"

dBASE II...61
Section III:

Setting up a command file

(writing your. first program)..ccscseccccccees 62 MODIFY COMMAND <file>
Making choices and deciSionS.....c.eesesscseccassss 64 IF..ELSE..ENDIF
Repeating a ProceSS...cesccssssccccscscasccccssscce 66 DO WHILE..
Procedures (subsidiary command tiles).............. 67 DO <file>
Entering data interactively during a run........... 68 WAIT, INPUT, ACCEPT
Placing data and prompts exactly where

YyOou want themieceeeeeecsssssccccoscoscscnsenns 69 @..SAY..GET
A command file that summarizes what we've learned.. T2
Working with multiple databaseS.....cceesssssscacess T5 SELECT PRIMARY/SECONDARY
Generally useful system commands and functions..... 76
A few words about programming and planning

your command fileS...ccsessscesceccccocccscne T7

If you understand how to write expressions, you are
very close to being able to write programs.

There are four basic programming structures that
you can use to get a computer to do what you want to do:

Sequence
Choice/Decision
Repetition
Procedures

You've already seen that dBASE II processes your
commands sequentially in the order in which you give' them.
In this section we'll explain how you make choices
(IF...ELSE), how you can make the computer repeat a
sequence of -commands (DO WHILE..), and how to use sub-files
of commands (procedures).

Then we'll show you how to use these simple tools.to
write command files (programs) that will solve your
applications problems. -

dBASE II...62
Setting up a cowmand' file (writing your rirst program)

The commands we've introduced so far are ‘powertul ang
can accomplish a great deal, yet' only scratch the surfase of
the capatilities of dBASE II. The full power odmes into
play when you set up command files so that the commands you
enter onde can be repeated over and over.

When you create a comsand file you are programming the
computer, but since dBASE II uses English-like ocommands,
it's a lot simpler than it sounds. Also, because dBASE II
is a relational database management system, you work. with
increments of data and informationm, rather than bits and
bytes.

To set up a command file, you 1ist the commands you
want performed in a CP/M file with a <.CMD> extension to
its name, using a text editor or word processor.

dBASE II starts at the top.of the 1ist and processes
the commands one at a time. until it is done with the list.

Other. computer larguages operate exactly the same way.
In BASIC the sequence is very.visible because each program
line is numbered. 1In other languages (dBASE II among them),
the sequence is implied'and the computer will process: the
first line on the page, then the second line, etc. Some
languages use separators (such as colons) between command
statements; dBASE II simply uses‘the carriage return to
terminate the command line.

‘Ine only time the sequence. is not ‘followed is when the
computer is specifically told to go and do .something else.
Usually, this is based on some other conditions and the’
computer must make a decision based on expressions or
conditions that you have set up.in the command file. We'll
tell you more about this later.

For now, let's create a command file called <Test),
. You can do this using a .text editor or wordprocessor,
but there's an easier way with dBASE II. Type:

“MODIFY COMMAND Test”

dBASE II now presents you with a blank screen that you can
write into using the full screen editing features described
earlier. Use them now to enter the short program at the top
of the next page (do not type the "“" symbols)..

The end of a line indicates the end of a command
(unless you use a semicolon), so keep the list of commands
as shown on the next page.

dBASE II...63

“USE Names”

~COPY Structure TO Temp FIELDS Name, ZipCode®

“USE Temp~

~APPEND FROM Names”

“COUNT FOR Name = 'G' TO G

“DISPLAY MEMORY"

“7 'We have just succesasfully completed our first command file.'

When you're finished, use clt-W (ctl-0 with Superbrain) to
get back to the dBASE II prompt. Now type:

A> “dBASE Test”

If you typed the program in exactly the way it was
printed, it crashed. Now type “MODIFY COMMAND Test”
again and insert a semi-colon to correct the <Zip:Coded>
field name.

Once you get to writing larger command files of your
own, you'll find that this built-in editor is one of the
most convenient -features of dBASE II, since you can write,
correct and change programs without ever .having to go back
to the system level of the computer. Currently, this
built-in editor can back up only about 5,000 lines, so
editing should be planned in one direction for larger files.

The command file itself is trivial but does show you
how you can perform a sequence Of commands from a file
with a single system command. This is similar to the way
you use .COM files in your operating system,

If you are already in dBASE II (with the dot prompt),
you type:

. “DO <{filename>”

where' <filename> has the <.CMD> extension.

TIP: You may want to rename the main dBASE file to
<D0.COM>, so that you can type “DO <filename>” whether
you're in your system or in dBASE II. To do this with
CP/M, type: A> “REN DO .COM=dBASE.COM"

dBASE II...64

Making choices and decisions (IF..ELSE)

Choices and decisions are made in dBASE IT with
“IF..ELSE..ENDIF_. This is used much as it is used in
ordinary English: IF I'm hungry, I'11 eat, (OR) ELSE I
won't. With a computer, you use the identical construction, |
but do have to use exactly the words that it understands. |

Simple decision: If only a single decision is to be
made, you can drop the ELSE and use this form:

IF condition [.AND. cond2 :OR. cond3)
do this command ‘
[emd2]

[....]

‘ENDIF

The "condition” can e a series of expressions (up to a
maximum of 254. characters) that can be logically evaluated
_to being true or false. Use the logical operators to tie
them together. Using our <MoneyOut> file, we might set up
the following deeision:

IF Job:Nmbr = '730' .AND. Amount. > 99.99;
-OR." Supplier = 'MAGIC TOUCH' ; :
«OR. Bill:Date > 1791231 -
do this command

[emd 2)
t...0]
ENDIF.

1f all the conditions are met, the computer will
perform the commands listed between the IF and the ENDIF
(in sequence), then go on to the next statement ‘following
the ENDIF. If the conditions are not met, the computer
skips to the first command ‘following the ENDIF. o

Twe choices: If there are twqg alternate courses of
action that depend on the condition(s), use the IF..ELSE
statement this wav:

IF condition(s)

do command(s) 1
ELSE)

do command(s) 2
ENDIF

The computer does either the first set of commands or the.
second set of commands, then skips to the command following;
the ENDIF.

dBASE II..:65

Multiple choice: Frequently, you have to make a
choice from a 1ist of alternatives. An example might be a
the use of a screen menu to select one of Several different
procedures that you want to perform. 1In that case, you use
the IF..ELSE..IF construction. :

This is the same IF..ELSE that we've described, but
you use it in several levels (called "nesting"), as shown
below.

IF conditions 1
do commands 1
ELSE
IF conditions 2
do commands 2
ELSE
IF conditions 3
do commands 3

ENDIF 3
ENDIF 2
ENDIF 1

This structure can be nested as shown as far as it has
to be to choose the one set of comminds required from the
list of alternatives, It is used frequently in. the working
accounting system at the end of Part I.

Notice that each IF must have a corresponding ENDIF or
your program will bomb.

TIP: dBASE II does not read the rest of the line after an
ENDIF, So you can add in any identification you want
to, as we did above. It helps keep things straight.

dBASE II...66

Repeating a process (DO WHILE..)

Repetition is one of the major advantages of a
computer. It can continue with the same task over and over
without getting bored or making mistakes because of the
monotony. This is handled in most computer languages with
the DO WHILE construction:

DO WHILE conditions
do command(s)
ENDDO

While ghe conditions you specify are logically true,
the commands listed will be performed.

Tip: Remember that these commands must change the
conditions eventually, or the loop will continue
forever.

‘When' you know how many times you want the process
rgpeated,,you use the structure like this:

without doing ProcessA
Do file ProcessA.CMD
Increase counter by 1

'ENDIF blank

DO ProcessA

STORE Index+1 TO Index
ENDDO ten times

STORE 1. TO Index # Start counter at 1
DO- WHILE Index < 11 # Process 10 records
1IF Item = ' ! % If there is no data,
SKIP’ ® skip the record and
- LoOP # go back to the DO WHILE,
*
*
]

In this example, if there is data in the <Item> field,
the computer performs whatever instructions are in another
command .file called ProcessA.CMD, then returns to where it
was in this command file. It increases the value of the
variable Index by 1, then tests to.see if this value is less
than 11. If it is, the computer proceeds through the DO -
WHILE instructions again. ‘When the counter passes 10, the.
computer skips the loop and performs the next instruction

‘after the ENDDO.

The LOOP instruction is used to stop a sequence and
cause the computer to go back to the start of a DO WHILE
that contains the instruction.

In this case, if the Item fileld is blank, the record is
not processgd because the LOOP command moves the computer
back to the DO WHILE Index < i1. The record with the blank
is not counted, since we bypass the command line where we
add 1 to the counter.

The problem with LOOP is that it short-circuits
program flow, so that it's extremely difficult to follow
program logic. The best solution is to avoid the LOOP.
instruetion entirely.

dBASE II...67

Procedures (subsidiary command files)

The ability.to create standard procedures in a
language greatly simplifies progfamming of computers.

In BASIC, these procedures are called sub-routines. In
Pascal and PL/I, they are called procedures. In dBASE II
they are command files that can be called by a program that
you write. -,

In our previous example, we called for a procedure when
we said DO ProcessA. - "ProcessA"™ is another command file
(with a .CMD extension to its name). The contents of this
command file might be:

IF Status = M
DO PayMar
ELSE
IF Status = S
DO PaySingle

ELSE
IF Status = 3@
DO PayHouse
ENDIF
ENDIF
ENDIF
RETURN

Once again, we can call out further procedures which
can themselves call other files. Up to 16 command files may
be open at a time, so if a file is in USE, up to 15 other
files can be open. Some commands use additional files
(REPORT, INSERT, (OPY, SAVE, RESTORE and \PACK use one
additional file; SORT uses two additional files).

. This is seldom a limitation, however, since any number
of files can be used if they are closed and no more than 16
are open ag any time.

A file is closed when the end ‘of the file is reached,
or when the "RETURN" command is issued by a command file.
The RETURN command returns control to the command file that
called it (or to the keyboard if the file was run directly).
’ The RETURN command is not.always strictly necessary,
as control returns to the calling file when the end of a
file is encountered, but it is good programming practice to
insert it at the end of all your command files.

#Big tip®: Notice that the command lines are indented in
our examples. This is not necessary, but it increases
command file clarity tremendously, especially when you
have nested structures within other structures. Using
all uppercase for the commands, and both upper- and
lowercase for the variablés helps,- too.

dBASE II...68

Entering data interactively during a run (HAIT;,IIPUT
ACCEPT)

For many applications, the command files will have to
get additional data from the operator, rather than just
using what is in the databases.

You command files can be set up so that they prompt the
operator with messages that indicate the kind of information
that is fieeded. One good example is a menu of functions:
from which one is.selected. Another use might be to help
ensure that accounting data is entered correctly. The
folloving commands can do this.

“WAIT [TO memory variable]”

halts command file processing and waits for a
single character input from the keyboard with a
WAITING prompt. Processing continues afte any key is
pressed (as with the. dBASE II DISPLAY command).

If a variable is also specified, the input
character is stored in it. If the input is a
non-printable character (<enter>, control character,
etc.), a blank is entered into the variable.

“INPUT ['prompt'] TO memory variable”

accepts any data type from the CRT terminal to a
named memory variable, creahing that variable if it did
not exist.

If the optional prompting message (in single or
double quotes, but both delimiters the same) is used,
it appears on the user terminal followed by a colon
showing where the data is to be typed in. The data
type of the variable (character, numeric or logical) is
determined by the type of data that is entered.
Character strings must be entered in quotes or square
brackets.

“ACCEPT ['prompt'] TO memory variable”

~ accepts character data without the need for
.delimjiters. Very useful for long input strings.

"Tips on which to use when:

WAIT can be used for rapid entry (reacts instantly to
“an input), but should not be used when a wrong
entry can do serious damage to your database.
ACCEPT is useful for long strings of characters as it
‘does not require quote marks. It should also
be used for single character entry when the
need to hit <enter> can improve data integrity.
"INPUT accepts numeric and logical data as well as
characters, can be used like ACCEPT.

dBASE II...69

Placing data and prompts exactly where you want them
(@..31Y..GET)

.The "?%, “ACCEPT" and “INPUT" commands can all be
useu to place prompts to the operator on the screen.

Their common drawback for this purpose is that the
‘prompts will appear just below the last line already on the
screen. This works, but there's a better way.

If your terminal supports X-Y cursor positioning,
another dBASE II command lets you position your prompts and
get your data from any position you select on the Screen:

“@ <coordinates> [SAY <'prompt'>]"

This will position the prompt (entered in quotes or
square brackets) at the screen coordinates you specify. The
coordinates are the row, and column on the CRT, with 0,0
being the upper left-hand "home” position. If we specified
"9,34% as the coordinates, our prompt would start on the
10th row in the 35th column.

Hote: If you installed half intensity or reverse
video, the prompt will be at half intensity or in reverse
video. To disable this, re-do the installation procedure
and use the "Modify/Change" option.

The SAY.. is optional because‘this command can also be
used to erase any line (or portion of a line) on the screen.
Bring dBASE TI up and type:

“ERASE”

“@ 20,30 SAY *What?'“

“@ 5,67 SAY ‘*Here...'"

“€ 11,11 SAY "That's all.*"
“e 20, 0"

ae 5' n.

Te 11.16"

Instead of just showing a prompt, the command can be
used to show the value of an expression with one or more

variables. Tre form is:
“@ <coordinites>[SAY <expression>)
Type the following in dBASE II:

“USE Names”

“@ 13,9 Say Zip:Code

“€ 13,6 SAY State

“sxip 3°

“@ 23, 5 SAY Name + ', ' 4 Address

dBASE II...T70

The command can be expanded further to show you the
values of variables being used (memory variables or rield
names in a database) at whatever screen position you'
specify. (The variables used by both GET and SAY must
exist before you call them out or you will get an error.) .

~@ <coordinates>[SAY <expression>][GET <variable>]

To see how this works, type the following (do NOT QUIT dBAS!
when you're done--there's more to come):

“ERASE"

“USE Names”.

“@ 15, 5 SAY 'State' GET State

“€@ 10,17 GET Zip:Code

“@ 5, 0 SAY 'Name' GET Name
(Stay in dBASE)

This sequence has positioned the values of the
variables (with and without prompts) at various places on
the screen. With this facility, you can design your own
input forms so that the screens that your operator sees will
look just like the old paper forms that were used before.

To get data into the variables on the screen at your
chosen locations, type:

“READ"

The cursor positions itself on the first field you
entered. ' You can now type in new data, or leave it the way
it was by hitting <enter>. When you leave this field, it
goes to the second variable you entered.

Change the data in the remaining two fields. When you
finish with the last one, you are back in dBASE II. Now
type “DISPLAY". The record now has the new data you
entered.

As you can see, GET works somewhat like the INPUT and
ACCEPT commands. It is much more powerful than either
because it allows you to enter many variables.

A database may have a dozen or two fields (up to 32),
but for any given data entry procedure, you may be entering
data in only half a dozen of those. . Rather than using
APPEND, which would list all the ﬁ.eldp in the’ database on
the screen, you can use “APPEND BLANK®. to create a record
with empty fields, then GET only the data you want.

Our <{Names> file is not a good example (the accounting
.system at the end of this section is better), but we can us
it to show how to selectively get data into a datatase with
a large structure.

dBASE II...T1

To give you more practice with command files, create a
file called <Trial.CMD> with the following commands in it:

“ERASE”

“? 'This procedure allows you to add new records to
the'”

“? 'NAMES.DBF database selectively. We will be
adding'”

“? 'only the Name and the Zip:Code now.'”

npe

“? 'Type 3 to stop the procedure,'”

“? t<enterd> to continue.'”

“WAIT TO Continue”

“USE Names” .

“DO WHILE Continue <> °'S*' .AND. Continue <> 's!
APPERD BLANK"

ERASE”

€ 10, O SAY "NAME®" GET Name”

€ 10,30 .SAY "ZIP CODE" GET Zip:Code”

READ”

Y > >

“ 72 ' S to stop the procedure,'”
~ 7 '<enter> to.continue.'”

- WAIT TO Continue”

“ENDDO"

“RETORN"

When you're back to CP/M, type “dBASE Trial” (or “DO
Trial® if you renamed the dBASE.COM file as we suggested),
Now enter data into several records. After you've finished,
LIST the file to see what you've added.

As you can see, data entry is simple and uncluttered.

The screen can be customized by placing prompts and-
variable ipput fields wherever you wani thenm.

NOTE: You must use the "ERASE” or “CLEAR GETS" command
after every 64 "GET's”. Use the latter command if you
do not want to change the screen.

dBASE II...72

A command file that summarizes what we've learned

Before you read on, you can run-the following file to-
see what it does. Type “dBASE Sample” if you're in CP/M
or “DO Sample” if you're in dBASE II. Respond to the
prompts. After you've run it, you can come back and go
through the documentation. It summarizes most of what
we've covered so far and includes copious commentary.

SHIRESRNERABRNNRNENE SAMPLE.OMD ldl'lllllll!lllll.‘!ll

#® This command file prompts the user with screen

pessages and accepts data into a memory variable, then
8 performs the procedure selected by the user. This is only
#® a progran fragment, but it does work.

s We haven't written the procedures that are called

% by the menu yet, so instead, we can have tlie computer

® perform some actions that show us what it does

% and which paths it takes (stubbing).

. Normally, dBASE II shows the results of the commands
® on the CRT. This can be confusing, so we SET TALK OFF.

SET TALK OFF
USE MoneyOut
ERASE

It*s good housekeeping to erase the screen defore you
display any new data on it.

Our substitute display function can be used to put
information on the CRT screen like this:

¢ OUTGOING CASH MENU®

Bxit*

Accounts Payable Summary’
Enter New Invoices®

Enter Payments Made'

- @ oo

R R R R P ey
WN =
M

’ Your Choice is Number®
WAIT TO Choice
ERASE

® Since we haven't.developed the procedurss to do these
® three items yet we'll have the computer display

® different comments, depending on which alternative is ’
® selected from the menu,]

dBASE II...73"

IF Choice = "1°
@ 0,20 SAY 'One’
ELSE
IF Choice = *'2¢
€ 1,20 SAY 'Two'
ELSE
IF Choice = *3°
@ 2,20 SAY 'Three'

ELSE
e 7,20
€ 8,20 SAY ' ANY OTHER CHARACTER INPUT EXCEPT 1, 2, OR 3
€ 9,20 SAY ' CAUSES THIS COMMAND FILE TO TERMINATE APTER
€ 10,20 SAY ' PRINTING OUT THIS MESSAGE.. NOTICE THAT THE
€ 11,20 SAY ' DIGITS HAD TO BE IN QUOTE MARKS IN THE "IF"
€ 12,20 SAY ' STATEMENTS ABOVE BECAUSE THE WAIT COMMAND
@ 13,20 SAY * ACCEPTS ONLY CHARACTER INPUTS '
@ 18,20 SAY °

ENDIF 3

ENDIF 2
ENDIF 1

¢ Each IF must have a corresponding ENDIF. We've also
® put a label after the ENDIF to indicate with IF it

% belongs with, to make certain that we have closed all
the loops.

W W

IIPBT ‘Do you want to conttiaue (Yes or Ko)?' TO Decialbn
ERASE
IF Decision
INPUT "Okay, let's have a number, quickly.™ T0 Number
ELSE
€ 10,20 SAY * WHY NOT? "
WAIT
ENDIF
ERASE
@ 10,20 SAY " I'M NOT READY FOR THAT. GOOD-BYE. *

This next DO WHILE loop provides a delay of a few seconds
to keep the last message on the CRT long enough to be read
before the program terminates. You may find this useful .
in command files that you write. To change the delay time,.
either change the limit (100) or the step (+ 1).
STORE 1 T0 X
DO WHILE X < 100

STOREX + 1 TO Y
ENDDO
ERASE
RETURN

LR BN BN B]

e« e semoon

dBASE II...TH

You may want to run the program again. Try all the
alternatives, then try entering inputs that are definitely
wrong. You'll see how the program works and how dBASE II
handles errors.)

While it's only a program fragment and doesn't do any
useful work, <Sample.CMD> does point up quite a few things:

1. Using ERASE frequently is good housekeeping that's easy
to do.

2. Using indentation helps make the operation of the
program clearer. That's also why we used upper- and
lowercase letters. The computer sees them all as
uppercase, but this way is much easier for us humans.

3. The "?" can be used to space lines on the display and to
show character strings (in quotes or brackets). .

3. The WAIT command waits for a single character before
letting the program move on. The input then must be
treated as a character, the way we did in the nested
IF's by putting quotes around the values we were looking
for.

5. The INPUT command waits for and accepts any data type,
but characters and strings must bé in single or double
quotes or square brackets. When you have an apostrophe
in your message, use the double quote or square brackets
to define the string or the computer gets confused.

6. You don't have to predefine variables. Just make up
another name whenever you need one (upy to a maximum of -
64 active at any one time).

7. Logical values can be treated in shorthand. "IF
Decision" .in the program worked as if we had said: "IF
Decision = T".

8. The RETURN at the end of the program isn't necessary,
but was tacked on because you would need it if this were
a sub-procedure in another command file. That's how the
computer knows that it should go back where it came
from, rather than just quitting. :

—y

dBASE II...T5

Working with multiple databases (PRIMARY, SECONDARY,
SELECT)

As we've seen, when you first start working with DBASE
II, you type “USE <filename>" to tell dBASE II which file
you're interested in, then proceed to enter data, edit, etg.

To work on a different database, you type “USE
CNewFile>". dBASE II closes the first file and opens the
second one, with no concern on your part. You can use any
number of files this way, both from your terminal and in
command files. You can.also close a file without opening a
new one by. typing "USE~.)

When you USE a file, dBASE II "rewinds" it to the
beginning and positions you on the first record in the file.
In most cases, this is exactly what you want. In some
applications, however, you will want to access another file
or files without "losing your place" in the first file.

. dBASE II has an exceptionally advanced feature that
permits you to work in two separate active ‘areas at the same
time: PRIMARY and SECONDARY. You switch between them
with the “SELECT" command

You are automatically placed in the PRIMARY area when
you first start. To work on another database without losing
your position in the first one, type in “SELECT
SECONDARY", then "USE <newfile>”. To get back to the
original work area, type “SELECT PRIMARY", then continue
with that database.

The two work areas can be used independently. Any
commands that move data and records operate only in-the area
in USE.

Information, however, can be transrerred from one area
to the other using P. and S. as prefixes for variables. If
you are in the PRIMARY area, use the S. prefix for
‘variables you need from the SECONDARY area; if you are in
the SECONDARY area, use the P. prefix for variables you
need from the PRIMARY area.

As an example, this command is used in the
<NameTest.CMD> file in the accounting system at the end of
this Part of the manual. Individual records in a file in
the PRIMARY area are checked against all the records in
anpother file in the SECONDARY area.

The same command is also used in the <TimeCalc.CMD>,
<{DepTrans.CMD> and <Payroll.CMD> files.

While you may nof think of an application now,. keep the
command in mind: you'll find it useful.

dBASE II...76

ngerallx useful system connandsvind functions

MODIFY COMMAND <filename> lets you modify the named
command file directly from dBASE II using the normal
full screen editing features.

BROWSE displays up to 19 records and as many fields as will
fit on the screen. To see fields off the right edge of
the screen, use ctl<B to scroll right. Use ctl-z to
scroll left.

CLEAR resets dBASE II, clearing all variables and closing
all files.

HFSET is used after a disk swap to reset the operating
system bit map. Please read the detailed description
in the command dictionary (Part II) before.using it.

® allows comments in a command file, but the comments are
not displayed when the command file is executed. This
allows notes to the programmer without confusing the
operator. There must be at least one space between the
word ‘or symbol and the comment, and the note cannot be
on the same line as a command. REPEAT: commands and
comments must be on separate lines.

REMARK allows comments to be stored in a command file, then
displayed as prompts td the operator when the file is
used. There must be at least one space between the
word and the remark, and the remark cannot be on a
command line.

RENAME <oldfile> TO <nevrilg> changes file names in the
CP/M directory. Do NOT try to rename files in USE.

QUIT TO °*<{system .COM file 1list)>' allows you to
terminate dBASE II and automatically start execution of
CP/M and other ..COM files. Each .COM file named must
be in single quotes, and separated from other file
names (in single quotes) by commas.

You can also use the “?° command to call out the
following functions:

is the record number function. When called, it
provides the value of the current record number.

® is the deleted record function, and returns a True
value if the record is deleted, False if not deleted.

EOF is the end of file function~ It is True if the énq of
the file in USE has been reached, False if it has not
‘been reached.

dBASE II...77

A few words about programming and planning your
command files))

The firét thing to do when you want to set ug'a
command file is to turn the computer off.’

That's right: ‘that's where many programmers go wrong.
They immediately start "coding" a solution, before they even
have a clear idea of what they're trying to do.

A much better approach.is covered in a number of texts
on structured programming and some of the structured
languages. One reference you might check is Chapter 2 in
"An Introduction to Programming and Problem "Solving id
Pascal" by Schneider, Weingart and. Perlman. Another is
Chapters 1, U4 and the first few pages of 7 in "Pascal
Programming Structures" by Cherry. Then.if you really want
to get into programming, there's an excellent text on PL/I
called "PL/I. Structured Programming" by Joan Hughes.

Briefly, here's the approacn:

Start by defining the problem in ordinary Englisa.
Make it a general statement.

Now defime it further. What inputs will you have? What
form do you want the outputs and reports in?

Next, take a look at the exceptions. What are the
starting conditions? What happens if a record is missing?

Once you've defined what you want to do, ‘describe the
details in modified English. The texts call it
wpseudocode". Alllthis means is that you use English terms
that are somewhat similar to the instructions that the
computer understands. X

You might write your program outline like this:

Use the cost database
Print out last month's unpaid invoices
Write a check for each unpaid invoice.

Adding a bit more detail, it looks like this.

USE CostBase

Print out last month's unpaid invoicea using
the SUMMARY.FRM file

- Start at the beginning of the database

And go through to thé end:

If the invoice has not been paid

- Pay the invoice
And enter it in the database

Do this for every record

dBASE II...78

In perhaps two more steps, this could be translated into a
command file like this:

USE CostBase
® Print a hardcopy summary for December, 1980.
REPORT FORM Summary FOR Bill:Date >= '801201' .AND.

Bill:Date <= '801231' TO PRINT
GOTO TOP Go to the first record
DO WHILE .NOT. EOF ®* Repeat for the entire file

IF Check:Nmbr=' ' # If the invoice isn't paid,
DO WriteCheck ® write a check, then
[

DO Update update the records
ENDIF
SKIP- #Go to the next record
ENDDO

The term tcp-down, step-wise refinement can be
applied to this procedure, -but that's forty-three dollars
worth of words to say: "Start at the top, then divide and
conquer™,

Actually, it's just a sensible approach to solving most
kinds of problems. First state the overall problem, trying
to define what it is and what it isn't. Then gradually get
into more and more detail, solving the details that are easy
to solve, putting the more complicated details aside for
later solution (again, perhaps in parts).

At this stage in our example, we haven't done the
<Summary.FRM> file nor the <WriteCheck CMD> and <Update CcMD>
files, but it doesn't matter.

And in fact, we're probably ‘better off not worrying
about these details becauSe we can concentrate on the
overall problem solutien. We can .come back after we've

tested our overall solution and clean Qp these procedures
then.

Tip: You can still test a partial nrogram like this by -
using what programmers call 'stubs. Set up the command
files that you've named in the program and enter three
items: a message that let's you know the program reached
it, WAIT and RETURN. dBASE II will go to these
procedure files, give you the message, then return and

continue with the rest of the program after you hit any
key.

