a dBASE II...31
Section II: 31

Using expressions for selection and control........ 32
Constants and variables...eccececcccscscconssercios 33
STORE
ABASE II.0peratorS...cccscesvescsossssscsasscccnane 37
LOBLCAL OPEratorS..ceceesescssssssossssascosescccns: 38
Substring logical operator..iceecccsceercassssscvscce 4o
SLrINg OPEratorS...ceessesscssocssoracanctocessroce un
Changing an empty database SEPUCLUr@.ccsesoososases B2
MODIFY
Duplicating databases and structures.....eeccececes 43
COPY
Adding and deleting fields

with data in the database.....cccocecocncece i5
COPY,; USE, MODIFY
Dealing with CP/M and other "foreign filesf........ 47
COPY, APPEND
Renaming databas> fieldSi..acecesecccccrsccsscccccen 49
COPY, APPEND
Modifying data rapidly.ccecccceecccecessaccnccocaocs 50
REPLACE, CHANGE
Organizing your databaseS.....cceeccercvcccrccncccs. 52
"SORT, INDEX
Finding the information you WANGeeoasenosecassssass Sl
FIND, LOCATE
Getting information out of all that data.ccoeesoses 56
"REPORT
Automatic counting and summing.cescesccccevecarivee 58
COUNT, SUM
Summarizing~daba,aﬁd‘eliminatins details..ceceveces 59
TOTAL ' '

Section I SUDMIArY..-cesenssanossassossconcnacctocs 60

In this section, we develop the use of expressions to
modify dBASE II commands. This is may be the most important
part of learning how to use JBASE II effectively.

The dBASE II commands can be learned fairly easily
because they are English-like, and. learning another command
is a matter of increasing your vocabulary {(and your
repertoire) by another word.

Expressions, combined with the commands, give you the
fine control you need to-manipulate your data to perform
specific tasks. Once you have learned how.to handle
expressions, you will only have to learn two more things
about programming to be able to write effective applications
dommand files. (These are how to make decisions and how to
repeat a sequence of commands, covered in.Section III).

dBASE II...32

Using expressions for selection and control

- We gave you a brief introduction to expressions that -
can be used with dBASE II commands in Section I.

As you saw, they are a powerful way to extend the
commands and manipulate your data quickly and easily. If
you check the index of commands in Section VI, you'll see
that many dBASE I commands can be modified in the form:

“<COMMAND> [FOR <expression>])”

This extended power gives you a flexibility that you
simply do not get with other database management systems.
We've been told by experienced programmers that they can
write a program (a dBASE II command :file) for an application
in as little as one-tenth the time it would take them using
BASIC or even higher level. languages such as COBOL, FORTRAN
and PL/1.

But to ‘take advam:age of this power, you need to
understand how to work with expressions and operators, then
how to combine the modified commands into command files that
will perform the same tasks again and again.)

The next few pages will .get you started. Ultimately,
éxperience is going to be the best teacher.

Reminger: as we introduce commands through the text, we
try to explain a particular lapect of the command that
will allow you to a few more' things with your ’
database. This means that we do not cover the entire
command at one time., To find ot all that a command
can do, use the summary at the end of Part I and the
definitions of Part II. ' '

Note: . If, after you've finished this Section, you are
still uncertain about how to write expressions that
make the dBASE II commands do exactly what you want .
done, you may want to look at some beginning
programming -texts at your local library. Most of them
discuss expressions within' the first two chapters or
so.

dBASE II...33

Constants and variables (STORE)

Expressions in dBASE II are used to help select and
manipulate the data in your database (see “DISPLAY"). The
quantity that you manipulate may be either a constant or a
variable.

Constants are data items that do not change, no matter
where they appear in a database or within the computer.
They are 1literal values because they are exactly what they
represent. Examples are numerals such as 3 and the logical
values T and F.

Characters and character strings (all the printable
characters plus sp;eeé) can also be constants, but must be
handled a bit differently.)

"Strings" are simply a collection of characters
(including spaces; digits and symbols) handled, modified,
manipulated and otherwise used as data. "A "substring" is a
portion of any specific string.

If a character or collection of characters is to be
treated as a string constant, it must be enclosed in single
or double quotes or in square brackets so the .computer
‘understands that it is to deal with the characters as
characters. To see what we mean, get dBASE II up on your
-computer and USE <Names>. Type:

“dBASE”
“USE Names"
“? 'Name'”
*? Name”

In response to:the first "What. is..." {the “7°
command), the computer responded with NAME because that was
the value of the constant. When you eliminated the single
quotes, the computer first checked to see if the word was a
command. It wasn't, so it then checked to see if it was the
name of a variable.

Variables are data items that can change. Frequently
they are the names of database fields whose contents can
change. In this case, the computer found that our database
had a field called <Name> so it gave us the data that was in
that field at that time. Type the following:

“skip 3*
“? Name”

* UsSe Names
AN * 7 Name

Name

* ?Name

ALAZAR, PAT

sskip3

RECORD: 00004
*?Name ’
DESTRY. RALPH

dBASE II...3H

Now type “USE". Since we do not specify a file n:
the computer simply closes all files.

‘If we type "7 Name” again, the computer tells us that
we made an error. In this case, we tried to use a variable
that did not exist because we were no longer USing a file
with a matching field name.

The variables can also be memory variables rather
than field names. dBASE II reserves an area of memory for-
storing up to 64 variables, each with a maximum length of
254 characters, but with a maximum total of 1536 characters
for all the variables.

You might want to think of this as a series of 64
pigeon-holes available for you to tuck data into temporarily
‘while working out a problem.

Variable names can be any legal dBASE II identifier
(start’ with a letter, up to ten characters long, optional
embedded colon and numbers, no spaces).

You can use a memory variable for storing temporary
data or for keeping input data separate from field
variables. In one session, for example, we might "tuck® the
date into a pigeon-hole (variable) called <Date>. During
the session, we could get it by asking for <Date>, then
place it into any date field in any database without having
to re-enter it (see GetDate,CMD in Section VI).

To get data (character, numeric or logical) into a
memory variable, you can use the “STORE” command. The full
form 1is- : !

~STORE <expression> TO <memory variable>"
Type the following:

|
|
|
~STORE "How's it going so far?" TO Message !
"~~TORE 10 TO Hours” }
~sToRE 17.35 TO Pay:Rate”

*? Pay:Rate®Hours”

~? Hessage“

« STORE “"How s it going so far” TO Message
How s it gomg so far?
« STORE 10 TO Hours

10
« STORE 173570 Psy Rate

1738
e ? Pay Rate”Hours
173.50
= ? Message
How s it gosng so fac?

dBASE 11...35

Notice that we used double quotes around the character
string (a constant) in the first line because we wanted to
use the single quote as an apostrophé inside the string.

Af this isn't clear yet, try experimenting with and
without the quotes to get the distinction between constants
and variables. To start you off, type the following:

“STORE 99 TO Variable®

“STORE 33 TO Another”
'STORB'Variable/lnother TO Third
“STORE '99' TO Gonstant”

“? Variable/Another”

“? Variables3”

“? Constant/3"

“DISPLAY MEMORY

= STORE 99 to Vanable
99
=STORE 33 TO Another
a3
« STORE Vanable/Another TG Third
3 . R
~STORE ‘99 TO Constant
99
=’ Vanabta/Another
3

«?Vanable/3
33
*? Constanu/3
"SYNTAX ERRCR™™
kd

? CONSTANT/3

= DISFLAY MEMORY

MESSAGE (o] How s it going so tar?
- HMOURS. L INL 1T L

PAY RATE (N} 1735

VARIABLE (N} 99

ANQTHER (N} 33

THIRD (N} 3

CONSTANT [{®)) 99

*TOTAL™ Q7 VARIABLES USEDO 00054 BYTES USED

Entering a value into a variable automatically tells
dBASE II what the data type is. From then on, you cannot
mix data types (by trying to divide a character .string by a
number, for instance.)

RULES: Character strings that' appear in expressions must
be ericlosed in matching single or double quote marks
or square brackets. Character strings may contain any
of' the printable characters (including‘the space) .

If you want to use the ampersand (&) as a character,
it must be between two spaces'becadsevit is also used
for the dBASE II macro function (described later).

dBASE II...36

The last compand in the previous screen representation
i1s another form of "DISPLAY" that you'll find useful. (You
can also "LIST MEMORY".)

Ycu can eliminate a memory variable by typing “RELEASE
<name>”, or you can get rid of all the memory variables by
typing "RELEASE ALL".

Type the following (you may want to “ERASE” the screen
first):

~DISPLAY MEMORY"
“RELEASE Another”
“DISPLAY MEMORY"
“RELEASE ALL"

“DISPLAY MEMORY"

Tip: Wwhen naming .any variables, try to use as many

characters as necessary to make the name neéningml to
humans.

Another ‘tip: If you use only nine characters for database
field names, when you want to use the name as a memory
variable, you can do so by putting an "M" in front of
it. What it stands for will be clearer when you come
back to clean up your programs later than if you
invented a completely new and dﬂﬁtereqt name.

dBASE II...37

-dBASE II operators

Operators are manipulations that dBASS II performs on
your data. Some of them will bé familiar; others may take a
bit of practice.

Arithmetic operators should be tne most familiar.
They generate arithmetic results.
) : parentheses for grouping
: multiplication
¢ division
: addition
: subtraction

tdNan

" The arithmetic operators are evaluated in a
é of pr dence. .The order is: parentheses; multiply
and divide; add and subtract. When the operators have equal
precedgnce, they are evaluated from left to right. Here are
some examples:

17/33%#72 + 8 = 35.09 (divide, multiply then add)
17/(33%#72 +8) = 0.00644 (multiply,add then divide)
17/33%(72 «8) = M. 21 (divide, add then multiply)

‘Relational operators make comparisons, then generate
logical results. They take action based on whether the
comparison is True or False.

< : less than

> : greater than

= : equal to

<>’: not equal to

<= : less than or equal‘to
>= 3

;reater than or equal to
Type the following:

“USE Names”™

“LIST POR Zip:Code <= *'70000°'"
“LIST POR Address <> '123*"
“LIST FOR Name = YHOWSER'"

*LISTFOR 2ip Coce 70000

OOOC3 DESTRY RALPH 234 Mahogany St Deertiold FLI3441
000G4 EDMUNDS Jim 392 Vicarous Way Attanta GA30328
GO008 HCWSER. PLTER 678 Dusty Rd Chicago 1L60631
O0C1O JENKINS. TED 210 Park Avenuse New York NY10016

* LIST FOR Acdress - 123

00002 CLINKER, DUANE 789 Chartes Dr Los Angeles CA90036
00003 DESTRY RALPH 234 Manogany St Deertield FL33441
000C4 EDMUNDS JIM 392 Vicanous Way Attanta GA30378
00005 EMBRY ALBERT 345 Sage Avenue Palo Alto CA94303
000C6 FORMAN ED - 456 Boston St Dallas TX75220

000CT GREEN.TERRY 567 Doheny Dr. Hallywood CA90046
000C8 HOWSER PETER 678 Dusty Rd. Chicago 1L80631
00003 INDERS PER 321 Sawtetie Blvd Tucson . AZRS5T02
00010 JENKINS. TED 210 Park Avenue New York NY10018
* LIST FOR Name = HOWSER :

00008 HOWSER.PETER 678 Dusly Rd. Cricigo 10631

dBASE II...38

The logical operators greatly expand the ability .o
refine data and manipulate records and databases.
Explaining them in depth is beyond the scope of this manual,
but if you are not familiar with them, most computer texts
have a chapter very near the beginning that explains their
use. They generatq logical results (True or False). They
are listed-below in the crder of precedence within an
expression (.NOT. is applied before .AND., ete.):

) : parentheses for grouping
.NOT. : boolean not (unary operator)
.AND. : boclean and
.OR. : boolean or

$: substring logical operator

(substring search)

~LIST FOR (JobNumber=730 .OR. JobNumber=731);
AND. (Bill:DPate >= '791001' .AND.;
Bill:Date ¢= '791031*)"

displays all the October, 1979 records for costs billed
against job numbers 730 and 731 (notice how the command line
was extended with the semi-colons).

: 1f you're not familiar with logical operators, start
with the basic fact that these operators will give results
that are True or False. In our example, dBASE II asks the
following questions about each record:

1) Is JobNumber equal to 730 (T or F)?

2) Is JobNumber equal to 731 (T or F)?

‘3) Is Bill:Date greater than or equal to '791001' (T or F)?

4) Is Bill:Date less than or equal ‘to 1791031' (T or F)?

dBASE II then performs three logical tests (.OR.,
.AND., .AND.) before deciding whether the record should be
displayed or not.

pParentheses are used as they would be in an arithmetic
expression to clarify operations and relationms. . Because of
the first .AND., dBASE II will display records only when
the conditions in both parenthetical statements are true.

Evaluating the first expression, it first checks the
¢Job:Number> field. If the value in the field is 730 or
731, this sub-expression is set to True. If the field
contains some other value, this sup-expreséion is False and
the record will not be displayed.

If the first sub-expression is true, dBASE II must
still check the contents of the <Bill:Date> field to
evaluate the second sub-expression. If the contents of the
field are between .'791001' and '791031, inclusive, this
‘expression is true, too, and the record will be ‘displayed.
Otherwise, the complete expression is false and dBASE II
will skip to the next record, where it proceeds through the
-same evaluation. :

dBASE II...39

Let's try some of this with <Names.DBF>. Type the
following: o '

“USE Names")

“DISPLAY all FOR Zip:Code > 'S* _AND. Zip:Cbde < 9"
“DISPLAY all FOR Name ¢ ‘'Pt”:)

“DISPLAY all FOR Address > '500' .AND. Address < '700'"
“DISPLAY all FOR Address > 'H400* .OR. Address < '700'"~

*USE Naines.

«DISPLAY all FOR ZipCxdes> / AND. Zip-Code <. X)

00006 FORMAN.ED ’ 456 Boston Sk Datias. TX75220

00008 MHOWSER PEIER 678 Lusty RO, Chucego 1LB063T

00003 INDERS. PER 321 Sawtelle Biva. Tucson AZ8sTO2

*DISPLAY all FOR Nameo < F .

00001 ALAZAR. PAT 123 Crater Ra. Everetr WAS8206

00002 CUINKER, DUANE 789 Chatles Or Los Angeies CA30036

00003 OESTRY. AALPH 234 Mahogany St Deertieid FL33441

- 00004 EDMUNDS Jim 392 Vicanous Wey Atlanta GA30328

00005 EMBRY ALBERF 345 Sege Avenue Paio Alto . CAS94303

> DISPLAY all FOR Address. > 400" AND. Address << 700

00006 FOAMAN. ED 456 Baston St Dallas TX75220

00007 ' GREEN. TERRY 567 Ooheny Dr. Hollywood CA30046

00008 HOWSER, PETER 678 Dusty Rd. Chicago L6063

« DISPLAY ail FOR Addrass > 400° OR. Address <. 700
ALAZAR. FAT 123 Crater Rd .. Evorett WA9B206
CLINKER, DUANE 789 Chartes Ov. Los Angeles - CA90a36
DESTAY RALPH 234 Mahogsny St Deerhetct FL3I344T
EDMUNDS, Jim 292 Vicanous Way 5 Atanta GA30328
EMBRAY, ALBERT. 345 Snge Avenue Palo Alte, CA94303
FORMAN ED. 456 Bostan St Dallas TX75220
GREEN. TERRY 567 Doheny Or Hallywood . CA830046
HOWSER. PETER 678 Dusty Ra. Chicags " 160637
INDERS JER 321 Sawteite Hivd ucson AZBS702

JENKINS, TED 210 Park Avenuve ’ ’ NY10016

Notice what happened with the last command: 'all the
records weré displayed., If you're not familiar with logical
operators, this kind or non-selective "selection" will have
to guarded against.

dBASE II...%0

. " The ! substring logical ogerator is extrenely useful
because of its powerful search capabilities. The format is:

“¢substring> $ <string>”

This operator searches for the substring on the left within

the string on the right. Either or both terms may be string

.variables as well as string constants. To see how this
works, type the following: a

“USE Names”

“LIST FOR ‘EE* $ la-e
ALIST FOR *T' § Address”
“LIST FOR 'CA' $ State”
“? 'oo' $ 'Hollywood'”
A. Go 5‘

“s DISPLAY" .
~? State $ "CALIFORNIA""

~USE Names

. = LIST FOR EE S Name e

Q0007 - GREEN. TERRY ° 567 Doheny Or. °
+'LIST FOR 7' § Address
00003 - “UINKER; DUANE 789 Charles Onve
00007 “GREEN. TEARY 567 Doheny Oc
DOOOS - HOWSER, PETER 678 Dusty Ra.

_»USTFOR CA'$State |

© 00003 CLINKER,DUANE . 789 Charlas Onve
00005 EMBRY.ALBERT. 345 Sage Avenus

00007 GREEN,TERAY 567 Doheny Dc

00005 Emamuv.asnr _'
‘.7smos "CALIFORNIA™

With this function we could have, for example,
simplified the structure of our mailing list names file.’
The states could have been entered as part of the address.
To call out names within a specific state, we could have
simply typed the following, where XX is the abbreviation for
the state we want:

“<COMMAED> POR ‘XX' $ Address”

.

dBASE II...Nt1

Strin‘ oggrltors generate string results.

+ = string concatenation (exact)
- = string concatenatien (moves blanks)

Concatenation is just another one of those fancy
computer buzzwords. All it really means is that one
character string is stuck on-to the end of another one.
Type the following:

“USE Names”

“? Name + Addreas”

“? Name - Address”
_'The pame in this record is ' + lane;
- ' and the address is '+ Address”

a

- USE Names

s> Name - Address

ALAZAR. PAY 123 Crater R

«7 Name - Address .

ALAZAR. PAT123 Crater Rd

e ? The name:n thrs record s ~ Name. and the address s+ Address
The name (0 this record 1s ALAZAR, PAT and the address is 123 Crater Rd

The “+" and “-" both join two strings. The "plus"™:
sign joins the string exactly as they are found. The
w"minus" sign moves the trailing blanks in a string to the
end of the string. They are not uiiminated, but for many
purposes this is. enough, as’ they do-not show up between the
strings being Joined.

If you want to eliminate the trailing blanks, you can
use the "TRIM" furiction. This is used by typing “STORE
TRIH((variab1e>) TO <variable>”. As an example, we’

- could have typec: “STORE TRIH(Hane) TO (Nawe)” .
eliminate the blanks following the characters of fhe name.

To eliminate all of the trailing blanks in our® example;
we could have typed: “STORE TRIM(Name - Address) TO
Example”.

Now that we've introduced you to expressions and dBASE
II ovperators, we*ll conthue with other dBASE II commands.
We'll be giving you some practice 1n using expressions and
operators as we work our way up to develppxng command files.

dBASE II...N2
Changing an empty database structure (MODIFY)

WARNING: the "MODIFY" command will destroy your
database. Please follow instructions carefully.

W¥hen- there 1s no data in your database, the “MODIFY”
command is the fastest and easiest way to add, delete,
rename, resize or otherwise change the database structure.
This destroys any data in the database so don't use it after
you've entered data. (Later we'll show you a way to do so,
safely.) : ’

<MoneyOut .DBF> has no data in it yet, so we'll work
with it. A useful change:would be to rename <JobNumber> to
<Job:Nmbr> so.that the abbreviation is consistent with
<Emp:Nmbr> and <Bill:Nmbr>. Type the following:

“gSE MomeyOut® | ‘... . R

“LIST STRUCTURE® & . “(page 22)

“MODIFY STRUCTGRE™ = - ~

“y* I : (in response.to the question)

« use Moneytiuc

=I5t structure ‘

STRUCTURE FOR FILE: MONEYOUY.OBF

NUMBER OF RECOROS: 00000

TATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLO NAME

o0t CLIENT

oz JOBNUMEBER

oo BILL DATE.

Qs SUPPLIER o8
<005 DESCRIR et Cotmanneroms = O Brsmbssamsirrsms e

oce HOURS' [002,

07 EMPNMBA

08 AMOUNT

003 BiLL NMBR.

oo CHECK.NMBR

ot CHECK.DATE

TOTAL™ ©0Q8:!

wioh

Oﬂﬁﬂg
m

004
003
006

002

nnnzInz

smoddy structurd:
MODIFY ERASES ALL DATA RECOROS PRGCEEDTNUN] v

dBASE II erases the screen and lists the first 16 (or
fewer) fields in the database. Use “Ctl-X" to move down one
field. Just type in the new field name over the old one
(use a space to blank out the extra letter).

You can exit “MODIFY” in either of two ways: ctl-W
changes the structure on disk, ther resumes normal dBASE II
operation (“ctl-0" for Superbrain). c¢tl1-Q quits and
returns to normal dBASE II operation without making fhe
ehanges. This actually gets you back without destroying the
database, but play it safe and have a backup file (see next
page).

dBASE II...U3

puplicating databases and structures (COPY)

Duplicating a file without going back to your computer
operating system is straightforward. Type the rollowins-

“USE Names”

“COPY TO ‘re-p"
“USE Temp

“DISPLAY STIUCTUII
“LIST®

ALAZAR PAT 123 Craier Rg
BROWN .GHN 45€ Minnow PY

3 CLINKER DUANE 789 Charles, D
OESTHY RALFH 234 Mahogooy St
EMBRY ALBERT 345 Sage Avenue
FORMAN £D 456 Baston St
GREE™N TEHHY 867 Doheny Or.
HOWSER FETER €78 Dusty Ra
INCERS. PER 327 Sawienie Blivd.
JENK.NG TED 210 Park Avenue

WIDTH
020
Q25
026

002
oGy
20073

Cvorett = WAS8206
Buringion MAD1730
Los Angaas

Oearhioh!

Warning: When you' COPY” to an ekistxng filename, the file
written over and the old.data is destroyed.

~COPY TO TEMI'" created a new database called <Temp.DBF>.

is

It

18 identical to the Gmes.DBD, Hith the same structure and the
same data. The command can be expanded even mrther

~COPY TO <filemame> [STRUCTURE] [FIELD list}

With this command, you can copy only the structure or

some of the structure to another file.

“USK Names”

“COPY TO Temp STRUCTURE"
“USE Temp”

“DISPLAY STRUCTURE™

use mamer
CopY SMK nrab te
use teem,

dispiay structur
<TRUCYURE FOR Fh ¢ TEMP DB
NUMBER OF RECORDS 00000

Type the following:

dBASE II...u4

We can copy a portion of the structure by listing oniy
the fields we want in the new database. Type:

“USE Names”

“COPY TO Temp STRUCTURE FIELDS Name, State”
“USE Temp”

“DISPLAY STRUCTURE"

«use names
* Copy structure to temp tields name, state
* use tamp

= disptay structure

STRUCTURE FOR FILE TEMP DBF

NUMBER OF AECORDS. 00000

DATE OF LAST UPDATE. (0/00,00

PHIMARY USE DATABASE

Fa NAME TYPE WIDTH DEC

oot NAME (o4 0z0

002 STATE [od 002

“*TOTAL" 00023 -

FOR ADVANCED PROGRAMMERS: COPY can also be used to give
your program access to a'database structure. Type:,

“USE Names” :
“COPY TO New STRUCTURE. EXTENDED"
“USE New”
‘Listr”

« use Names
® copy to New structure extended
00006 RECORDS COPIED
. use nmuw
—adisplaystructure. ...
STRUCTURE FOR FILE: NEW. D8F
NUMBER OF RECQORDS: 00006
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
NAME TYPE WwIDTH DEC
FIELO:NAME [+4 o010
FIELD.TYPE c
RELDLEN N
FIELD:DEC N
YoTAL™ .

«list)

00001 NAME
00002 ADDRESS
00003 ciTY
00004 STATE
0000S ZiP-CODE
00006 CUSTCODE

The <New.DBF> database reccrds describe the <Names> database
structure, and an application program has direct access to
this information (see Review.CMD, Section.VI).

Alternatively, a file with the same structure as
<New.DBF> could be embedded in a program so that. the
operator could enter the structure for a file without
learning dBASE.II. The program would then create the
database for him with the following command:

“CREATE <datafile> FROM (strf'ucturetile)“

a1

GBASE II...85

Adding and deleting fields with data in the database

As you expand the applications for dBASE 1I, you'll
probably want to add or delete fields in your databases.

“MODIFY STRUCTURE® alone would destroy all the data
in your database, but used with “COPY" and ~APPEND", it
lets you add and delete fields at will.

The strategy consists of copying the structure of the
database you want to change to a temporary file, then making
your modifications on that file. After that is done, you
bring in the data from the old file into the new modified
structure.

As an example, we'll use our <Names> file and our
¢Orders> file. At some point, it would be useful to 1list
the orders placed by a given cu;tomer. This' could de done
easily by adding a customer number field to (Names> file to
match the field in the <Orders> file. To do so without
destroying the records we already have, type the. following:

~USE Names”

“COPY TO Temp STRUCTURE®

“USE Temp~ '

“MODIFY STRUCTURE”

“y* ({n answer to the prompt .

Use the Full Scréen Editing features to move down to
the first blank field and type in the changes in the
appropriate columns (name is "CustNmbr", data type is "C",
length is 9). Now type ~etl-W" (“ctl-0" with Superbrain)
to save the changes and exit to the dBASE 1I dot prompt.

~DISPLAY STRUCTURE® to make sure that it's right. If
it is we can add- the data from <Names> by typing:

~APPEND FROM Names”

We could also have changed field sizes: .the “APPEND”
command transfers data to fields with matching names. ‘

- display structure
STRUCTURE TOR FILE: TEMP.OBF
NUMBER OF RECORDS: 00010 -
DATE OF LAST UPDATE: 00/00/0C -
PRIMARY USE DATABASE

D NAME TYPE WIOTH DEC
00% NAME 020
002 ADDRESS

og3 Ty c
008 STATE c
00s ZPCOUE Cc
006 CUSTNMBR C
~TOTAL™

025
020
002

. - 00S
009

00082

dBASE II...46

Our mew file <Temp> should now have the new field we
wanted to ‘add and all of the old data. “DISPLA!
STRUCTURE™ then “LIST" to make sure that a power line
glitch or a bad spot on the floppy hasn't messed anything
up'.

If the data got transferred correctly, we can fini{sh up
by typing: :

“COPY TO Names
“USE Names"

The f‘COP!" comnand writes over the old structure and
data. After displaying and listing ‘the new <Names) file,
'You can “DELETE FILE Temp“.) ,

To summarize,; the procedure can be used to add or
delete fields in a database in the following sequence:

“USE <oldfile>*

“COPY TO <newfile> STRUCTURE"
“USE <newfile>"

"MODIFY STRUCTURE"

“APPEND FROM <oldfile>”

“COPY TO <oldfile>"

2MP Structuee

* modity structure
MOD:t Y TRASES AR DATA RECORDS PROCELD
YNy
—— v e e
©eagnend trom names
0OC("0 HECORI,5 ADDED

* copy 10 names
COL:0 RECORDS COP!E D

e names
* display structure
STRUCTURE FOR FILE: NAMES LdF
NUWBER OF RECOAD® 60010
CATE OF LAST UPDATE. 00:00 00
PRIMARY USE DATABASE
NAME

NAME

ADORESS

cITY

STATE

2P-CODE

CUSTNMBR

dBASE II...47

Dealing with CP/M and other "foreign® data files (more
on COPY and APPEND) .)

dBASE II information can be changed into a form that is
compatible with other processors and systems (BASIC, PASCAL,
FORTRAN, PL/, etc.). dBASE II can’ also read data files
that have been created by these processors.

With CP/M, the standard data format (abbreviated as
SDF in dBASE II) includes a carriage return and line feed
after every line of text. To create a compatible data file
(for wordprocessing, for example) from one of your
databases, you use another form of the “COPY" command.
Type:

“USE Names™ .
“COPY TO Sysbhata SDF”

This command creates a file called <SysData.TXT>. Now
“QUIT" dBASE II and use your word processor to look at the
file. You'll find that you can work with it exactly as if
you had created it under CP/M.

The Standard Data Format also allows dBASE II to work
with data from CP/M files. However, the data must match the
structure of the database that will be using it.

If we had used a wordprocessor to create a file called
¢NewData.TXT>, we could add it to the <Names.DBF> file with
this command. NOTE: the spacing of the data must match the
structure of the database. If the <NewData,TXT> file
contained the following inforwation:

FREITAG, JEAN 854 Munchkin Ave. Housten
GOULD, NICOLE 73 Radnor Way Radnér
PETERS, ALICE 676 Wacker Dr. Chicago
GREEN, FRANK 431 Spicer Ave. Tampa
(20) (25) (20)

we would add it to the <Names> file by typing thé following:-

“USE Names”
~APPEND. FROM NewData.TXT SDF®

Adding data to an existing file from a system file
takes only seconds.

TXT7006
PA19089

‘IL60606

FL33622
2) (5)

dBASE II...48

The procedure is similar if your "foreign" files use
different delimiters. A common data file format uses commas
between fields and single quotes around strings to delimit
the data. To create or use these types of data.files, use
the word DELIMITED instead of SDF. To see how this works,
type:

“COPY TO Temp DELIMITED"

then go back to your operating system to look at your data.

If your system has a differeut delimiter, you can :
specify it in the command: ‘DBLIHITED [(VITH <delimiter>]”
(do NOT type the "<" and ®yn %ymbols). If your system uses
only commas and nothing around strings, use: “DELIMITED
WITH ,".

The full forms of “COPY" and “APPEND" for working
with system data files are:

{spr]
COPY [scope] TO <filename> [FIELD 1ist] (STRUCTURE] [FOR <expression>]
[DELIMITED [WITH <delimiter>]]

APPEND FROM <filename.TXT> [SL_] [FOR <expression>]
[DELIMITED {wITH <delimiter>]]

Both commands can be made selective by using a
conditional expression, and the scope of “COPY" can be
specified as for other dBASE II commands.

NOTE: While dBASE II automatically generates extensions for
files it creates, you must specify the ",TXT" filenanme
extension ‘when APPENDing from a system data file.

NOTE: With the APPEND command, any fields used in‘the
<expression> must exist in the database to which the
data is being transferred.

dBASE II...49
Renaming database fields with COPY and APPEND

As we sad earlier, "APPEND” transfers data trom one
file to another for matching fields. If a field name in the
FROM file is not in the file i USE, the data in that field
will not bde transferred. :

However, the full form does allow you to.transfer only
data, and we can use this feature to rename the fields in a
database. If we wanted to rename <CustNmbr> to <CustCode>:
in <Names.DBF>, we would type

“USE Names". .

“COPY TO Temp .SDF"™ (data only to Temp.TXT)
“MODIFY STRUCTURE"

“APPEND FROM Temp.TXT SDF"~ - (after changing field name)

Now when you “DISPLAY STRUCTURE", the last field will
be called <CustCode>. Don't forget to change the name of
the <CustNmbr> field in our <Orders> database so that the

. fields match.

' eusenames
& copy to temp sdt
00015 RECORDS COPIED
* modify structure
MODIFY ERASES ALL DATA RECORDS...PROCEED?
Ny Y

® append from temp TXT sdt
00015 RECORDS ADDED

Data in a <.TXT> file created by using the SDF (or
DELIMITED) option is kept in columns that are spaced like
the fields were in the original file. While you can edit a
<.TXT>. file with your word processor, this can-be dangercus:

Warning: Do not change field positions or sizes: the-
data you saved is saved by position, pot‘by'name! If
you change the field sizes when you modify the
structure, you will destroy your database when you
bring the saved data back into it.

When you “COPY" data to a <.TXT> file, you can use the
full command tq specify the scope,[fields and conditlons
(see earlier explanation). 3

dBASE II...50

Modifying data rapidly (REPLACE, CHANGE)

Changes can be made rapialy to any or all of the
records using the following command:

“REPLACE [scope] <field> WITH <data> [, <field> WITH
<data>,...] ’
‘ [FOR <expression>]”

This is an extremely powerful command because it
REPLACES a "<field-that-you-name> WITH <whatever-you-write-
in-here>". You can REPLACE more than one field by using a
comma after the first combination, then listing the new
fields and data as shown in the center braciets. .

The "data" can be specific new information (including
blanks), or it could be an operation, such as deducting
state sales tax from all your bills because you have a
resale number (REPLACE all Amount WITH Amount/1.06).

You can also make this replacement conditional by using
the FOR and specifying your conditions as an expression.

To show you how this works, we need to add.some data to
both the <Names> and <{Orders)> database files.

First, “USE Name” then type “EDIT 1°. Now enter a
*1001”~ in the <CustCode> field, using the full screen
editing features to get into position. Use “e¢tl-C" to move
on to the next record when you are finished customer codes
should be entered as four-digit numbers, with the record
number as the last two digits (1001, 1002, 1003, etc.)

Now “USE Orders” and “APPEND” the following order
information (do not type the column headings):

(Cust) (Item) (Qty) (Price)”

1012 38567 5 .83"
1003 83899 34 .12
1009 12829 7 AT
“1012 73833 23 1.47°

“USE Orders” _
“REPLACE All Amount WITH Qty¥*Price
“LIST"

00004 REPLACEMENTIS)
* fist

38567

You'll also find “REPLACE” useful in command files to
fi11 in a blank record that you have appended to a file.
Data from memory variables in your program is frequently
used to fill in the blank fields.

dBASE II...51

Changes to-a few fields in a large number of records can
also'be made rapidiy by using:,

“CHANGE [scope] FIELD <list> [FOR <expressien>]”

The "scope" is the same as for other 4BASE II commanas.
At least one field must be named, but several field names
can be listed if separated by commas., This command finds
the first record that meets the conditions in the
"expression", then displays the record name and contents
‘with a prompt. To change the data in the field, type in the
new iriformation. To leave it the way it was, hit <enter>.
If the field is blank and you want to add. “data, type a

space.)

Once you have looked at all the listed fields within a
record, you are presented with the first field of the next
record that meets the conditions you set. - To return to
dBASE II, hit the “ESCAPE" key.

ICETRGE AT

*change freld custeoce:
RECOID 0Cont T

custcSoe N

CHANGE? =~ (ENTER A SPACF TO CHANGE AN EMPTY FIELD)
Ao} ' 1001 -

CUSTCODE 1001

CHANGE > - enter

AECORD 00002

" CUSTCODE
CHANGE?

dBASE II...52

Organizing your databases (SORT, INDEX)

Data is frequently entered randomly, as it was in our
<Names> database. This not necessarily the way you want it.
so dBASE II includes tools to help you organize ydur
databases by SORTING and INDEXING it.

INDEXED files allow you locate records quickly
(typically within two seconds even with floppy disks).

Files can be sorted in ascending or descending order.
The full command is:

“SORT ON <fieldname> TO <filename> [DESCENDING]

The <fieldname> specifies the key on which the file is
sorted and may be character or numeric (not logical). The
sort defaults to ascending order, but you can over-ride this
by specifying the descending option:

To sort on several keys, start with the least important
key, then use a series of sorts leading up to the major key.
During sorting, dBASE II will move only as many. records as
it must.

" To sort our <Names> file so that the customers are in
alphabetical order, type:

“USE Names”

“SORT ON Name TO Temp”
“USE Temp”

“LIST"

“COPY TO KRames”

DESTRY. RALPH
EMBRY, ALBERT
FORMAN.ED
FREITAG, JEAN
GOULD, NICOLE
GREEN, FRANK
GREEN.TERRY
HOWSER. PETER

NY10016101C
1150608

0004 HECORUS COPMED

WARNING: Do not SORT a database to itself. A
power line "glitch"” could destroy your entire database
if it came along at the wrong moment. ’

Instead, sort to a temporary file, then “COPY” it back
to the original file name after you've confirmed the data.

dBASE II...53

A database can also be INDEXED so that it appears to be
sorted. The form of the “INDEX" command is:

“INDEX. ON <key (variable/expreasion)> TO <index filename>"

This creates a file with the new name and the extension
<.NDX>. Only the data within the "key" is sorted, although
it appears that the entire database has been sorted. The
key may be a variable name or a complex expression up to 100
characters long. It cannot be a logical field. To organize
our customer database by ZIP code, type: :

“USE Names" .

“INDEX ON Zip:Code TO Zips”
“USE Names INDEX Zips”
“LIsT”

We could also index our database on three keys by typing:
“INDEX ON Name + CustCode + State TO Compound”

Numeric fields used in this manner must be converted to
character types. If CustCode were a numeric field with 5
positions and 2 decimal places, “STR” function (described
‘later) performs the conversion like this:

“INDEX ON Name + STR(CustCode,5,2) + State TO Compound”

To take advantage of the speed built into an INDEX
file, you have to specify it as part of the "USE" command:

“USR <Batabase name> INDEX <index filename>"

. Positioning commands (GO, GO BOTTOM, etc.) given with
an INDEX file in use move you to positions on the index,
rather than the database. “GO BOTTOM”, for example, will
position you at the last record in the index rather than the
last record in the database.

Changes made to key filelds when you “APPEND”, “EDIT",
“REPLACE” or “PACK” rhe database, are reflected in the
index file in USE. .)

Other index files for your database can be
updated by typing: “SET IMDEX TO <index’ File
1>, <index File 2>, ...<index File a>". Then
perform your “APPEND", "EDIT", etc. All named
index files will now be current.

A major benefit of an INDEXED file is that it allows
‘you to use the “FIND” command (described next) to locate
records in seconds, even with large databases.

dBASE II...54

Pinding the information you want (FIND, LOCATE)

If you know what data you are looking for, you can use
the FIND command (but only when your datatase is indexed,
and the index file is in USE). A typical FIND time is two
seconds with a floppy disk system.

Simply type FIND <character string> (without quote
marks}, where the “"character string® is all or part of the
contentg of a field.

This string can be as short as you m«, but should be
long emough to make it unique. "th", for example, occurs in
a large number of words; "theatr® is much more limited.
Type the following:

“USE Names INDEX Zips“~
“FIND 10°

“FIXD 9°
ISPLAY"
“DISPLAY Next 3°

- LS TEaTTes ITgex 1o
- fir 10

. edplay
0UG13 JENRINS TED g NYTCO'6101C

-tird ?

s roaplay |
COUOX CLINKER. DUANE

.edrsptayext 3 -

00003 CLINRER. BUBNF
0o0re GREEN. 'YRAY
oogaS EMBRY. ALBFEHAT

If the key is not unique, dBASE II finds the first
record that meets your specifications. This may or may not
be the one you're looking for. If no record exists with ‘the
identical key that you are looking for, dBASE II displays
NO FIND.

. “FIND" can also be used with files that have been
INDEXED on multiple keys. The disadvantage of a compound
key (which may not be a disadvantage in your application) is
that it must be used from the left when you access the data.
That is, you can access the data by using the FIND command
and just the Name, or the Name and CfistCode, or all three
fields, but could not access it using the Stata or CustCode
alone. To do %hat, you would either—tidve to use the LOCATE
command (next), or have another file indexsd on the State
field as the primary Kkey.

dBASE II...55
When looking for specific kinds of data, use.
“LOCATE [scope] [FOR <expression>]”

This command i3 used when you are.looking for specific
data in a file that is not indexed on the key you are
interested in (file is indexad on zip codes, but you're
interested in states, etc.)

If you want to search the entire database, you do not
have to specify the scope, as "LOCATE” starts on the first
record. To search part of a file, use “LOCATE Next
<aumber>”. The search will start at the record the pointer
is on and look at the next "number" of records. If this
would move the pointer past the end of the file, LOCATE
examines every record from the pointer position to the end
of the file.

If you are looking for data in a character field, the
data should be enclosed- in single quotes. Type -the
following:

“USE Names”

“LOCATE FOR Name='GOU'"

“DISPLAY™

“LOCATE FOR Zip:Code>'8' .AND. Name < 'G'"
“DISPLAY Name, Zip:Code”

If a record is found that meets the conditions in your
expression, dBASE II signals you with: RECORD.n. You can
display or edit the record once it is located.

If there may be more:than one record that meets your
conditions, type CONTINUE .to get the next record number.

“CORTINUE"
“CONTINUE"
“CONTINUE"

If dBASE II cannot find your record within the "scope"
that you defined, it will display: END OF LOCATE or END OF
FILE ENCOUNTERED.

» usenames

locate tor Name = GOU

RECORD 00008

- hsplay

Q0008 GOULD. NICOLE 73 Kaonor Way -

® tocate tor Zip'Code >8 and Name . G
ARECOAD 0G001T ¢

~display Name. Zip:Code

00001 ALAZAR. PAT 98206

* continue

RECORD 00003

scanhnue

RECORD 0QCGS

&« continue

END OF FiLE ENCOUNTERED

dBASE II...56

Getting information ont of -all that data (the REPORT

command)

FIND and LOCATE are fine for locating individual
records and data items, but in most applications you will
want data summaries that include many records that meet
certain specifications. The “REPORT" command lets you do
this quickly and easily.

If you are using single sheets of paper. in your
printer, first type “SET EJECT OFF” to turn the initial
formfeed off. Now select the database you want the report
from and create your custom report format by typing:

"“SET EJECT OFF" :
“USE <database>” s
“REPORT"

dBASE II then leads you through a series of prompts to
create a custom format for the report. You specify which
fields from the database you want, report and column
headings, which columns should be totalled, etc. The
standard defaults are 8 columns from the left edge of the
paper for the page offset, 56 lines per page, and a page
width of 80 characters. ,

You can try this with the files you've created on the
demonstration disk, but the <(Names> and <Orders> databases
that we've used as examples so far don't have enough data in
them to really show you how powerful dBASE II can be. For
our examples from here on we will be using <MoneyOut.DBF>
and other databases that are part of an existing business
system. (The entire system is in Section VI, including
databasé structures and the command filés that run it.)

This would be a good time for you to create a database
structure that you would actually use in your business.
Enter data in it, then substitute it fcr <MoneyOut> in our
examples.

*use MoneyOut
* report
ENTER REPORT FORM NAME: JobCosts
ENTERA OPTIONS. M~ LEFT MARGIN. L = LINES/PAGE. W = PAGE WIOTH
" PAGE HEADING? (Y/N) ¥.
ENTER PAGE HEADING: COST SUMMARY
' DOUBLE SPACE REPORT? (Y/N) n
ARE TOTALS REQUIREDZ (Y/N) y
SUBTOTALS IN REPORT? (Y/N} n
COL WIDTHCONTENTS
0at 10CherkDate - .
ENTER HEADING. DATE,
<002 22 Name °
ENTEH HEADING: suPP\. ER
. 003 22 Descnp
" ENTER HEADING: nescmwno» L
004 12Amount
ENTER HEADING: moum
ARE TOTALS neoumsmmmv
- 0g8 -

dBASE II...57

When you have defined all ‘the contents of the report,
hit <eater> when prompted with the next field number. dBASE
11 immediately starts the report to show you what you have
specified, and will go through the entire database if you
jet it. To stop the report, hit the <escape> key.

At the same time, dBASE II saves the format in a file
with the extension .FRM, so that you can use it without
having to go through the dialog again. The full form of the
command is:

“REPORT FORM <formname> [scope) [FOR (expropsiqu)] [TO PRINT]'
By typing
~REPORT FORM JobCosts FOR Job:Nmbr='770'"

we can get a listing of all the job costs for job number 770
without having to redefine the format.

« REPORT FORM JobCasls FOR JoxNmor =770

PAGE NO.00001

E i g

. b s 7. COSTSUMMARY . oy : o
< DATE' SUPPUER DESCRIFTION' . BMOUNT
: ATT00 .

A10113 LEVTER FONT “TYPE - 3

810113 ABLE PRINTER MAILER 605.00
810113 MARSHALL, RALPH IYPE - . . arae

810113 _ MARSHALL. RALPH Lavout -

810113 SHUTTERBUGS.INC PHOTOGRAPHY

810113 . MAGIC TOUCH ..." ' RETOUCHING

~“TOTAL™ . .

You can change the information in the heading by typing
~SET HEADING TO character string” (up to 60 characters and .
spaces, no quote marks). The "scope" defaults to mall” when
not specified.

The expression could have been expanded with other
conditions, and the entire report could have been prepared as a
Hardcopy by adding TO PRINT at the end of the command .

This ‘report capability can be used for just about any
business report, from accounts payable (FOR Check:Nmbr=' '),
to auto expenses (FOR Job:Nmbr='Hl ') to anything else you need.

dBASE II...58

Automatic counting and summing (COUNT, SUM)

In some applications, you won't needa tc see the actual
records, but will want to know how many meet certain
conditions, or what the total is for some specified
condition (How many widgets do we have in stock? How many
are -on back order? What is the total of our accounts-
payable?) "

For counting use:

“COUNT [=cope] [FOR conditions] [TO memory variadble]”

This command can be uséd with none; some or all of the
modifiers.

Unqualified, it counts all the records in-the database.
The "scope" can be limited tc one or a specified number of
records, and the "condition" car be any complex logical
expression (see earlier section on expressions). The result
of the count can be stored in a memory variable, which is
created when the command is executed if it did not exist.

To get totals, use: -

~SUM frield(s)[scopel[FOR con‘diuon][rd memory variable(s)]”

You can list up to 5 numeric fields to total in the
database in USE. - If more than one field is to be totaled,
‘the field names are separated by commas. The records
totaled can be limited by using the "scope" and/or
conditional expressions after the FOR (Client <> *SEM' .AND.
Amount > 10...).

' If medory variables are used (separated by commas),
remember that totals are stored based on position. If you
don't want to store the last fields in memory variables but
do want to see what the amounts are, there's no problem:
simply name the first few variables that you want. If
there's a gap (you want to save the first, third and fourth
field totals out of six), name memory variables for the
first four fields then RELEASE the second one after the SUM
is done.

‘s USE ManeyOut

= CQUNT FOR Amourit < 100 TO Smait
COUNT = 0G067

« SUM Amount FOR Jab. Nmbr 277TQTO Cost
' 1640.10

« disnlay memory

SMALL Ny 67
‘cosT N} 164010
**TOTAL"" 02 VARIABLES USED 00012 BYTES USED

. dBASE II...59

Summarizing data and eliminating details (TOTAL)

~TOTAL~ works similarly to the sub-total capability in
the REPORT command except that the results are placed in a
database rather than being printed out:

TOTAL ON <key> TO <database> [FIELDS list] [FOR conditions]

NOTE: The database that the information is coming from
must be presorted or indexed on the key that is used in this.
command .

‘This command is particularly useful for eliminating
detail and providing summaries. The screen shows what
happens with our <MoneyOut> database:

“USE MoneyOut”

~I¥DEX ON Job:Nmbr TO Jobs”

~“USE MoneyOut IRDEX Jobs”

~¢0TAL ON Job:Nmbr TO Temp FIELDS Amount FOR Job:Nmbr >699;
.AND. Job:KMbr < 800"

“USE Temp” ’

“LIST"

The new database has one entry for each job number, and
a total for all the costs against that job number in our
<(MoneyOut> database. One problem with the new database,
however, is that only two of the fields contain useful
information.

This can be handled with one more . command line. .
~TOTAL® transfers all the fields if the database named did
not exist, but uses the structure of an existing database.
In the commands above; we could have limited the fields in
the new database by creating it first, before we used the
“TOTAL" command:

~COPY TO Temp FIELDS Job:Habr, Amount”

Now when we ~TOTAL® to <Temp>, the new database will
contain only the job numbers and cotals. Try it with your
database.

This same technique can be used to summarize
quantities of parts, accounts receivable or any other
ordered (SORTed or INDEXed) information.

« USE MoneyOut .

» INDEX ON Job Nmbr TO Jobs

00093 RECORDS INDEXED

« USE MoneyOut tRDEX Jots - ,

« TOTAL ON Job.Nmbr TO Temp FIELDS AMOUNT FOR JotrNmbr >699;
AND. JotxNmbs <800

00025 AECORDS COPIED

- USE Temg

- LIST ')

<00011 B10129 3148 SML LETTER FONT TYPE
810123 2633 ans ’

0 .
00012 810129 3152 SML MAGIC.TOUCH = BACKGROUND
TONE 810129 429 R

00013 810128 3148 SMM . LETTER FONT

810129 3003 000 Q :

000tT4 '81012¢ 3148 DOC LEYTER FONT

810129 2764 ana

dBASE II...60
Section II Summary

This section has broadened the scope of what you can
now do with dBASE II.

We have shown you how different operators (arithmetic,
relational and string) can be used to modify dBASE II
commands to give you a greater degree of control over your
data than is possible with other database management
systems.

Since data structures are the basis of database
systems, we have covered a number of different ways in which
you can idlter the these structures, -with or without data in
the database.)

We have also shown you how to enter, alter and find the
specific information you may be looking for. We have also'
introduced new global commands that make it possible for you
to turn all that data into intomtion with a sipngle command
(COUNT, SUM, REPORT, TOTAL).

-In the next section, we will show you how to set up
dBASE II command files (programs), s0 that you can automate
your information processes.

