal to LSCSIZEX * LSCSIZEY.

LSCRVRAM (@F294H) 2 bytes

- Starting address of the currently displayed VRAM
8000PH =< LSCRVRAM =< @FFFFH

2K bytes of memory must be allocated for VRAM.

LCURSOR (@F296H) 2 bytes
- Cursor state flag
Bit 7: Cursor mode

@: Display on l: Display off
Bits 6 - 2: Don't care.
Bit 1l: Cursor type
@: Block 1: Underline
Bit @: Cursor blink
g: On 1: Off
11-271

www fastio.com

http://www.fastio.com/

LCRVRSW (@F297H) 1 byte
-~ Reverse display flag
Bits 7 - 1: Don't care.
Bit J: Reverse state
@: Reverse display mode off
1: Reverse display mode on

LSCCPOSX (@F298H) 1 byte
- X-coordinate of the cursor on the screen
1l = X =< Number of columns on the screen

LSCCPOSY (@F299H) 1 byte
- Y-coordinate of the cursor on the screen
1l = Y <= Number of lines on the screen

LSCSIZEX (@F29AH) 1 byte
- Screen width
LSCSIZEX = 40 or 80

LSCSIZEY (@F29BH) 1 byte
- Screen length
8 <= LSCSIZEY =< 5¢

LWDXMIN (@F29CH) 1 byte
- X-coordinate of the upper left corner of the window

This variable indicates where the current window is located on
the screen.

LWDYMIN (GF29DH) 1 byte
- Y-coordinate of the upper left corner of the window

This variable indicates where the current window is located on
the screen.

LWDCPOSX (QF29EH) 1 byte
- X-coordinate of the cursor on the screen
= @gFDH: Inside the right margin
a = @FEH: Inside the left margin
= (FFH: Outside the window
Others: Inside the window (@ < X =< 39)
LWDCPOSY (9F29EH) 1 byte
- Y-coordinate of the cursor on the screen
= @FFH: Outside the window
Others: Inside the window (f = Y =< 7)
LVRAMYOF (JF2A0H) 1 byte
- Y-direction offset of VRAM
@ =< LVRAMYOF =< 63

LWDTYPE (@F2A1H) 1 byte

- Window type

gFEH: Right screen {scroll step = 40)
§FFH: Left screen (scroll step = 40)
@0H: Screen width is 40

@lH: Left screen (scroll step = 28)
@2H: Center screen (scroll step = 24)
@3H: Right screen (scroll step = 28)

LT [1 I 1}

LSECRETW (@F.2A2H) 1 byte

- Secret mode on/off state
= (@gH: Secret mode off

= @1lH: Secret mode on

-272

v fastio.com

http://www.fastio.com/

ChihPDF -1

LSCROLMD (@F2A3H) 1 byte

- Scroll mode

@0H: Tracking mode

@1H: Nontracking mode

#2H: Horizontally nontracking mode

onon

LSCROLX (@F2A4H) 1 byte
- Horizontal scroll step
LSCROLX = 20 or 49

LSCROLY (@F2A5H) 1 byte
- Vertical scroll step
1 = LSCROLY = 8

LCRWAIT (@F2A6H) 1 byte
- Carriage return check flag

= @PH: Carriage return check mode off

= @1lH: Carriage return check mode on
The carriage return check mode is turned on when the cursor
moves from the end of a line to the beginning of the next line
after a character is displayed.

y

LFKSTAT (@F2A7H) 1 byte
- CONOUT function status

Bit 7: Cursor off flag

@: Cursor off not required 1l: Cursor off required
Bit 6: Indicates whether the CR check flag is to be cleared.

@: Not cleared 1: Cleared
Bits 5, 4: Don't care
Bits 3 - 1: Number of function parameters

LFKADDR (@F2A8H) 2 bytes

- Address of a CONOUT function processing routine

When a CONOUT function is specified, this area is

loaded with the address of its processing routine. Control is
transferred to this address after all parameters have been
received.

LESCFLG (OF2AAH) 1 byte

- ESC sequence receive flag

g@H: ESC code not received

@lH: ESC code received

@2H: ESC code and function received

i i

LESCCNT (@F2ABH) 1 byte
-~ Number of ESC sequence parameters received.

LESCPRM (@F2ACH) 11 bytes
- The area for storing ESC sequence receive parameters.

LWORKBF (@F2B7H) 39 bytes

- The area for holding the screen parameters saved when the screen
mode is changed.

When the screen mode is changed, the 39 bytes of data from
LSCADDR to LESCPRM are exchanged with the 39 bytes of data in

this area.

LSCMODE (@F2DEH) 1 byte
- Screen mode

= (@@H: System screen mode
= @lH: User screen mode

-273

vy fastio.com

http://www.fastio.com/

LLMARGIN (@F2DFH) 1 byte
- Left margin size
g =< LLMARGIN =< 10

LRMARGIN (@F2E@H) 1 byte
- Right margin size
@ = LRMARGIN =< 140

RLCGENX (@F35CH) 2 bytes
- Reserved for system

RLCGENN (@F35EH) 2 bytes
-~ Reserved for system

RLCGENG (@F360H) 2 bytes
- Reserved for system

RLCGENK (@F362H) 2 bytes
- Reserved for system

LCHRFONT (@F7C6H) 8 bytes
- Character font data conversion area

! 7654321090
+0 000
] ~ 1 00
2 | for write in VRAK O 0
3 6x8dot 0 0
4 font data (0 0
] 5 0 0
6 10 0

7 0 0

RWUVSCTOP (ODQOQQH) 800H bytes
- User screen buffer
Loaded with character codes.

RWVRAM2TOP (OD8QOH) 88¢H bytes
- VRAM2 area
VRAM for the system screen,

RWVRAM1TOP (QEQGQH) 800H bytes
- VRAM 1 area
VRAM for the user screen.

RWSYSCTOP (UE8Q@H) 240 bytes
- System screen buffer
Loaded with character codes.

RWEXCHRTOP (OE94¢H) 192 bytes

- User-defined character area

This area can contain up to 32 user-defined characters in 6 x 8
dot font.

; { 1-274
[DJRY /vy fasTio.com

http://www.fastio.com/

C

EBO3
EBO9
EBOC
EB69

F290
F294
F2A0
EF94

0036

001B
0003
0000

€000

0009
0008

0100
0100 31 1000

0103 2A EFS4
0106 11 cool
01098 AF

010A ED 52
010C D2 EBO3

010F 01 3228
0112 CD 01AF

0115 21 F230
0118 11 0224
011B 01 0027
O11E ED BO

0120 01 2228
0123 CD 01AF

0126 21 €000
0128 36 00

012B 54
012C 5D
012D 13

012E 01 O7FF
0131 ED BO

0133

0133 CD EBO9
0136 FE 03
0138 CA 01C5
013B FE 1B

IhPDF - www . fastio.com

EEEREREEEKERRREKRRKKKE KRR KRR KRR KR EKER SRR XS

: CHANGE SCREEN AREA PROGRAM
; ERRKKEERRRKRRKEERRRKEK KKK KRR KR RKRRK R AR
H NOTE : .
H This sample program is changing screen
K area,
H So, you can use screen more than only one.
: <> assemble condition <>
! .280
3 <> loading address <>
i
.PHASE 100H
3 <> constant values <>
; BIOS entry address.
WBOOT £QU OEBO3H
CONIN EQU WBOOT +06H
CONOUT EQU WBOOT +08H
CALLX EQU WBOOT +66H
3 System area
iSCADDR EQU 0F230H ; Screen buffer top addr.
LSCRVRAM EQU 0F294H H VRAM area top addr.
LVRAMYOF EQU OF2A0H ; VRAM Y-offset value.
TOPRAM EQU QEF94H ; User BIOS area top addr,
B 0S ROM jump table
iREDSP EQU '00036* ; Re-display window
H
H
¥
ESC EQU 1BH 5 ESC code
STOP EQU 03H ; STOP code
HELP EQU 00H ; HELP code
;
OADDR EQU 0C000H ; New VRAM address.
P .
H 10 register address
ZYOFF EQU 09H ;
ZVADR EQU 08H ;
H
i
3
; * >k
M MAIN PROGRAM
j EXFEERXRR
H
H NOTE
H This routine sets new screen data.
: CAUTION :
H This program uses User BIOS area for VRAN.
H But this routine doesn't check that
H other program already User BIOS area.
E If you stop program, you must restore
N old screen status.
N If you forget this, other system area
2 will be destroyed.
START:
LD SP,1000H ; Set stack pointer.
3 Set initial data
? LD HL , (TOPRAM} i User BIOS area check
LD DE,0C001H H User BIOS area top addr <= CO00H?
XOR A ; :
SBC HL,DE H
Jp NC,WBOOT ; No. then WBOOT
* LD BC,50%256+40 ; Set default screen size
CALL SETSCR H
7 LD HL,LSCADDR ; Save current screen data.
LD DE,SCRSAVE H
LD BC,27H ;
LDIR H
! LD BC,34%256+40 H Set new screen slze.
CALL SETSCR H
J
LD HL,VADDR s Clear new VRAN area
LD (L) 0 :
LD D,H ;
LD E.L H
INC DE 5
LD BC,2048-1 3
LDIR 5
4
3 Main loop
00P :
CALL CONIN i Get inputed key code,
cp STOP y 1f STOP,
Jp Z,PEND ; then end
cp ESC ; If ESC.
H-275

http://www.fastio.com/

013D

0171

0178

3] 017B
: 017E

0181

0184
0186
0189
018B
O18E

0190
0190
w 0193

0195
0185
0196
0187
0198
0199

019A
019B
019C

013E

018F
019F
01A0
01A2
01A5
01A7
01AA
01AC
01AE

01AF
01AF
01B0
01B2
01B5
01B7
01BA
01BB
01BC
01BD
01Co
01Ct
01C4

01C5
01C5

CD

OE
cD

Ccb

21
<D

(8}

OE
<D

cD
18

21

0A
2E

EBOC
EA

1B
EBOC

EBOC

01D6
0190

FF

F52E

21 003¢
EB69

1B
EBOC

EBOC
c2

18
EBOC

EBOC

01FD
0190

019F

1B
EBOC

EBOC
A3

F290
27

F7

1B
EBOC

EBOC

EBOC

EBGC

0224

JR Z,CHNGSCR ; then change screen
€pP HBELP ; If HELP
JR Z,CHNGVRAM ! “then change VRAM.
LD C,A ; Console out inpued data.
CALL CONOUT H
JR P ! Loop
CHNGSCR:
LD C,ESC ; Erase cursor
CALL CONOUT H
LD c, 2’ ;
CALL CONOUT }
' LD HL, WORKBF1 ; Source addr.
CALL WEKCHNG ; Change screen
L}
LD A60FFH ; Set destination bank
LD (OF52EH) ,A ;
LD IX, XREDSP | Re-display window
) CALL CALLX ;
?
LD C,ESC ; Cursor on,
CALL CONOUT 5
LD c,’3’ ;
CALL ©ONoUT :
JR LoOP 3
;
éHNGVRAMI
LD C,ESC ;Erase cursor
CALL CONOUT
LD c,’2*
CALL CONOUT
H
LD HL ,WORKBF2 ;Source addr.
CALL WKCHNG ;Change screen
' CALL SETVRAM ;VRAM data set.
' LD C,ESC ;Cursor on.
CALL CONOUT
LD c,'3}
CALL CONOUT
JR Loop
H
3
WKCHNG :
LD DE, LSCADDR ;Destination addr.
LD B,§7H 3Exchange byte no.
¥KC10;
LD C,{(HL) ;Exchange data
LD AR(DE) H (DE} <--> (HL)
LD (HL) ,A
LD AC
LD (DE) yA
! INC . HL ;Pointer update
INC DE
DJINZ WEC10 ;Loop until b=0
! RET
i
.
SETVRAM:
XOR A ;Display off
ouT (ZYOFF) \A
LD A, (LSCRVRAM+1) ;Set VRAM addr.
ouT (ZVADR) ,A
LD A, (LVRAMYOF) ;Set Y-offset
OR 100000008
ouT (ZYOFF),A
RET
; FEEREEREE EERERERKX
H CHANGE SCREEN SIZE ROUTINE
: P
L NOTE :
R This routine is changing screen size,
E <> entry parameter <> .
H C + New screen size for vertical
R B 1 New screen size for horizontal
5 <> return parameter <>
H NON
N <> preserved registers <>
7 NON
é CAUTION :
SETSCR:
PUSH BC ; Change screen size.
LD C,ESC s
CALL CONoUT :
LD C,0D0H 3
calL cvour H
POP BC H
PUSH BC H
LD C,B 5 Size of ¥
CALL CONOUT H
PGP BC H Size of X
CALL CONOUT ;
RET :
i
H
PEND:
LD HL, SCRSAVE ;Restore screen data
1-276

http://www.fastio.com/

0ics CD 0180 CALL WECHNG

01CB 0OE 0C LD C,0CB ;Clear screen
01CD CD EBOC CALL CONOUT

)
01D0 CD 019F CALL SETVRAM
01D3 €3 0000 Jp 00008 ;WBOOT

H

V
01D8 WORKBF1 :
01D6 D550 bw ODOOOH+40%34 ;Screen addr.
01D8 0140 DW 40%8 ;Screen size
01DA E000 Dw 0E000H ;VRAM top addr
01DC 00 DB 0 ;Cursor status %
01DD 00 DB 0 ;Reverse status .
01DE 0101 Dw 0101H ;Cursor positior in screen
01E0 28 DB 40 ;Screen size X
01E1 08 DB 8 ;Screen size Y -
01E2 0101 bW 01018 iWindow left-upper position
01E4 0000 DW 0000H sCursor position in window 3
01E6 00 DB 0 ;VRAM Y-offset
01E7 00 DB 1} iWindow type
O1E8 00 DB 0 ;Secret mode
O1ES 00 DB [} ;Scroll mode
01EA 0000 DW (] ;Scroll step
01EC 00 DB (1] ;Carriage return wait flag
01ED 00 DB [} ;Function status
01EE 0000 DW 0 ;Function addr
01F0 00 DB 0 ;ESC flag
01F1 00 bB 0 ;ESC count
01F2 00 00 00 00 DB 0,0,0,0 ;Parameter store area
01F6 00 00 00 00 DB 0,0,0,0
01FA 06 00 00 DB 0,0,0

\
01FD WORKBF2:
01FD D630 DW GDOOOH+40%42 1Screen addr.
01FF 0140 DW 40%8 -y ;Screen size 5
0201 €000 Dw VADDR iYRAM top addr A
0203 00 DB 0 jCursor status
0204 00 DB 0 ;Reverse status 4
0205 0101 Dw 0101H ;Cursor position in screen 1
0207 28 DB 40 ;Screen size X 4
0208 08 DB 8 ;8creen size Y
0209 0101 Dw 01018 ;Window left-upper position
020B 0000 DW 0000H ;Cursor position in window
020D 00 DB 1] 3YRAM Y-offset
020E 00 DB 0 sWindow type
020F 00 DB 0 ;Secret mode
0210 00 bB 0 ;Scroll mode
0211 0000 bw 0 ;Scroll step
0213 00 DB 0 jCarriage return wait flag
0214 00 DB [sFunction status
0215 0000 DW 1} :Function addr
0217 00 DB 0 3ESC flag
0218 00 DB 0 JESC count
0219 00 00 00 00 DB 0,0,0,0 ;Parameter store area
021D 00 00 00 00 DB 0,0,0,0
0221 00 00 090 DB 0,0,0
0224 Scrsave:
0224 Ds 278 yScreen data save area

END
-277
ChhPDF - www fastio.com

http://www.fastio.com/

EREKEKKEREAAKK KRR MK KRR R R KRR AKX KKK KK KRR KKK S

CONSOLE DIRECT DISPLAY SAMPLE
EE R L T

NOTE
This sample program is using console
out direct display.

This is same as TIMDAT sample program.

<> assemble condition <>

e eanr e me s mar e ae ot

.280

<> loading address <>

TN

.PHASE 100H

<> constant values <>

;

3 EBO3 WBOOT EQU OEBO3H ; WBOOT entry address.
3] EB06 CONST EQU OEBOG6H ; CONST entry address.
EBOY CONIN EQU OEBOSH ; CONIN entry address.
EBOC CONOUT EQU OEBOCH } CONOUT entry address.
EB4E TIMDAT EQU OEB4EH ; TIMDAT entry address.
EBS9 CALLX EQU OEB6SH ; CALLX entry address.
f Bank value
00FF SysBANK EQU OFFH
0000 BANK® EQU 000H
0001 BANK1 EQU 001H
0002 BANK2 EQU 0028
i
1000 Ma1nsp EQU 01000H ; Stack pointer,

[

Bystem area

i
F2AC LESCPRM EQU OF2ACH ; ESC sequence parameter area,
F2A8 LFKADDR EQU O0F2A8H ; CONOUT execute addr.
F52E DISBNK EQU 0F52EH ; Bank data.
¢ 1
000D ér EQU ODH
000A LF EQuU 0AH
0012 CLS EQU 12K
0018 ESC EQU 1BH
i
E EEEEEEEKEERER R KRR KRR KRR KRR KRR KK
H MAIN PROGRAM
5 ARAKXRKKS
H
3 NOTE :
3 Display time until press BREAEK key.
H And key input any key.
0100 START:
0100 31 1000 LD SP,MAINSP y Set stack pointer.
0103 CD 0136 ! CALL GETFKAD ; Get direct display function addr,
0106 21 01C6 ! LD HL,MSGO01 ; Date & time message.
0109 €D 0143 CALL DSPMSG y Dispay message.
010C LooP;
010C 76 HALT
010D CD EBOG ! CALL CONST 3 Key in check.
0110 ac INC A ; Input any key?
0111 20 OB JR NZ,SKIP ; No.
0113 CD EBO9 CALL CONIN ; Get inputed key.
0116 FE 03 [0 4 034 3 BREAK key?
0118 28 19 JR Z,TIMEEND ; Yes.
011a 4F ! LD C,A ; Display inputed character.
011B €D EBOC . CALL CONOUT H
01IE $k1p:
011E 11 0225 LD DE,NTIME 3 Time discrepter.
0121 OF tu LD - C,00H ; Read time function.
0123 CD EB4E CALL TIMDAT ; Read time.
0126 CD 017E ’ CALL TIMECHK ; New & old time compare.
0129 28 E1 JR Z,L00P ; 1f same, then loop.
i
012B CDh 018E CALL TIMESET ; Set new time data.
012E CD 014F CALL DSPTIME ; Display time data
0131 18 D9 JR LooP ; Loop
0133 'hMEEND'.
0133 €3 EBO3 Jp WBOOT ; Jump WBOOT.

GET DIRECT DISPLAY FUNCTION ADDRESS.

NOTE :
This ‘routine sends dummy console out function.
And get the function execute address in
OS5 ROM.

<> entry parameter <>
NON

Celinttar i o At e,

<> return parameter <>
NON

-278

vy fastio.com

http://www.fastio.com/

<> preserved registers <>
NON

CAUTION
0136 ETFKAD:
0136 21 021F LD HL, DIRECT » Dummy console out data.
0139 CD 0143 CALL DSPMSG ;
013C 2A F2A8 ! LD HL, {LFKADDR) ; Get the function execute addr.
013F 22 0233 LD (FKDIRECT) ,HL ; Save the address,.
0142 9 RET ;
; KEAKE KRR AR R RR KKK KR E AR KRR AR KRR R R XK KRR KRR R ®
H DISPLAY MESSAGE UNTIL FIND O
H FAEKERERRER KKK R R R KRR AR KRR KRR R RE KRR KA R RS KRR R 2
i
’ NOTE :
z <> entry parameter <>
H HL ; Message data top address,
H <> return parameter <>
A NON .
H <> preserved registers <>
; NON
0143 6SPMSG:
0143 7E LD A,(BL) y Get message data,
0144 B7 OR A ; End mark?
0145 cs8 RET Z ; Yes, then return.
0146 4F ’ LD C,A ; Set display data to ¢ reg.
0147 E5 PUSH HL + Save message pointer.
0148 €D EBOC CALL CONOUT 3 Display message.
014B El POP HL ; Restore message pointer.
014C 23 INC HL ¥ ; Pointer update.
014D 18 F4 JR DSPMSG y Loop until find 0,
); kK EREREARRRERKNRRR KRR KRR X
5 DISPLAY TIME DATA
; *x% x* KEKKE KRR K
: NOTE : .
; Display time data by calling 0S ROM directly.
;' <> entry parameter <>
; NON
H <> return parameter <>
B NON
5 <> preserved registers <>
; NON
3
3 CAUTION :
014F BsPTIME:
014F 21 020B Lp HL MSG02 ; Date message,
0152 CD 0158 CALL DSPT10 ; Display the message.
0155 21 0215 ’ LD HL,MSGO3 ; Time message.
0158 DSPT10:
0158 11 F2AC Lb DE,LESCPRM ; CONOUT parameter area.
015B 7E LD A, (HL) ; Set Y-coordinate.
015C 12 LD {DE) ,A H
015D 23 INC HL B
015E 13 INC DE H
015F 7E ! LD A, (HL) i Set X-coordinate.
0160 12 LD (DE),A H
0161 23 INC HL H
‘
0162 06 08 ! LD B,08H ; Loop counter,
0164 DSPT20:
0164 4E LD C,(HL) ; Display character.
0165 3E FF LD A ,SYSBANK ; Set system bank value.
0167 32 FS2E LD (DISBNK) ,A H
016A DD 2A 0233 LD IX ,{FKDIRECT) : OS ROM call address.
016E c5 PUSH BC ; Save registers.
016F D5 PUSH DE A
0170 E5 PUSH HL H
0171 CD EB69 CALL CALLX ; Go 1l N
0174 El POP HL s Restore registers,
0175 Di POP DE 3
0176 C1 POP BC N
0177 1A ’ LD A, (DE) : Increment X-coordinate.
0178 3ac INC A 3
0179 12 LD (DE) ,A H
017A 23 INC HL / ; Message pointer update.
017B 10 E7 DJNZ DSPT20 ; Loop.
017D cs ’ RET
;
f EAXEEEEEXKR KRR E KRR R R AR AR KRR R RN AR MR R E
5 CHECK OLD & NEW TIME
; EAXFFEEF SRR KRR R R AR KRR KRR XX AN KA R AR AR R L 2 s
K
‘E NOTE :
; entry parameter <>
H NGN
; <> return parameter <>
2 F % Return ifomation
3 =1 ! New time is same as old one.
2 =0 ; New time is different from old one.
H <> preserved registers <>
v NON
1-279
ChhPDF - www fastio.com

http://www.fastio.com/

017E TIMECHK:

<> preserved registers <>
NON

017E 21 0225 LD HL,NTIME 3 New time data.
0181 11 022C LD DE,OTIME : 0l1d time data.
0184 06 06 LD B,08H ; Data counter.
3
01886 TLOOP:
0186 1A LD A,(DE) 3 Get old time data.
1 0187 BE cP (HL) ; Compare it with new one.
0188 co RET NZ ; If disagree, then return,
1 0189 13 INC DE } Poninters update.
4 1 018A 23 INC HL H
\ 018B 10 F9 DJINZ TLOOP ; Loop 6 times.
] | 018D c9 RET K
3 ; * ERAKRERE
4 H SET TIME DATA
; EEEERR
f 3 ! NOTE :
j B <> entry parameter <>
; NON
H <> return parameter <> -
; NON
)
1 : 018E TIMESET!
3 3 018E 21 0225 LD HL NTIME 3 Set time data to old time area.
0191 11 022C Lb DE ,OTIME N
0194 01 0006 LD BC,6 K Year/month/date/hour/minuite/second
0197 ED BO LDIR ; Move new data 1o olid area.
i
0199 21 0225 LD HL,NTIME ; Set BCD data to message area with ASCII,
019€C 11 020D LD DE ,DATE ; HL is source, DE is destination,
019F 06 03 LD B,03H ; B is counter.
01A1 SET10:
01A1 CD 0185 CALL SETASCII ; Convert BCD to ASCII,
01A4 23 INC HL ; Pointer update.
01AS5 13 INC DE B
01A86 10 F9 DJNZ SET10 ; Loop 3 times. {Year/wmonth/date)
01A8 11 0217 ! LD DE,TIME ; Time date setting area.
01AB 06 03 LD B,03H H .
01AD SET20:
01AD CD 01BS CALL SETASCII ; Convert BCD to ASCII.
01B0 23 INC HL ; Pointer update.
01B1 13 INC DE H
01B2 10 F9= DJINZ SET20 ; Loop 3 times. (Hour/minuite/second)
01B4 c9 RET ;
E ERRKEEEREEREEERKERRE MR R R R KRR AER KRR RS
H SET ASCII DATA FROM BCD DATA
B ERXAEKKEFE AR RN R KRR R R KRR R R RN RN KRN
3
H NOTE
!, <> entry parameter <>
H HL : BCD data address«
H DE : ASCII data setting address.
B <> return parameter <>
H DE % Entry DE + 2
3 <> preserved registers <>
1 HL
01B5 SETASCII:
01B5 7E LD A, (HL) ; Get BCD data.
01B6 12 PUSH AF ; Save BCD data. .
01B7 oF RRCA ; Move MSB 4 bit to LSB 4bit,
0188 oF RRCA N
01B9 OF RRCA H
¢1BA OF RRCA 5
01BB CD O01BF CALL NEXT ; Set ASCIl] data by 1 byte.
01BE F1 POP AF 5 Restore BCD data.
01BF NEXT:
01BF E6 OF AND OFH ; Check LSB 4 bit-
01C1 C6 30 ADD A,30H 5 Change to ASCI1 data.
01C3 12 LD (DE) ,A ; Set ASCII data.
01C4 13 INC DE ; Setting polnter update.
01CS €9 RET ;
3
;
01C6 liseor:
01C8 oc DB OCH
01C7 50 72 65 73 DB 'Present date is .',CR,LF

01CB 65 6E 74 20

01CF 64 61 74 65

01D3 20 69 73 20

01D7 20 20 20 20

01DB 20 20 20 20

01DF 2E 0D OA

01E2 50 72 65 73 DB ’Present time is . yCRyLF
01E6 65 6E 74 20

01EA 74 69 €D 65

01EE 206 69 73 20

01F2 20 20 20 20

01F6 20 20 20 20

01FA 2E 0D DA

01FD 49 6E 70 75 DB 'Input line = !
0201 74 20 6C 69

0205 6E 65 20 3D

0209 20

020A 00 DB 00H

020B MSG02%

020B 01 11 bB OlH,11H H Direct display
020D DATE;

11-280

v fastio.com

http://www.fastio.com/

C

30
2F

30
34

D2

020D 30
0211 30
0215
0215 02
0217
0217 30
021B 30
021F
021F 1B
0223 20
0224 00
0225
0225
022C
022C
0233
0233
IhPDF - www . fastio.com

2F
30

3A
30

01

30
30

30
30

01

MSGO3:

TIME:

bIRrecT:

NTIME:

OTIME:

bB

DB

DR

bB
DB

bs
bs

FEDIRECT:

DS
END

200/00/00°

02H,11H

T00:00%00%

ESC,0D2H,1,1,20H
00H

11-281

)

3

Direct display

Direct display dummy

http://www.fastio.com/

Clilj

3.7 MTOS/MIOS Operations

The PINE is provided with an optional microcassette drive. It

is connected to the PINE main unit via a cartridge interface (MS
mode). Tape data is also directed to the buzzer in the main unit
or an external loudspeaker. The microcassette drive can be.
controlled either manually or by software. The user can handle
microcassettes in the same way as ordinary disk drives.

A'microcassette can store only sequential files. It contains a
directory file at its beginning so that the system can handle
microcassette files on a file basis.

3.7.1 General

The PINE controls I/0 operations on microcassette tape (referred
to simply as tape from now on) at two levels of control programs
(MTOS and MIOS). MTOS is an operating system which corresponds
to CP/M BDOS and manages files on tape with unique interface
modules. MIOS corresponds to CP/M BIOS and controls the
microcassette drive motor and processes tape data on a record
basis.

In PINE CP/M, the microcassette drive (MCT) is assigned to drive H:.
The application program can handle it as an ordinary external
drive without being aware that it is actually an MCT drive.

Each MCT tape has g, directory file at its beginning. This file
is used to control accesses to the files on the MCT. Whenever

an access is made to an MCT file, the directory file is loaded
into the directory area in RAM (RAM directory). The results of
operations on MCT files are all managed in the RAM directory.
Accordingly, when an MCT file is updated, the contents of the RAM
directory must also be rewritten into the directory file on the
MCT. Reading in this directory file into memory is called
"MOUNT" and writing it onto MCT is called "REMOVE".

- MOUNT

The MOUNT function loads the tape directory.into the RAM
directory. After a mount, any directory update is processed in
the RAM directory, This function must be executed before
accessing an MCT file. (The OS supports the Auto Mount function.)

- REMOVE

The REMOVE function writes the RAM directory onto the tape
directory. This function must be executed after manipulating an
MCT file. If the tape is removed without the execution of this
function, the tape contents are not guaranteed. Or, in the
worst case, the contents of the microcassette that is mounted
next may be destroyed.

The PINE MCT is furnished with an LED which indicates whether
tape MOUNT/REMOVE can be executed. The LED is turned off by a
mount and turned on by a remove. Tape can be mounted or
removed while the LED is on.

Figure 3.7.1 shows the relationship of MTOS and MIOS to CP/M.

il-282

vy fastio.com

http://www.fastio.com/

APPLICATION

»
BDOS =>MTOS 1./F C,F Y MTOS
N2 N]:]: %

Ex tended B10S <:> MIOS

Extended Standard M
device device

Fig. 3.7.1 MTOS/MIOS Control Flow

3.7.2 File Control

This subsection explains the MCT file structure and file control
method.

The structure of an MCT file is shown in Figure 3.7.2.
The PINE directory file can contain a maximum of 12
entries. Its contents are loaded into the RAM directory for

control of file accesses.

Each file consists of the header, data, and EOF sections.

Header area: Contains the information pertaining to the
organization of the file.
Data area: Contains actual file data. The data

area is normally made of one or more blocks.
The number of blocks depends on the file size.

EOF area: Is the last block identifying the end of the
file,

The PINE can write a block several times to inErease data
reliability (normally, a block is written twice).

Each block has an ID field which stores the block type,
block number, and the ordinal number of writes. The ID
field is referenced during subsequent read operations.

11-283

ChihPDF - www.fastio.com

http://www.fastio.com/

	./osrm2_230.tif
	./osrm2_231.tif
	./osrm2_232.tif
	./osrm2_233.tif
	./osrm2_234.tif
	./osrm2_235.tif
	./osrm2_236.tif
	./osrm2_237.tif
	./osrm2_238.tif
	./osrm2_239.tif
	./osrm2_240.tif
	./osrm2_241.tif
	./osrm2_242.tif
	./osrm2_243.tif
	./osrm2_244.tif
	./osrm2_245.tif
	./osrm2_246.tif
	./osrm2_247.tif
	./osrm2_248.tif
	./osrm2_249.tif
	./osrm2_250.tif
	./osrm2_251.tif
	./osrm2_252.tif
	./osrm2_253.tif
	./osrm2_254.tif
	./osrm2_255.tif
	./osrm2_256.tif
	./osrm2_257.tif
	./osrm2_258.tif
	./osrm2_259.tif
	./osrm2_260.tif
	./osrm2_261.tif
	./osrm2_262.tif
	./osrm2_263.tif
	./osrm2_264.tif
	./osrm2_265.tif
	./osrm2_266.tif
	./osrm2_267.tif
	./osrm2_268.tif
	./osrm2_269.tif
	./osrm2_270.tif
	./osrm2_271.tif
	./osrm2_272.tif
	./osrm2_273.tif
	./osrm2_274.tif
	./osrm2_275.tif
	./osrm2_276.tif
	./osrm2_277.tif
	./osrm2_278.tif
	./osrm2_279.tif
	./osrm2_280.tif
	./osrm2_281.tif
	./osrm2_282.tif
	./osrm2_283.tif

