LOGO PROFESSOR.
USER GUIDE

eeeeeeeeeee

ACKNOWLEDGEMENTS

Jay Fenlason
Unix Logo Specialist
Unison World, INC.

Fred Fisher
Senior Systems Programmer
Unison World, INC.

Nathaniel Stitt
Senior Systems Programmer
Unison World, INC.

Special Thanks To

Hong Liang Lu
Prasident Unison World, Incorparated
COMPAI

Copyright © 1984 by ACORN PUBLISHING, INC.

ii

CONTENTS OF THE PACKAGE

The LOGO PROFESSOR package contains the following items:

—The LOGO PROFESSOR User Guide
—Program diskette

—Data diskette

—Owner registration card

This User Guide is an instructional and reference manual for The LOGO PRO-
FESSOR.

It will guide you through the basic steps for operating the program.

The return of the owner registration card ensures your eligibility for any up-
dates, replacement diskettes, or announcements.

NOTE: The LOGO Professor is protected under copyright law. Copying of any
portion of the disks is against federal regulations. The user cannot legally make
a back-up disk of the program. If there are any problems with the purchased
disk, return it to the dealer or distributor within 90 days for a free replacement
disk. After 90 days, contact:

Acorn Publishing Company
1335 West 134th Street
Gardena, CA 90247

Acorn Publishing will replace the disk for a nominal charge.

iii

PREFACE

Welcome to LOGO PROFESSOR, the computer language designed to allow you
to take full advantage of your Epxon QX-10. LOGO PROFESSOR can teach you
graphics, and programming, painlessly. Above all you will learn how to inter-
face with your computer.

LOGO PROFESSOR is an up-to-date enhancement of LOGO, a language that
was developed (primarily as an educational tool) at MIT in the sixties. All
levels of users-from children to experienced computer professionals—will en-
joy and find immediate use for LOGO PROFESSOR.

LOGO PROFESSOR is extensively documented on two media: the on-line help

screen, which will walk you through all functions of LOGO; and the hard copy
documentation found in this manual. The manual contains:

¢ An introduction to LOGO PROFESSOR (Chapter 1).

A detailed chapter on Using LOGO, which may be read as a supplement
to the Help Screens (Chapter 2).

A collection of sample programs, which will enable you to begin pro-
ducing interesting graphics immediately (Chapter 3).

A glossary of key words and commands (Chapter 4).

A series of appendices that include:

Helpful Hints
Recursion
Error Messages

Whether you are new to computers or a seasoned programmer, LOGO PRO-

FESSOR will provide you with a fascinating addition to your current body of
knowledge.

iv

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTIONttt ittt it ettt ettt nnenneanns 1
Logo Professor OVerviewc.oiitiiitnnnennnnnennns 1
GettingStartediii it e e 3
HandlingDiskettesccvrt ittt iininnnnnnn. 4
2 USINGLOGOPROFESSORiiitiiiiiit i it iiinnnnnnenn, 5
Introduction to LOGOPROFESSORccoiviiiiennenn.. 6
TurtleGraphics.o it ii it ettt it it e e 9
ProceduresandNames........c.ovvviiitineeneneennenneann, 17
Textand Liststtt it ittt e i 24
Conditionals, Logicand Testsoovviiiiinniniinnenn.. 34
Disgk File and MemoryManagement............ccoveenvenrnn.. 40
Advanced Proceduresand Conceptscovvrinnennnnn 44
Categorization of Primitives i, 55
SAMPLEPROCEDURES ittt 59
. GLOSSARY ..ttt ittt ittt et ettt it e, 66
FunctionKeyscoiiiiiiiiiiiiiiiiiiiiiiiniinnnenennn 66
Controland Arrow Keysot v i ittt it i e e 68
Primitives Glossaryovvviiiii ittt it i 70
Glossary of TermSt i ittt ittt ettt en e 91
Bibliography & Referencesciiiiiiiii .. 96
APPENDIX
A HELPFULHINTS ... ittt ittt ettt iiineeeeens A-1
B EXAMPLEOFRECURSIONciiit ittt it iieiiiinnenn, B-1
C ERRORMESSAGESttt ittt it ittt it nennn C1
D TURTLE COMPASS . . ittt ittt et iaeee e D-1
E HELP SCREENINDEX.ottiiiitttiiiie e innnnneeeennnas E-1
USER GUIDE INDEX

Chapter 1
INTRODUCTION

LOGO PROFESSOR Overview

Welcome to LOGO PROFESSOR, the computer language that is both simple and
powerful. As a new user of LOGO PROFESSOR, you are about to enter a com-
puter environment that holds new and surprising possibilities for you. Consider
the following features of LOGO PROFESSOR:

Graphics

With very little training, you will learn from LOGO PROFESSOR to produce a
variety of stunning, intricate graphic displays on your terminal screen. By us-
ing LOGO PROFESSOR, you will take full advantage of the impressive graphics
capabilities of your Epson QX-10. As you watch the Turtle move, you will be
observing your own parallel development as a computer graphics artist.

A Programming Language

Although LOGO PROFESSOR is ideal for beginners, it contains features that
make it suitable for advanced applications as well. You will notice that LOGO
PROFESSOR is a programming language that lends itself to the easy-to-use
structured approach, in which large programs are broken down into smaller,
more manageable blocks. And, you will quickly adapt to LOGO PROFESSOR’s
sophisticated math and graphic manipulations. Experienced programmers will
appreciate these features, while the beginner will quickly become a proficient
user of them.

An Educational Tool

LOGO PROFESSOR is a valuable asset for students at all levels. It gives the
elementary-level pupil the chance to understand—through exploration and
play—the fundamentals of geometry. As he creates increasingly complex
designs, the younger student is introduced to mathematical equations. The high
school or college student will find in LOGO PROFESSOR a valuable tool for
plotting and illustrating equations and functions throughout all of his upper-
level mathematics. LOGO PROFESSOR also gives all students practical ex-
posure to computer operations and logic. With LOGO PROFESSOR, the student
learns by doing.

Background

LOGO was developed in the late sixties by Seymour Papert and a team of
researchers at MIT. It was originally created as an educational language, one
that would allow children and beginners to interact comfortably and confident-
ly with computers. Since its creation in 1968, the original LOGO program has
been under continual development. Throughout this development it has become
more powerful and easier to use. Acorn Publishing is proud to present what it
considers to be the state-of-the art LOGO in LOGO PROFESSOR.

GETTING STARTED

Before you begin using LOGO PROFESSOR check to make sure that the con-
tents of your LOGO PROFESSOR package are complete.

Contents of the Package

The LOGO PROFESSOR package consists of two diskettes and the LOGO PRO-
FESSOR User Guide. The User Guide is of course the manual that you are
presently reading. The diskettes are described below:

e LOGO PROFESSOR Left — Program Disk—This diskette contains all
LOGO PROFESSOR software and on-screen (HELP) documentation. The
program disk is protected so that you cannot change or delete any in-
formation on it.

¢ LOGO PROFESSOR Right — Data Disk—You will use this diskette to
store all LOGO procedures that you create.

Loading LOGO PROFESSOR

To load LOGO PROFESSOR onto your Epson QX-10 processor, simply proceed
as follows:

¢ Insert the Left — Program Disk into the left disk drive.

e Insert the Right — Data Disk into the right disk drive.

e Press the button marked PUSH for both drives.

e The screen will display a select screen which give you the option of
displaying the help screens, or proceeding directly to LOGO PRO-
FESSOR (see Chapter 2, Using LOGO PROFESSOR]).

NOTE: The system should respond as described above in approximately 30

seconds. If there is no response, you must restart the system by press-
ing the RESET button located below the right disk drive.

HANDLING DISKETTES

The floppy disks that you use on your QX-10 are very sensitive magnetic media,
and it is important that you handle them with caution and care. Follow the
rules below when handling diskettes.

DO NOT touch the exposed magnetic surface of a diskette.

ALWAYS store the diskette in its protective sleeve and stand it on edge
to prevent damage.

DO NOT store a diskette in sunlight, heat, or cold.

DO NOT bend, fold, or staple.

DO NOT attach paper clips or rubber bands to a diskette.
DO NOT open the disk drive when the red light is on.

DO NOT write on the diskette with a pen or pencil. If marking is
necessary, use a felt tip pen, and press lightly.

DO NOT expose the diskette to any magnetic surface, such as
telephones, your printer, or a typewriter. Such exposure can destroy
data!l

ALWAYS insert the diskette into the disk drive with care.

As a general rule, simply make sure that you always handle the diskettes with
extreme care. Remember that if a disk is damaged or destroyed, so is any data
that is stored on it.

Chapter 2
USING LOGO PROFESSOR

When you are first introduced to LOGO PROFESSOR, you will be asked if you
would like help or if you would like to work with LOGO on your own. If you wish
to access the help screens, simply press the HELP function key, and the follow-
ing screen will display:

Choose by number one of the following

INTRODUCTION to LOGO

TURTLE GRAPHICS

PROCEDURES and NAMES

TEST and LISTS

CONDITIONALS, LOGIC and TESTS

DISK FILES and MEMORY MANAGEMENT
ADVANCED TECHNIQUES

INDEXES to HELP SCREENS

PNRA R WN S

Push the number of your choice for more HELP
Push STOP key to go to LOGO

Within Help you have two options as described below:

The first option is full help instruction (options 1 through 7 on the menu) which
will walk you through a lesson on working with LOGO. LOGO PROFESSOR will
explain each function within that topic. After each lesson, a sample procedure
will show you how the newly introduced primitives can be used.

The second option (option 8 on the menu) will list a series of terms and com-
mands and allows you to access them individually. You need only select the op-
tion from the index and LOGO PROFESSOR will go directly to that screen.
When you are working with LOGO PROFESSOR and find that you need help,
simply press the HELP function key on the keyboard and both full and indexed
help will be available.

This chapter of the User Guide is designed to be used in conjunction with the
LOGO PROFESSOR help instructions that appear on your screen. The following
sections of the chapter correspond to the selections on the Main help menu.
Please note that all primitives are specified in lower case, just as you will key
them in (in the text, they are highlighted in bold face—e.g., forward). All func-
tion keys are in upper case (e.g., STORE key) or the actual key is depicted.

INTRODUCTION TO LOGO

LOGO PROFESSOR is one of the most powerful and user-friendly languages im-
plemented on a personal computer. Simple and easy-to-understand commands
are used to build user-defined procedures, which pave the way to creating
powerful programs. In this section you will be introduced to the basic LOGO
PROFESSOR terms and concepts.

Turtle Graphics

Creating graphics images with LOGO is referred to as Turtle Graphics. When
you first begin to work with LOGO PROFESSOR, you will learn to instruct the
LOGO Turtle to draw graphics images. This is accomplished with simple com-
mands such as forward, back, right and left.

Primitives

The commands that we mentioned (forward and back) are just two of those of-
fered by LOGO PROFESSOR. Commands that are a part of LOGO PROFESSOR'’s
vocabulary are called primitives. The LOGO PROFESSOR vocabulary is not
limited to graphics-oriented commands. Some primitives are also available
which enable you to work with words and lists.

Procedure

You can create your own commands in LOGO Professor by defining a pro-
cedure, which is simply a set of commands or primitives that are grouped
together to perform a specific function. There is virtually no limit to the flex-
ibility of LOGO PROFESSOR and the procedures that you can define.

Workspace

LOGO PROFESSOR sets aside an area in the computer’s memory for you to
work in. This area is called workspace. Workspace is used to store and per-
form your instructions. It is also used by LOGO to perform internal system
functions. Workspace is erased when you exit LOGO or turn off your system.
For this reason, you must store to disk all procedures that you have created.
When you want to save the work that you have done, you can save everything
in (or a portion of) workspace so that you can retrieve the information later. To
save your procedures, simply press the STORE key on the keyboard (the STORE
key executes the store primitive). After pressing STORE, you must specify a
filename to identify the group of procedures that are currently in workspace.
These procedures will be stored on disk under this name. The STORE function
will be discussed in more detail in Section 6 of this chapter, Disk Files and
Memory Management.

When you wish to access any of the procedures that have been saved on disk,
simply press the RETRIEVE key on the keyboard and specify the same filename
where the procedures were stored. The RETRIEVE key initiates the retrieve
primitive, which loads the file (see Chapter 4 Glossary, retrieve). LOGO PRO-
FESSOR will then load the procedures into your workspace. If you are not sure
of the name that you assigned to the file when you were saving the workspace,
simply press the INDEX key on the keyboard. All LOGO PROFESSOR files will
be displayed on the screen. The INDEX key executes the index primitive (see
Chapter 4).

The help screens that are available to you through the HELP key on the
keyboard can be printed on your printer by turning the printer on. To do this,
press the PRINT key on the keyboard. As the help screens display on the
screen, they will simultaneously print out to the printer. The PRINT key on the
keyboard acts as a switch. When you are through printing, turn the printer off
by pressing the PRINT key again. The PRINT key executes the primitive pon
(printer on) the first time you press the key and poff (printer off) when you
press the PRINT key a second time (see Chapter 4, Glossary, for definitions of
these primitives).

Other function keys are available under LOGO. These are discussed in Section
6, of this chapter, Disk Files and Memory Management and in Chapter 4,
Glossary.

Let’s recap the terms and concepts introduced in this section.

e Command — An instruction that LOGO PROGESSOR understands.
This term can be used to refer to a primitive or a user-
defined procedure.

Filename — A name of eight or fewer characters given to a group
of procedures stored on a floppy disk.

e Primitive — A pre-defined command in LOGO PROFESSOR. A com-
plete list of LOGO Professor primitives are outlined in
Chapter 4, Glossary.

e Procedure — A user-defined command containing a series of
primitives.
o Workspace — The temporary working area available to the user to

perform and create procedures.

1

('C

)

ot

l

STORE

ol

Lists all LOGO files stored on the diskette in the right
(or B) drive. This key executes the index primitive.

Turns the printer on and off. This key executes the
pon and poff primitives.

Loads procedures from disk. Use the same name that
you entered when you saved the workspace using
store. LOGO PROFESSOR will prompt you to enter the
filename. This key executes the retrieve primitive. The
format is:

>retrieve ‘‘filename

The key that is pressed to save workspace (or selected
procedures) on disk. LOGO PROFESSOR will prompt
you to enter a file name to save the workspace under.
This name should be no more than 8 characters long,
and should not contain any periods. The STORE key
executes the store primitive. The format is:

> store “‘filename ‘‘procedure name

TURTLE GRAPHICS

The LOGO Turtle is the triangular shape that appears in the center of your
screen (shown below): ﬁ

The name, Turtle, refers back to the days when the designers of the LOGO
language used an actual three-dimensional motorized ‘‘turtle” on a piece of
paper to develop graphics.

To draw graphics with LOGO PROFESSOR, all you have to do is instruct the
LOGO Turtle to move. For example, entering forward 100 tells the turtle to
move forward 100 steps. Right 90 tells the turtle to turn right 90 degrees. If this
instruction is repeated four times, the turtle will create a square. It is that easy
to create graphics with LOGO PROFESSOR.

Screen Modes

Before we begin drawing, we should briefly discuss screen modes. LOGO PRO-
FESSOR has three screen modes, described below:

s textscreen — Textscreen is the first screen that you see when you
enter LOGO. This screen is blank except for the >
symbol (the LOGO PROFESSOR prompt), which ap-
pears in the upper left corner of the screen. You will
use textscreen for entering text (see Section 4, of this
chapter, Procedures and Names). Key:

> textscreen

o gplitscreen — Splitscreen is a composite screen that enables you to
display the turtle (in the body of the screen) while you
enter text (in the bottom five lines of the screen). To
get to splitscreen mode, Key:

> splitscreen

o fullscreen — Fullscreen mode devotes the entire screen to the
graphics display, with no lines reserved for the
display of text. This screen is used primarily when you
are running your predefined procedures, (see Section
4, Procedures and Names), which require no entry of
text. Key:

> fullscreen

Pressing the STYLE key on your keyboard enables you to switch to any of the
three screen modes. The style key switches from fullscreen to splitscreen to
textscreen.

Turtle Movement Primitives

Turtle Graphics, simply put, requires you to instruct the turtle to move. You do
this by entering primitives. When you first begin working with turtle graphics,
work in splitscreen mode so that you can view the commands that you enter, as
well as the movements of the turtle (as the turtle moves, it will draw a line). We
briefly discussed the command forward (you may abbreviate this to fd when you
key it in). Remember that when you instruct the turtle to move forward, you must
also tell it the number of steps to move (e.g., fd 100). You may also use the
primitive called back (or bk) to move the turtle back. Again, you must specify the
number of steps that the turtle is to move (e.g., bk 50).

The turtle can also turn right (rt) and left (It). For example, right 90 tells the tur-
tle to turn 90 degrees to the right. left 180 will turn the turtle in the exact op-
posite direction. It is a good idea to practice using these commands before you
move on to other primitives. Remember that all LOGO PROFESSOR primitives
must be entered in lower case, or they will not be understood. Let’s review the
commands we have introduced so far:

¢ forward (fd) — Moves the turtle forward the number of steps specified.

e back (bk) — Moves the turtle back the number of steps specified.

e right (rt} — Turns the turtle to the right the number of degrees
specified.

e left (It) — Turns the turtle to the left the number of degrees
specified.

Now that you know how to move the turtle, you may draw a simple image, a
square, by entering the following:

A >fd25rt90 > ¥

B >fd25rt90

C >fd25rt90 < A

D >fd25rt90 A B C D

While these commands are simple, it is a bit tedious to type the same command
four times. The following section explains how to avoid this problem with the
repeat Primitive.

10

The Repeat Primitive

The repeat primitive enables you to instruct LOGO PROFESSOR to repeat a
statement a specified number of times, rather than rekeying it. The command is
used as follows:

>repeat 4 [fd 100 rt 90]

As shown above, repeat is followed by the number of times you want the instruc-
tion repeated, then within square brackets the list of commands that you want
repeated. The first time that you use repeat, you may not get the exact graphic
display that you had planned. In this case, try rekeying the commands separate-
ly, so that you can check the turtle’s movements.

As an exercise, try the repeat statements shown below to see how easy it is to
produce graphics.

>repeat 90 [fd 4 rt 4]
>repeat 180 [repeat 4 [fd 50 rt 90] rt 2]

The first repeat statement shown above produces a circle. The second example
produces an image that is an enhancement of a square (notice the repeat state-
ment within a repeat statement).

Pen Control Primitives

LOGO PROFESSOR’S pen control primitives enable you to control the visibility of
the turtle and the line that is drawn in Turtle Graphics. For example, if you want
to move forward 20 steps, but, you don’t want to draw a line, you may use the
penup primitive (pu). Just key penup, then enter your forward command. To put
the pen back down, use the pendown command (pd). If you do not wish to see the
turtle while it is drawing, you may hide it by entering the hideturtle (or ht) com-
mand. When you want to see it again, enter the showturtle (or st) command.

The LOGO PROFESSOR turtle also has an eraser that you can attach to it by
entering the command, penerase (or pe). Let's say that you have an image on the
screen, and you want to erase one part of the image. You would simply enter
penerase, then instruct the turtle to move back over the line that you want to
remove. Remember to reset the pen when you are finished erasing by entering
pendown (or pd).

Penreverse (or px) command instructs the turtle to reverse whatever image is on
the screen as the turtle moves over it; if the screen is blank, the turtle will draw a
line; if the turtle crosses over a line, it will erase it. Again, remember to reset the
pen when you are finished by using pendown (or pd).

11

The pen control primitives are summarized below:

hideturtle
(ht)

pendown
(pd)

penerase

(pe)

penreverse

(pr)

penup (pu)

showturtle
(st)

Instructs the LOGO PROFESSOR turtle to disappear.
You can request the Turtle to appear again using the
showturtle (or st) command.

Instructs the LOGO PROFESSOR turtle to put the draw-
ing pen down.

Erases any line that the turtle crosses over.

Instructs the turtle to reverse the pen so that, if there
is an image on the screen, wherever the turtle crosses a
line, that point will be erased, if there is no image, a line
will be drawn.

Instructs the LOGO PROFESSOR turtle to pick up the
pen and not draw a line until the pendown command is
given.

Ingtructs LOGO PROFESSOR to show a previously hid-
den turtle.

Clearing the Graphics Screen

Now that you have had a chance to experiment with Turtle Graphics, your
screen is probably filled with lines. How do you clear the graphics screen? This
is done by entering the clearscreen (or cs) primitive. This command will clear the
screen and return the turtle to the home position in the center of the screen. If
you want to clear the screen but leave the turtle where it is, use the primitive
clean. If you want to leave the contents of the screen intact, but move the turtle
back to the home position, enter home. The primitives to clear the graphics
screen and move the turtle home are summarized below:

clean

— This command will clear the screen without moving the

turtle.

¢ clearscreen — This command will clear the screen and return the tur-

(cs)

home

tle to the home position.

— This command will not clear the screen, but will return

the turtle to the home position. If the pen is down, a line

will be drawn.

12

Screen Border Primitives

There are some screen border primitives that will enable you to put new varia-
tions and controls into the graphics that you create. These are: fence, window
and wrap.

The fence primitive places an invisible border on the screen, causing an error
condition if the turtle runs into it (LOGO PROFESSOR will display the error
message, ‘‘turtle out of bounds’’). As its name implies, using this primitive is like
putting a fence on the screen.

The second screen border primitive is window, which allows the turtle to travel
beyond the boundaries of the graphics screen. Note that window allows the tur-
tle to move around on a virtually infinite screen. You will be able to see the turtle
only when it passes by the window, and to do this you will have to instruct it to
move back into the screen boundries.

The third screen border primitive is wrap, and it does just what its name sug-
gests. That is, if you give the turtle an instruction to go outside of the screen
boundaries, this primitive will cause it to wrap around to the opposite side of the
screen. You will be in wrap mode when you first enter the LOGO graphics
screen.

As an example of how the turtle reacts to these three screen border primitives,
consider the command ““fd 250.” From the home position, this command will
cause the turtle to go out of the screen boundaries. In fence screen mode, LOGO
PROFESSOR will display the error message ‘‘turtle out of bounds”. In window
screen mode, the turtle will disappear past the screen border. (You may move
the turtle back within the screen boundaries to view it.) In wrap mode, the turtle
will move off of the top of the screen and wrap around to the bottom of the
screen.

The SIZE key is provided to allow you to switch to any of the three screen border
modes. Let's review the commands that have been introduced.

e fence — Prevents the turtle from traveling beyond the display
screen boundaries.

e window — Allows the turtle to move outside of the display screen.
Displays only what was drawn within the display
screen.

e wrap — Wraps around any lines that are drawn over the
display screen limitations.

—
. — This key switches to the three screen borders window,
— fence, or wrap (in that order).

13

Draw to the Printer

The DRAW key on the keyboard has been enabled to allow you to print graphics
images on the printer. This function key is like a switch: when you press it once,
it turns the graphics print capabilities on; when you press it a second time, it
turns the printer off.

Basic Math Functions

The last topic to be covered in this section is the mathematical capabilities of
LOGO PROFESSOR. LOGO understands all of the basic math commands. For ex-
ample, if you enter:

>12 + 8

and press the RETURN key, LOGO PROFESSOR will print ‘‘Result: 20" on the
next line. The following list covers all of the basic math commands that LOGO
PROFESSOR understands.

+ Plus. When numbers are entered before and after this
sign, LOGO PROFESSOR adds the numbers together.

>2 + 2
Result: 4

- Minus. If a number is entered before and after this
sign, LOGO PROFESSOR subtracts the second number
from the first number.

>2 -2
Result: 0

* Multiplication. If a number is entered before and after
this sign, LOGO PROFESSOR multiplies the first
number by the second.

>2*2
Result: 4
/ Division. If a number is entered before and after this
sign, LOGO PROFESSOR will divide the first number by
the second number.

>2/2
Result: 1

14

0

Equals. Checks to see if two values are equal.
>2 +2=5
Result: false

>2 + 2 =4
Result: true

This symbol can also be used with words.

>‘““orange = ‘‘orange
Result: true
>‘‘orange = ‘‘apple

Result: false

You will learn more about how LOGO works with
words in Section 4 of this chapter, Procedures and
Names.

Less than. If you enter 2 < 1, LOGO PROFESSOR
displays:

>2 <1
Result: false

Greater than. If you entered 2 > 1, LOGO PROFESSOR
would display:

>2>1
Result: true

Parentheses. Used to change or clarify the sequence
of the operations. LOGO PROFESSOR first computes
the items within paretheses, then completes the rest of
the equation. You may also use parentheses to specify
the sequence of operations of statements containing
primitives. This feature enables you to group a series
of instructions together. The use of parentheses is il-
lustrated by the following examples.

>1 +2*6
Result: 13

>(1 + 2)*6
Result: 18

15

The results of the two equations are different
because, as explained, when no parentheses are used,
multiplication and division are performed first, follow-
ed by addition and subtraction.

The math keys shown are enabled on the math key pad on the right side of your
keyboard, as well as on the regular character keyboard.

The sequence of operations of the math operators, indicating when they will be
performed in an equation, is as follows:

1. Multiplication, division.
2. Addition, subtraction.
3. Greater than, less than, equals.

This is the order in which these operations will be performed in an equation.

16

PROCEDURES AND NAMES
Creating Procedures

So far, you have learned to maneuver the turtle, and to create images by enter-
ing series of instructions. The next step is to learn to store these instructions so
that you may create your image by entering only a single word. This is called
creating a procedure. The following commands allow you to create a pro-
cedure:

to

edit

At this point, you should only use the to primitive (Refer to Chapter 4 Glossary for
a full explanation of the command edit). To create a procedure, key to followed
by a name that is meaningful to you. For example, if you are creating a square,
assign the procedure name to be square. LOGO PROFESSOR will then display

the following screen:

to square
|
end

The name that you assign to the procedure should be as descriptive as possible.
However, we recommend that the name be eight characters or fewer. Please
remember also that all procedure names should be unique.

After you enter to followed by your procedure name, the cursor will be position-
ed on the second line. This is called edit mode, distinct from command mode
where every command that you enter is executed at the time that you enter it,
edit mode saves the commands and executes them when the procedure name is
entered. Every procedure must begin with the word to and end with the word
end. You will notice that in edit the > LOGO prompt is no longer displayed. At
this point you should type in the commands necessary to create a square, as
shown below:

to square
repeat 4 [fd 50 rt 90]
end

When you are ready to save a procedure, press the STORE key on the keyboard.
The STORE key has two independent functions. When pressed in edit mode, the
STORE key will save (or define) the procedure in the user workspace that LOGO
provides. LOGO will print a message:

Defining square

And return to command mode in textscreen.

17

When pressed in command mode, the STORE key will cause LOGO PROFESSOR
to wait for a filename to be entered, and will then save all of the workspace to
the diskette in the right disk drive.

If for some reason you wanted to leave the procedure without storing it, you
could do that by pressing the STOP key. (The STOP key may also be used in com-
mand mode to pause or stop a procedure that is running. This function of the
STOP key will be discussed again later.) Let's review the concepts discussed so
far:

* edit (ed) — Same as to. This command is used to create a pro-
cedure in LOGO PROFESSOR.
e
. — When this function key is pressed in edit mode, LOGO
[— PROFESSOR will exit the procedure, ignoring any
changes made. If the procedure was new, it will not be
defined.
—_—
° l — Pressing STORE in edit mode will save a procedure in
= workspace. In command mode it will save the
workspace to disk.
* to — Key this command, followed by a procedure name, to

enter edit mode and create a procedure.

Entering Text in Edit Mode

Now that you understand the commands that are used to create a procedure
let’s discuss how you enter the commands in edit mode. First we will tell you how
to move the cursor in edit mode. Then we will define some of the keys on your
keyboard that you will be using in edit mode (control keys).

The arrow keys move the cursor one character in the direction (both horizontal
and vertical) that they are pointing. If you hold the shift key down at the same
time as the up or down arrow, the cursor will page forward or back an entire
screen. Holding the shift key down at the same time as the left arrow will move
the cursor to the beginning of the line. Holding the shift key down at the same
time as the right arrow will move the cursor after the last character on the line.

Following is a list of some of the keys that you will use when in edit. This list in-

cludes control keys, so called because you must hold the CTRL key down at the
same time as the key specified.

18

ol

N

D!

Sl

=

N\

6]

N\

(5]

ol

ol

STORE

Moves to the right one character. In edit mode, if the
SHIFT key is held down at the same time as the right ar-
row key, the cursor will move to the end of the current
line.

Moves to the left one character. In edit mode, if the
SHIFT key is held down at the same time as the right ar-
row key, the cursor will move to the beginning of the
current line.

Moves up one line. In edit mode, if the SHIFT key is held
down at the same time as the up arrow key, the cursor
will page back an entire screen.

Moves down one line. In edit mode, if the SHIFT key is
held down at the same time as the down arrow key, the
cursor will page forward an entire screen.

The backspace key. It deletes one character to the left
of the cursor.

The right delete key. Deletes the character that the cur-
sor is on.

The line delete key. Deletes everything on a line to the
right of the cursor. (The UNDO key will return the
deleted line.)

Erases any changes that have been made and returns

to command mode.

Defines a procedure and returns to command mode.

19

— Returns the last line that was deleted with the LINE
—_

key.
e CTRLO — Inserts a blank line.
e CTRL Q — Moves the cursor to the left one word.
e CTRL W — Moves the cursor to the right one word.

Refer to Chapter 4, Glossary for a complete listing of primitives, function keys,
and control keys.

In edit mode of LOGO PROFESSOR, you have the ability to create more than one
procedure at a time. this capability is very useful when you have several pro-
cedures that interface with one another.

To create multiple procedures simply enter edit mode with the first procedure
name, make sure you enter end on the last line of the procedure.

to square
repeat 4 [fd 100 rt 90]
end

Then on the next line type to and the next procedure name, the contents of the
second procedure, with end as the last line.

to square

repeat 4 [fd 100 rt 90]
end

to circle

repeat 90 [fd 4 rt 4]
end

Keep in mind that you can move freely, between the procedures using the con-
trol keys. (See Chapter 4, Glossary, Control Keys.)

When you press the STORE key, all procedures will be defined.
At this point in your education, you should practice creating procedures, ex-
perimenting with commands, and familiarizing yourself with the function and

control keys. If you need some ideas for procedures, you can try some of the
sample procedures in Chapter 3, Sample Procedures

20

Variables

Once you have become comfortable with creating and using procedures, you
are ready to learn about a new concept, variables. A variable is a name whose
value (or contents) can change. For example, if we have a pile of oranges, but
the exact number of oranges in the pile can change (i.e., is variable), we can
create a variable name (oranges, for example). This variable name will always
refer to the number of oranges, although the number can be different at dif-
ferent times. Therefore, at one time in your procedure, oranges may equal 50,
whereas later, after you perform calculations, oranges may equal 25.

In LOGO, we create variables and assign values to them with the command
make. From that point on, every procedure that contains the variable name will
use the value assigned to the variable. As shown in the example below, when
the value is assigned to oranges with make, double quotes precede the variable
name. This is how we tell LOGO PROFESSOR that we want to assign a value to
a variable. If we later want to access the contents of the variable, we enter a
colon before the variable name.

>make ‘‘oranges 50
> ‘“‘oranges

Result: oranges
>.oranges

Result: 50

Now every procedure that uses the variable oranges, will use the value assign-
ed to it (initially the number 50). This is an example of a global variable.

Let’s apply the global variable concept to the procedure that we have created,
square. First we will create a variable called steps. We can assign a value to
steps right before we run the procedure; we can also change that value at any
time.

> make ‘‘steps 25
Now let’s modify the procedure square so that it uses the variable steps. You
tell LOGO that you are entering a variable name in a procedure by putting a
colon () in front of it.

to square

repeat 4 [fd :steps rt 90]
end

21

Since the value has already been assigned to the variable steps, we can now
run the square procedure. Any other procedures that contain the variable
name steps will also have the value of 25. If you want to change the value, simp-
ly execute the make primitive again.

>make ‘‘steps 50

Remember, the variable name is preceded by quotes when we are assigning a
value to it. When we actually want to use the contents of the variable, we use
the colon.

The command thing will display the value assigned to a variable. It uses the
same format as the make command.

> thing ‘‘steps
Result: 50

Variable names give us flexibility. However, every time that we change the
value of a variable, it changes for all procedures using that variable name. We
can set up a variable as private instead of global. To do this, we make the
variable steps a part of the square procedure name when we define the pro-
cedure. Then, every time that we run the procedure, we assign the value to the
variable. Notice in the example below that the variable name steps is a part of
the defined procedure name. Now every time that we run square, we must
specify a number for steps.

to square :steps
repeat 4 [fd :steps rt 90]

Now every time that LOGO PROFESSOR sees square, it will expect it to be
followed by a number indicating the number of steps. Type in the procedure
shown above. Then run the square procedure with the following numbers:
square 100
or
square 50

or

square 75

22

If you enter square without entering the number of steps, LOGO will display an
error message:

not enough inputs to square

This means that LOGO can not create the square unless we specify the number
of steps.

So far we have only used variables with numbers. We may also assign words to
variables.

>make ‘‘apples ‘“‘red

>:apples

Result: red
Now every time that we use the variable of apple, LOGO will output red. Also
note that the word red is preceeded by double quotes. We will discuss words
and lists in more detail in the next section of this chapter.
This section is just an introduction to variables. You will find as you work with
LOGO PROFESSOR that variables names are very helpful and powerful tools.
Let’s review the commands and concepts associated with variables:

¢ make — Assigns a value to a variable. The format is as follows:
make ‘‘variable value (numbers or words)

If the value being assigned is a word or letter, enter
double quotes before the value.

¢ thing — Outputs the value assigned to a variable.

¢ Value — The contents that may be contained within a name
such as a variable.

e Variable — A name whose value can change.

Refer to Chapter 3, Sample Procedures, for some fun and creative examples of
procedures and variables.

23

TEXT AND LISTS

Up to this point we have discussed procedures and graphics. In this section, we
explain how LOGO creates and manipulates words and lists. We are introduc-
ing lists in simple terms in order to increase your understanding of how LOGO
PROFESSOR works.

NOTE: To make it easier to work with text, you may want to enter textscreen
(remember the STYLE key switches to the different screen modes), so
that you can take advantage of the whole screen.

Displaying Words and Lists

In this section, we demonstrate how primitives treat words and lists in the com-
mand mode. Keep in mind that words and lists can be assigned variable names,
as explained in the previous section. They can also generate a result that can
be used within a procedure. This process is referred to as output. The com-
mand, output, will be discussed later in Section 6, Conditionals, Logic, and
Tests, and Section 7, Advanced Techniques.

The first lesson to learn is the difference between words and lists. Words and
names (as discussed in the previous section), are preceded by double quotes.
Lists are enclosed in square brackets. LOGO PROFESSOR also needs double
quotes and square brackets to distinguish between commands and words. For
example:

> print ‘‘hello
hello

If we had entered:

> print hello
I don’t know how to hello

LOGO PROFESSOR printed the error message because it read hello as a com-
mand or procedure name. We could also have entered:

> print [hello]
hello

and it would have been accepted as a list (rather than a command). If we want
to print more than one word, we must create a list and use the brackets, or put
the double quotes in front of each word. For example:

>print “hello there
I don’t know how to there

24

' ‘“there’’ is read as a command. But if we entered:

> print “‘hello ‘‘there
hello there

or

> print [hello there]
hello there

“there’ is accepted as a word by LOGO PROFESSOR.

Now that you have seen how brackets and quotes are used with the command
print, let's see how they are used with some other primitives. The command
type is similar to the print command when working with lists. For example:

> print [hello there]
hello there
>

> type [hello there]
hello there>

The difference between print and type is that type puts the LOGO prompt on
the same line as the text, while print puts the prompt on the next line.

Now let’'s compare the print and type commands using words:

> print “‘abcd ‘“‘efgh
abcd efgh
>

> type ‘“‘abcd “‘efgh
abcdefgh>

Notice that the type command combines the two words into one, and the print
command keeps the words separate.

The next command we will introduce is the show command. Let’s compare it to
print and type:

> print ‘“What’s ““up *‘doc

What'’s up doc

>

> type ‘“What'’s ‘“‘up ‘“‘doc
What’supdoc >

25

>show “What’s “up ‘““doc
What’s up doc
>

With words, show works exactly the same as print. Notice how it works with
lists.

> print [What'’s up doc]
What'’s up doc
>

> type [What's up doc]
What's up doc>

>show [What's up doc]
[What’s up doc]
>

Notice that show displays the brackets and also the list. The purpose of show is
to display lists in their original format. The show command will become very
useful when you begin creating procedures that contain lists, and you need to
make sure that the lists were properly created. This is part of debugging a pro-
cedure. (Debugging is simply the process that you go through to ensure that a
procedure works properly.) The print, type, and show commands all display
the result on the screen. There are summarized below:

¢ print — Used to print a result on the screen. It can be used
with text, numbers and commands to print their out-
put.

e show — Similar to the print command, except that it shows the

brackets around lists.

¢ type — Prints a list in the same way as the print command. If
the type command is used with words, it combines all
letters together to create a single word. With words
and lists, it also leaves the cursor on the same line as
the text, instead of the next line (as does the print com-
mand).

We can now move on to the primitives sentence, word, and list. The command,
word, will generate a single word out of all words given as inputs, as shown
below:

>word ‘‘tom ‘‘cat
Result: tomcat

26

The sentence (or se) command keeps words separate. When working with lists,
the sentence command combines words and lists together. See the examples
below:

>sgentence ‘‘The ““tom ‘‘cat ‘‘was ‘‘making ‘‘noise
Result: [The tom cat was making noise]

>se ““The ‘‘tom ‘‘cat ‘‘was ‘‘making [lots of] ‘‘noise
Result: [The tom cat was making lots of noise]

The list command keeps a list separate from words, as shown below:

>list ““The “tom ‘‘cat ‘““was ‘‘making [lots of] ‘‘noise
Result: [The tom cat was making [lots of] noise]

Notice the difference between list and se and the treatment of [lots of]. The list,
[lots of], is a sublist within the first list of words. The way that we create a
sublist is to surround it by brackets. Sublists are useful when you want to keep
one list independent from the rest of the list or list of words.

The list, sentence, and word commands are used to output a result from lists or
words. Let’s review the commands that have been introduced so far in this sec-
tion:

¢ list — This command is used to output single or multiple lists
(lists and sublists).

e sentence — This command will output a group of words or items.
(se)
e word — This command will output a word. If more than one

word or item is given as input, these will be combined
into one output.

Manipulating Words and Lists

The following commands are used to manipulate words and lists: first, last,
butfirst, butlast, fput, Iput, count, and item. These commands can be used to
find a specific letter in a word or an item in a list. If the input is a word, LOGO
PROFESSOR assumes that you wish to extract a character. If the input is a list,
then LOGO PROFESSOR assumes that you wish to extract an item from the list.
For example:

> first ‘‘start
Result: s

> last [the man jumped [in the air]]
Result: [in the air]

27

In the example using the command, first, the word, start, was used and only the
first character was output. In the example using the command, last, the last
item in the list (which consisted of 3 words) was output. If we wanted to output
everything but the first or last item, we could use the butfirst (bf) and butlast
(bl) commands.

>bf ‘“‘start
Result: tart

>bl [the man jumped [in the air]]
Result: [the man jumped]

Use the fput and lput commands to put new items in a list.

> fput “carefully [the man jumped in the air]
Result: [carefully the man jumped in the air]

> lput ““carefully [the man jumped in the air]
Result: [the man jumped in the air carefully]

As shown, fput and lput take two inputs (the second of which must be a list). If
the first input is a list, (i.e. [character]) the brackets will print in the output
along with the items contained in this first input. Thus these commands can
also be used to manipulate lists inside of lists.

> fput [the man jumped] [in the air]
Result: [[the man jumped] in the air]

> lput [the man jumped] [in the air]
Result: [in the air [the man jumped]]

These commands will also combine lists together.

Two commands that you will find useful when working with lists are count and
item. The easiest way to explain the two commands is through examples:

> count [girl dog street car]
Result: 4

As you can see, count actually counts the items in the list. Notice the difference
when we use print with the count command.

> print count [girl dog street car]
4

In this case the word, Result:, does not print. You will find that using the print
command with other word, list and math commands has this same effect.

28

The item command selects and outputs a single item from a list. This item may
be a sublist. See the examples below:

>item 3 [gir] dog street car]
Result: street

> print item 3 [girl dog [busy street] car]

[busy street]

Again, note that the use of the print command stops Result: from printing.

Let's review the word and list manipulation primitives discussed so far:

butfirst
(bf)

butlast
(b))

count

first

fput

item

last

Iput

Prints (or outputs) all items or letters but the first in
the list.

Prints (or outputs) all items or letters but the last in
the list.

Prints (or outputs) the total number of items in a list.

Prints (or outputs) only the first character of a word or
item of a list.

This command requires two inputs. The second input
must be a list. The command will combine the first and
second inputs so that the first input becomes the first
item in the list.

Takes a number and a list as input and prints out the
specified item in the list.

Prints (or outputs) only the last character of a word or
item of a list.

This command requires two inputs. The second input

must be a list. The command will take the first input
(words or lists) and append it to the second input.

29

Readlist, Readchar, and Other Text Commands

You will find it useful when running procedures in LOGO to take input from
your terminal keyboard. There are two commands that enable you to do this:
readchar (or rc) and readlist (or rl). These primitives will output the last entry
that is made on the keyboard so that you can use it in subsequent steps. The
command readlist will output the last entry from the keyboard. The example
below displays a very simple use of the readlist primitive. This command is
used in conjunction with other commands:

to question

print [What is your favorite sport?]
make ‘‘sport readlist

print [Wow] :sport [sounds like fun!]
end

First, the question (What is your favorite sport) prints on the screen. Then, the
second statement (make ‘‘sport readlist) executes. This statement does two
things: first, readlist tells LOGO to wait for input from your keyboard; then, the
make command assigns the last item that you input to be the value of ‘“‘sport.

We can then use the variable sport in the second print statement. When we ac-
tually execute this procedure, this is what it looks like:

> question

What is your favorite sport?
skiing

Wow skiing sounds like fun!

This procedure used the print command, the make command, and the readlist
(or rl) command. The reason that we use the make command is that we can not
use readlist itself as a variable. Therefore, we transfer the contents of readlist
to the variable, sport.

The command readchar (or rc) is a bit more advanced than readlist. It stores
only the first character entered. Notice the effect that readchar has on the
word yes.

>readchar
yes

Result: y
>es

The word yes will not display when you type it in. This simple example displays
what the readchar primitive does. In most of the procedures that you create in-
itially, you will use the readlist command.

To clear the screen of text and move to the top line of the screen, use the com-
mand cleartext. You can also use the cleartext command inside of a procedure
to clear the textscreen.

30

The text command allows you to output the contents of a procedure as a list.

See the example below:

>text ‘‘square

Result: [[] [repeat 4 [fd 20 rt 90]]]

With the text command, the entire contents of the specified procedure will

print (or output).

Let’s review the commands discussed in this section:

¢ cleartext —_

e readchar —

(rc)

¢ readlist —

(r])

* text —

Clears all text from the screen and puts the LOGO pro-
mpt on the first line of the screen.

Waits until a key or keys are entered, followed by the
RETURN key. Outputs the first letter only.

Waits until a line is typed in at the keyboard, followed
by the RETURN key. Outputs the line entered as a list.

Outputs the contents of a procedure as a list.

. Some Procedures for Manipulating Text

The following procedures give examples of how some of the primitives that
have been introduced in this section can be used:

> to funlist

make ‘‘a [the rain in spain]
make ‘‘b [falls mainly in the plain]

print :a:b

make ‘‘c (butfirst butfirst :a)
make ‘‘d (butlast butlast :a)

print :c :d :b
print :c
print :d
print :d :c :b
end

The result of this procedure is shown below:

> funlist

the rain in spain falls mainly in the plain
in spain the rain falls mainly in the plain

in spain

‘ the rain
the rain in spain falls mainly in the plain

31

Notice that we used the make command to assign the value to the variables,
and the butfirst and butlast commands to manipulate the text. Now we will
write a procedure which uses variables, and the commands readlist, count,
cleartext, and print:

to questions

print [PLEASE ENTER YOUR NAME:]

make ‘‘name readlist

print [THANK - YOU] :name [NOW ENTER YOUR AGE:]

make ‘‘age readlist

print [PLEASE TELL ME THE FIRST NAMES OF YOUR BROTHERS
AND SISTERS]

make ‘‘bro readlist

make ‘‘num (count :bro)

print [WHAT IS YOUR FAVORITE COLOR?]

make ‘‘clr readlist

cleartext

print [HERE IS WHAT I KNOW ABOUT YOU]

print [YOUR NAME IS] :name

print [YOU ARE] :age [YEARS OLD]

print [YOU HAVE] :num [BROTHERS AND SISTERS AND THEIR
NAMES ARE] :bro

print [YOUR FAVORITE COLOR IS] :clr .

end

Here is the result:

questions

PLEASE ENTER YOUR NAME:

Mary Jones

THANK - YOU Mary Jones NOW ENTER YOUR AGE:

30

PLEASE TELL ME THE FIRST NAMES OF YOUR BROTHERS AND
SISTERS

Jim Sue Sally

WHAT IS YOUR FAVORITE COLOR?

blue

HERE IS WHAT I KNOW ABOUT YOU

YOUR NAME IS Mary Jones

YOU ARE 30 YEARS OLD

YOU HAVE 3 BROTHERS AND SISTERS AND THEIR NAMES ARE
Jim Sue Sally

YOUR FAVORITE COLOR IS blue

Notice the use of count, and how the number of brothers and sisters was ‘
assigned to the variable, num.

32

Printer Commands

LOGO has commands that assist you when you want to print out information,
such as the names of all procedures and variables. The first thing to unders-
tand about printing with LOGO PROFESSOR is that, when you want to print
something out to the printer, you must first turn the printer on. Then you must
press the PRINT key in order to have LOGO PROFESSOR print to the screen
and the printer simultaneously. The PRINT key acts as a switch. When you
press it the first time, it turns the printer on. When you press it the second
time, it turns the printer off.

Note that when you press the PRINT key the first time, the terminal screen will
display pon. When you press the PRINT key a second time, the screen will
display poff. These are LOGO PROFESSOR primitives that also turn the printer
on and off. However, we have enabled the PRINT key for your convenience.

To print out the contents of a single procedure, use the po primitive. For exam-
ple:

>po ‘‘square

to square
repeat 4 [fd 50 rt 90]
end

To print out the contents of all procedures, use the pops (print out procedures)
command. This command will print out the contents of all procedures in the
workspace. If a procedure has not been retrieved from the disk, then it will not
be listed.

The pots command prints out all procedure titles, as shown:

>pots
square
question
funlist
questions

The popr command prints out all primitives. Remember that LOGO’s commands
are primitives, while any commands that you create are procedures.

To print out all variable names, use the pons primitive. To print out all pro-
cedures, titles, and variable names, use poall.

33

CONDITIONALS, LOGIC, AND TESTS

In the previous section we introduced many commands that manipulated text
and lists. In this section, we will create procedures applying many of the com-
mands that you have already learned.

Conditionals

A conditional statement tests a condition to determine what the next action in
the program will be. Logic is simply the act of reasoning, a process that we all
take part in everyday. Tests check to see if something is present (e.g., a word, a
number etc.). In this section, we will discuss each of these concepts and its ap-
plication to LOGO.

The primary conditional command is if. This primitive is very simple and flexi-
ble. You simply enter the command in the following format:

>if (condition) [action1] [action2]

The statement tells LOGO, if the condition is true, perform action 1. Else, if the
condition is false, perform action 2. The action 2 entry is optional. If only one
action (action 1) is given in an if statement, action 1 will be performed if the
condition is true. If it is false, LOGO will move on to the next line in the pro-
cedure.

Let’s fill in the blanks with an example.
>if :a > :b [print ‘‘hello] [stop]

This command is comparing the value of the two variables (:a and :b). If :a is
greater than :b the word hello will print; if :a is not greater than :b, LOGO will
execute stop, exiting the current procedure. Note that stop is a LOGO PRO-
FESSOR command that will cause the current procedure to end.

In LOGO PROFESSOR, you can create a procedure and have it execute or call
another procedure. This capability is useful when a procedure begins to get too
large. Once a procedure is created, you can use it as if it were a command in
other procedures. One powerful use of the if statement is to enable you to
direct the flow to logic from one procedure to another. Review the following
procedures to see how this can work.

to one
make ‘‘number 5
print [This is the beginning]
two
print [this is the end]
end

34

to two
if :number = O [stop]
print [middle]
make ‘‘number :number - 1
two
end

When the first procedure (one) comes to the statement, ‘“‘two”, it will execute
the procedure, two. As shown, two will use an if statement to determine when
it should stop and return control to the calling procedure, one. (This will hap-
pen when number is equal to zero, which is after two is run five times).

If you wanted to return directly to the LOGO PROFESSOR prompt instead of to
the original procedure, you could have used the toplevel command in place of
stop. The primitive toplevel is a command that you should use only when you
are sure that you don’t want to return to the calling procedure. If there is no
calling procedure, the stop command will return to the LOGO prompt.

Logic

We will introduce you to the use of logic in LOGO PROFESSOR by discussing
three logic primitives: and, or, and not. We will also demonstrate the logic of
passing values from one procedure to another.

The and primitive requires at least two input statements. It will output true if
both (or all) statements are true. Otherwise it will output false. For example:

>and (5 - 3
Result: true

2)(2 + 8 = 10)

>and (5 - 3
Result: false

1)(2 + 8 = 10)

The not command is unusual in that it uses reverse logic. not takes a statement
as input. If the statement is true, the not command will output, false. If the
statement is false, the not command will output, true.

>not(1 + 1 = 2)
Result: false
>not(1 + 1 = 15)

Result: true

>not(and (1 + 1 = 5)(2 + 2 = 4)
Result: true

35

Like and, the or command takes at least two inputs, but only one of the inputs
must be true for or to output true. If all of the inputs are false, it will output
false.

S>or(l +1=2)(1 + 2 = 4)
Result: true

>or (1 +1=3J(1+ 2 =4)
Result: false

The examples we use make it easier to illustrate how the primitives work. You
can also use and, or, and not with variable names to have them check the
values assigned to a variable.

In the previous section of this chapter, Text and Lists, the concept of output
was discussed. Let’s review it for one moment. There will be cases when you
want a value passed from one procedure, or variable or primitive to another.
This process is referred to as output. Whenever you see a primitive print the
word, Result:, this means that the primitive was ready to output that result to a
waiting procedure or variable. However, there was none waiting so the output
was printed to the screen.

The primitive, output, enables you to set up one procedure to output a value to
another. This concept is illustrated by the two procedures shown below, warp
and equate.

to warp :starunit

print [the star unit count is] :starunit
make ‘‘a :starunit* .5 + 1/6

print [Warp speed attainable :] :a
end

to equate :atomweight
output :atomweight / 3 * 4
end

Warp figures your ship’s potential warp speed. It needs, as input, the number
of starunits available. To figure starunits, you must work through a
mathematical equation. Instead of manually figuring and entering starunits,
you may use as input another procedure called equate which takes atomweight
as input.

36

Equate will figure your starunits and then outputs the answer to warp. Note
that equate has its own numeric input, atomweight. To execute these pro-
cedures, type:

>warp equate 7

Let’s read this statement from right to left. The 7 is the value that will be
assigned to atomweight when equate executes. Equate will perform the equa-
tion shown, and the result value will be assigned to the variable starunit in the
procedure warp. Thus, equate passes a value to warp.

Test

Testing in LOGO is performed by executing one of a group of primitives that
check the input to see if some condition is present. These primitives, each of
which ends with a p (for present), are defined in this section.

¢ equalp — Checks to see if two (or more) values are equal. If they
are, equalp outputs true. Otherwise, it outputs false.

>equalp 2 2
Result: true

Remember that you can use equalp with variables as
well.

¢ keyp — This primitive checks to see if there is a keyboard en-
try being made. If there is, keyp outputs true. Other-
wise, it outputs false. This primitive is useful when
you have a procedure containing an option of ‘‘press
any key to continue.”

* namep — Checks to see if the input is a currently defined
variable name.

>namep ‘‘a
Result: false
>make ““a “hello
>namep ‘‘a
Result: true

e listp — Checks to see if the input is a list. If it is, listp outputs
true. Otherwise, it outputs false.

> listp “hello ‘“‘there
Result: false

> listp [hello there]
Result: true

37

¢ numberp

e wordp

o definedp

* emptyp

e shownp

Remember that LOGO PROFESSOR looks for the
square brackets around lists.

Checks to see if the input is a number. If it is, numberp
outputs true. Otherwise it outputs false.

> make ‘‘a 50
>numberp :a
Result: true
>make ‘‘a ‘‘fifty
>numberp :a
Result: false

Checks the input to see if it is a word. If the input is a
word, wordp outputs true. Otherwise, it outputs false.

>wordp [hello]
Result: false
>wordp ‘“‘hello
Result: true

Checks workspace to see if the input is a defined pro-
cedure. If it is, definedp outputs true. Otherwise, it
outputs false.

> pots

square

> definedp ‘‘square
Result: true

Remember, definedp checks the procedures in
workspace. If a procedure has been created but has
not been retrieved, definedp will respond false.

Checks to see if the input is empty. This test is helpful
when you are working with lists. If the input is empty,
emptyp will output true. Otherwise it will output false.

> emptyp [a]

Result: false

> emptyp butfirst [a]
Result: true

Checks to see if the turtle is displayed. If it is, shownp
will output true. If it is not, shownp will output false.

38

. e primitivep — Outputs true if the input is a primitive. Otherwise it
outputs false.

> primitivep ‘‘square
Result: false

> primitivep ‘‘forward
Result: true

39

DISK FILES AND MEMORY MANAGEMENT

In the first section of this chapter, we introduced you to saving and retrieving
files from workspace. In this section, we will define these and other concepts in
more detail in order to explain how you manage your files on disk and your
memory storage.

Saving Workspace and Procedures

When you begin to create procedures, you should identify those procedures
that you want to save and those that you do not need. Before storing your
workspace on disk, erase any unneeded procedures. This step should become
an automatic housekeeping function that you perform regularly in LOGO. It
doesn’t do you any good to save unneeded procedures in workspace or on disk.

To erase a single procedure from workspace, use the primitive erps followed
by the specific procedure name. Be sure to specify a procedure name after you
enter erps. If you do not, you will erase all procedures from your workspace.
See the example below:

>erps ‘‘square
> erps

Once again, the first example erases a single procedure, while the second
erases all procedures in workspace.

To erase any unneeded variable names from workspace, use the primitive
erns. It works just as erps does. That is, if you specify a name, only that name
will be erased: if you specify no names, erns will erase all names in workspace.

>make ‘“a 50
> pons

a is 50
>erns ‘‘a

When you are ready to save your workspace on disk, simply press the STORE
key on the keyboard (or key in the store primitive). LOGO will wait for you to
enter the filename that the workspace should be stored under. This filename
should be no more than 8 characters long and it should contain no periods.
Make the name given to workspace something meaningful, so that you will be
able to recognize it when you are ready to retrieve it. Also note that you should
not assign the same filename as a prevous file unless you want to write over the
previously saved file.

40

— This function prints a directory of all LOGO data files
on the data disk. (You may also enter the primitive, in-
dex.

()

B
I

— Enables the retrieve primitive. LOGO PROFESSOR
will wait for the entry of the filename of the file to be
retrieved from the disk.

\

D
|

In command mode, LOGO PROFESSOR will wait for
you to enter a filename to have workspace stored
under. In edit mode, the STORE key will define the pro-
cedure currently being worked on.

STORE

Workspace

Throughout this manual, we have referred to workspace as your current work-
ing area when you are using LOGO PROFESSOR. Let's now consider what
workspace is, and how it effects you.

When you are performing any functions in LOGO, even if they are temporary,
they still take up workspace. When you create something temporary and then
erase it, that used workspace is set aside until LOGO needs space. The process
of reclaiming used space is called garbage collection. LOGO recycles the gar-
bage workspace and returns it to available, contiguous workspace. You may
enter the recycle primitive yourself, but there is no real need to do this because
LOGO performs this function automatically when it needs the additional space.

In LOGO PROFESSOR, workspace is broken down into five-byte increments.
These five-byte increments are called nodes. There are approximately 2000
nodes available for use. Keep this in mind, because it indicates that there is a
limit to the number and size of procedures that you can have in workspace at
any one time. If you type in nodes, LOGO PROFESSOR will display the number
of free nodes available in workspace.

As mentioned, there are 2000 available nodes in LOGO PROFESSOR. Part of
workspace is set aside for internal functions of LOGO PROFESSOR. If for some
reason LOGO Is so short on workspace that it must reclaim the portion of
workspace assigned to internal functions, it will perform a function called ex-
pand; expand is also a primitive that you may enter. It is strongly recommend-
ed that you not use this function unless you are very experienced with LOGO
PROFESSOR.

The primitive mem enables you to identify the amount of workspace that is
available and the amount that is in garbage collection.

42

ADVANCED PROCEDURES AND CONCEPTS

Now that you are the LOGO PROFESSOR expert, you can move on to the ad-
vanced LOGO concepts. These include: recursion, debugging procedures,
whole numbers, advanced mathematics, random numbers, advanced graphics,
and machine language interface.

Recursion

In Section 6, Conditionals, Logic, and Tests, you were introduced to the concept
of creating a procedure that calls another procedure. Now let’s consider a con-
cept called recursion, which is the process of a single procedure calling itself.

The term recursion comes from the word recur which means to occur again or
in intervals. In relation to LOGO, a procedure which calls itself and thus oc-
curs repeatedly is a recursive procedure. You can have a recursive procedure
that is endless, which forces you to press the STOP key twice to exit. The exam-
ple below illustrates this:

> to sketch
make ‘‘command readchar
if :command = ‘‘r [right 5]
if :command = “1 [left 5]
if :command = ‘“‘f [forward 10]
if :command = ‘b [back 10]

if :command
sketch
end

*“c [clearscreen]

In this procedure, the variable, command, is assigned the value of readchar.
After we execute the procedure, every time the appropriate key is pressed, the
turtle moves accordingly. After the last if statement, sketch calls itself and
thus repeats.

You could also have entered a line to allow you to stop when you press a
specific key, for example:

> to sketch
make ‘‘command readchar
if :command = ‘‘r [right 5]
if :command = “I [left 5]
if :command = “‘f [forward 10]
if :command = ‘“‘b[back 10]
if :command = ‘‘c[clearscreen]
if :command = ‘‘s [stop]
sketch
end

44

ADVANCED PROCEDURES AND CONCEPTS

Now that you are the LOGO PROFESSOR expert, you can move on to the ad-
vanced LOGO concepts. These include: recursion, debugging procedures,
whole numbers, advanced mathematics, random numbers, advanced graphics,
and machine language interface.

Recursion

In Section 6, Conditionals, Logic, and Tests, you were introduced to the concept
of creating a procedure that calls another procedure. Now let’s consider a con-
cept called recursion, which is the process of a single procedure calling itself.

The term recursion comes from the word recur which means to occur again or
in intervals. In relation to LOGO, a procedure which calls itself and thus oc-
curs repeatedly is a recursive procedure. You can have a recursive procedure
that is endless, which forces you to press the STOP key twice to exit. The exam-
ple below illustrates this:

>to sketch
make ‘‘command readchar
if :command = ‘‘r [right 5]
if :command = ‘1 [left 5]
if :command = “‘f [forward 10]
if :command = ‘‘b[back 10]

if :command
sketch
end

‘““c [clearscreen)]

In this procedure, the variable, command, is assigned the value of readchar.
After we execute the procedure, every time the appropriate key is pressed, the
turtle moves accordingly. After the last if statement, sketch calls itself and
thus repeats.

You could also have entered a line to allow you to stop when you press a
specific key, for example:

> to sketch
make ‘‘command readchar
if :command = ‘‘r [right 5]
if :command = “I [left 5]
if :command = *‘f [forward 10]
if :command = “b{back 10]
if :command = ‘‘c [clearscreen]
if :command = ‘‘s [stop]
sketch
end

44

Recursion can be a very powerful programming function. The next example,
the tree procedure, is a recursive procedure that calls itself in two separate
statements (notice the fourth and sixth lines each call tree). This procedure
begins with the variables of dist and num, which represent distance and
number of branches.

> to tree :dist :num
if :num = O [stop]
fd :dist
1t 25
tree :dist / 1.1 :num - 1
rt 50
tree :dist / 1.1 :num - 1
It 25
bk :dist
end

Each time LOGO encounters a line with tree, it causes a recursion. In this pro-
cedure, the fourth and sixth lines initiate recursion. The complete processing
accomplished by this procedure is quite lengthy and dependent on the
variables entered. It would be easier to understand if we could see the exact
steps that LOGO is performing during this procedure. In Appendix B, An exam-
ple of Recursion, you will find a step-by-step outline of the tree procedure.

Advanced Logic

This section expands on several commands that are described elsewhere in
this manual. These include: define, text, and run.

The define primitive is used to create a procedure from a series of lists without
requiring you to go into edit mode. This makes it possible to create a procedure
within a procedure. The format of this command is:

define * < procedure name > [[variables used] [line 1] [line 2]]

You may vary the number of lines that your procedure contains simply by ad-
ding additional sublists.

text is the reverse of define. It takes as input a procedure name and outputs a
list in the same format:

[[variables] [line 1] [line 2] [etc]]

45

The run command allows you to enter a string of commands without creating a
procedure. Run may be used to execute a list containing workable commands.
For example:

run [repeat 4[fd 100 rt 90]]
<will draw a square>

Debugging Procedures

The outline that is in Appendix B, An Example of Recursion, was printed by in-
itiating a function in LOGO called trace. The primitive trace allows us to have
LOGO PROFESSOR display each step as it is being performed.

There are three functions which will allow us to trace a procedure as it runs.
These three functions are:

e trace 1 — Displays the titles of any user-defined procedures as
they are called or stopped.

¢ trace 2 — Displays primitives as they are called or stopped.

e trace 3 — Displays both primitives and titles of user-defined pro-
cedures as they are called or stopped.

If you want to get a printout of trace as it executes, remember to turn the
printer on by pressing the PRINT key (or typing pon). When trace is finished,
you must remember to turn the trace function off with the notrace command.
The example in Appendix B, uses the trace 3 function.

There may be times when you need to use a character that is special to LOGO
PROFESSOR (e.g. [] * /). In order to tell LOGO that the special meaning of the
character should be ignored, you may use the backslash (|) before the special
character. When LOGO encounters the backslash, it will ignore the following
characters special meaning.

Whole Numbers

LOGO PROFESSOR has two primitives which take decimal numbers and make
whole numbers out of them. These primitives use the concept of integers and
rounding (an integer is a whole number). The primitive int will take a decimal
number and truncate it to make it into a whole number. For example:

>int 10.3
Result: 10

>int 10.9
Result: 10

46

As you can see, the primitive int simply removes any numbers to the right of the
decimal point. The second primitive that changes decimal numbers to whole
numbers is round. The difference between int and round is that while int trun-
cates any decimals, round rounds numbers off to the nearest whole number.
Thus if the decimal is 5 or above, it will round up to the next number; if the
decimal is 4 or below, it will round down. The following examples illustrate

round:

>round 10.3
Result:10

>round 10.9
Result: 11

>round 10.5
Result: 11

Advanced Mathematics

This section describes the advanced mathematical functions that are available
through LOGO. The mathematical concepts themselves are not explained in
this document (for example, we presume that you understand the meaning of
square root, cosine, etc.). But the applicaiton of these concepts to LOGO Is

described here.

In section 2 of this chapter, Turtle Graphics the basic math commands were in-
troduced. Let’s look at some additional math commands that you will find
useful. These commands include sum, quotient, remainder, product, sqrt, sin,
cos.

The primitive sum allows you to enter a string of numbers to be added without
putting the plus sign (+) between the numbers.

>sum 125
Result: 8

The primitive quotient takes two numbers as input, makes them integers and
divides the second number into the first. If there is a remainder, it is discarded,
as quotient only outputs whole numbers.

> quotient 10 5
Result: 2

> quotient 10.5 5.2
Result: 2

47

The primitive remainder takes two numbers as input, makes them integers and
divides the second number into the first. The quotient is discarded and the
result is the remainder.

>remainder 10 4
Result: 2

>remainder 10 5
Result: 0

>remainder 10.5 5.2
Result: 0

The primitive product takes a string of numbers as input and multiplies them
together without requiring the * symbol between the numbers.

> product 5 10
Result: 50

The primitive sqrt returns the square root of a number.

>sqrt 225
Result: 15

>sqrt 300
Result: 17.32051

LOGO PROFESSOR has the ability to generate the trigonometric sine and
cosine. The definitions of the sine and cosine of an angle are given in terms of
ratios between lengths of the sides of a right angle. If an angle (a) of a right
triangle has a measure of t degrees, the trigonometric definitions of the sine
and cosine of t degrees (abbreviated as sin t degrees and cos t degrees, respec-

tively) are:
length of side opposite (a)

sin t degrees =
length of hypotenuse

length of side adjacent to (a)

cos t degrees =
length of hypotenuse

b

opposite hypotenuse

to a
to

c Adjacent to a

48

The primitive sin requires an input in degrees, and will output its trigonometric
sine.

The primitive cos requires an input in degrees, and will output its
trigonometric cosine.

>sin 30
Result: .5

>cos 30
Result .8660253

The sin and cos primitives can also be used to create the secant and cosecant
of an angle.

> to secant :angle
output 1 / cos :angle
end

>to cosecant :angle
output 1 / sin :angle
end

You can also use the sin and cos primitives to create the tangent and cotangent
of an angle.

>to tan :angle
output sin :angle / cos :angle
end

> to cotangent :angle
output cos :angle / sin :angle
end

Random Numbers

LOGO PROFESSOR has the ability to generate random numbers through the
random primitive. You simply enter the high number. For example, if we
entered random with the number 10, LOGO would generate a number from 0 to
9. The random number generator allows you to create interesting effects with
programs. An example of random is given below:

> to randomnum

repeat 20 [print random 100]
end

49

This procedure will simply output a series of random numbers. If you refer to
Chapter 3, Sample Procedures, you will find a procedure called Laser, which
uses random in conjunction with graphics.

Advanced Graphics

So far in this document, our only method of moving the turtle around has been
by telling it how many steps to take. There are advanced graphics functions
which allow us to move the turtle to a specific point on the screen by entering
x and y coordinates. There are also primitives which will display the position of
the turtle. If you are unfamiliar with the terms x and y coordinates, refer to
Figure 2-1. This is the LOGO PROFESSOR screen with the x,y axis marked.
Notice that the point where the two lines meet is the home position (or 0 0
coordinates). You should identify the point on the screen where you want to
position the turtle and analyze the points where the x and y table meets. For ex-
ample, the dot on the table is in the 100 100 x y coordinates. Please note that
the numbers on the bottom and left side of the screen use negative numbers.

The primitive pos outputs a list containing two values, the first being the cur-
rent x coordinate of the turtle and the second being the current y coordinate of
the turtle. If we enter pos when the turtle is in the home position we will get the
following result.

> pos
Result: [0 0]

The xcor and ycor simply outputs the x and y coordinates separately.

> xcor
Result: 0

> ycor
Result: 0

The primitive heading outputs the direction in which the turtle is pointing at
that time. For example:

>heading
Result: 0

If we then tell the turtle to turn right 90 degrees, the heading will change:
>right 90

>heading
Result: 90

50

We then turn right 90 again to change the heading:
> right 90

>heading
Result: 180

And again:

>right 90

> heading

Result: 270
If we turn right 90 one more time, we are back at zero (which is also 360).
The primitive setpos will set the position of the turtle on the screen based on
the x,y coordinates. If the pen is down, a line will be drawn to that spot. The
setpos primitive requires two inputs, the first being the x coordinate and the
second being the y coordinate. They must be entered surrounded by square
brackets. For example:

>setpos [100 - 100]
setpos can also accept input from list or sentence. See the example below:

> setpos sentence random 320 random 199

or

> setpos list random 320 random 199

The most common use of setpos is with direct input. However, the list and
sentence primitives are also compatible, as shown.

The primitive dot followed by the x,y coordinates, will make a dot appear on
the screen at the specified point.

>dot 100 100
Here is a sample procedure that uses the dot and random primitives.
> to specs
dot (randem 400) - 200 {random 400) - 200
specs

end

This procedure will continue to print dots on the screen until you press the
STOP key twice.

51

You can also set the x and y coordinates separately with the setx and sety
primitives.

>setx 100
>sety 100

The setheading primitive allows you to tell the turtle what direction to point in.
In the examples shown above with the heading command, we were moving the
turtle with the right primitive. With setheading, you can tell the turtle to
setheading 90 and the turtle will point to the right.

> setheading 90

The pen primitive outputs a list which contains the current status of the pen.
The four possibilities are penup, pendown, penerase and penreverse. There is
also a primitive which will allow you to set the pen status. This command is
setpen, in most cases, you will simply enter the proper command to set the pen.

The primitive setscrunch allows you to change the axis of the screen. You must
enter a number to tell LOGO how much you want to change the axis by. The
standard axis setting is 1. If you change it to a number greater than 1, it will
stretch the verticle axis. If you change it to a number less than 1, it will com-
press the vertical axis. If you change it to a negative number, the vertical axis
will be inverted. When the axis is inverted, the normal coordinate positions are
reversed. Instead of the positive x,y coordinates being on the top of the screen,
they will be on the bottom.

The primitive scrunch displays the current setting of setscrunch. The standard
screen setting is 1.

Character/ASCII conversion

There are two primitives which will allow you to convert a character into its
corresponding ASCII (American Standard for Computer Information Inter-
change table) value and vice versa. The primitive char requires input from 0 to
255, If the number input is between 0 and 255, char will output the character
corresponding to that number in the Epson Expanded Character table.

>char 110
Result: n

52

The ascii primitive outputs the corresponding character for the character
entered. The character must be preceded by double quotes.

> ascii “n
Result: 110

Machine Language Primitives

LOGO PROFESSOR has the ability to interface with programs written in
machine code. Machine Language refers to programming languages such as
Assembly, C and Forth. Knowledge of machine language is necessary to utilize
the commands described in this section. These primitives allow direct access to
memory locations and machine language subroutines. The command .deposit
requires two decimal (versus hexidecimal) inputs, the first being the memory
location, the second being the value to deposit. The .deposit primitive is similar
to the poke command in the BASIC programming language.

The command .call requires one decimal (versus hexidecimal) input, and runs
the subroutine whose starting address is at that location in memory. When the
subroutine is finished, LOGO will execute the next line in the calling pro-
cedure.

The command .examine requires one decimal (versus hexidecimal) input, and
returns the decimal value stored in that memory location. The .examine
primitive is similar to the peek command in BASIC.

The in and out primitives are used to control hardware devices. The command
in requires a decimal (versus hexidecimal) address of an input port as input
and returns the decimal value currently present at that input port.

The command out requires two decimal (versus hexidecimal) inputs, the first

being an ouput port address, the second being the value to be sent to the device
at that output address.

Exiting LOGO PROFESSOR

When you are finished with LOGO PROFESSOR and are ready to exit, you
should make sure that you have saved any procedures that you do not want to
lose. You can then simply press the MENU key on the keyboard, and LOGO will
display a message:

Remove your disks and press the RESET button to exit.

Make sure you keep both diskettes in their protective jackets.

53

—+— 100

—+—-100

-200

FIGURE 2-1

54

AXIS

‘ The following section simply categorizes all of the commands that have been in-
troduced in this chapter.

Section 2

Turtle Movement Primitives:

forward right
back left
home

Pen Control Primitives:

penup pendown
penreverse penerase

Turtle Display Primitives:
hideturtle showturtle
Clearing the Graphics Screen:
. clearscreen clean
Simple Logic with Graphics:
repeat
Screen Mode Primitives:

fullscreen splitscreen
textscreen STYLE key

Screen Type Primitives:

fence wrap
window SIZE key

Mathematic and Logic Primitives:

— Vi~
~ A *+

55

Section 3
Primitives that create and Define Procedures:

to edit
store

Primitives that manipulate Variables:
make thing

Primitives that Print:

pon poff
popr pots
pops pons
poall

Section 4
Primitives that Print and Output Text and Lists:

list count
word sentence
print type
show test

Primitives that Manipulate Text and Lists:

first last
butfirst butlast
Iput fput

Primitives that Remember Keyboard Entries:

readchar readlist

Clearing the Text Screen:

cleartext
Section 5

Conditional and Logic Commands:

repeat if
stop toplevel
output and, or, not

56

' Present tests

equalp keyp
namep listp
numberp wordp
definedp emptyp
shownp primitivep

Section 6

Function Keys:

STORE PRINT
RETRIEVE

Primitives that Erase:
erasefile
erps

erns

Workspace Management:

recycle
expand
mem
Section 7
Advanced Math Commands:
sin cos
sum remainder
product quotient
sqrt int
round random

Screen Manipulation Commands:
setscrunch scrunch
Advanced Turtle Graphics Primitives:

setx sety
‘ setpos setheading

57

Primitives that Display the Turtles Position:

XCOor ycor
pos heading

Pen Control Primitives:
pen setpen
Character and ASCII Conversion:
ascii char
Debugging Procedure Primitives:

trace notrace

Advanced Logic Primitives:
define run

Machine Language Primitives:

in out
.deposit .call
.examine

58

CHAPTER 3
SAMPLE PROCEDURES

In this chapter several sample procedures are outlined. These procedures sup-
port the concepts described in Chapter 2, Using LOGO PROFESSOR, and on the
help screens. In working through these procedures, if you should come across a
command you do not understand, review it in Chapter 2 or refer to Chapter 4,
Glossary.

A SQUARE
This square uses only two commands: forward and right.

to square
forward 100
right 90
forward 100
right 90
forward 100
right 90
forward 100
end

A SIMPLE SQUARE

The square procedure is simplified by using the repeat command, which will
simply repeat the ‘“‘forward 100 right 90"’ sequence four times.

to rsquare
repeat 4 [forward 100 right 90]
end

A VARIABLE SQUARE

By adding the variable ‘:size,” the square procedure can be made more ver-
satile. The procedure will now create a square with sides of variable length.

to vsquare :size
repeat 4 [forward :size right 90]
end

The images produced by square and rsquare will be identical, a simple square
with sides 100 units long. Vsquare is also a simple square, but the sides can
literally be any length that you wish. When you run vsquare, remember to
follow it with the size that you desire (e.g., vsquare 100).

59

A ROTATING SQUARE

The rotating square procedure is like the variable square procedure, but with
an enhancement that will cause it to create an interesting design. It draws a
square, rotates the turtle 10 degrees, and then draws another square. Rotating
square will repeat this action 36 times.

to xsquare :size
repeat 36 [repeat 4[forward :size rt 90]rt 10]
end

A TRIANGLE

Vtriangle creates a triangle in the same way that vsquare creates a square.
However, because a triangle has three sides rather than four, it is only
necessary to repeat the forward/turn sequence three times. Also, the right turn
increased to 120 degrees (360 divided by 3) as opposed to 90 degrees for the
square (360 divided by 4).

to vtriangle :size
repeat 3 [forward :size right 120]
end '

A POLYGON

Polygon is a procedure that takes two inputs—one for the ‘‘size’’ of the design,
and one for the “‘angle” of the design’s turns and corners. By varying the in-
puts the user can create a vast array of designs. This procedure will require
that STOP be pressed twice to halt execution, because the way it is written, the
procedure will never end.

to poly : side :angle
forward :side

right :angle

poly :side :angle
end

try these inputs for poly: poly 80 144
poly 60 80

A CIRCLE

In LOGO PROFESSOR, a circle is comprised of a large number of very small
straight lines arranged in a circle. These straight lines are so minute that they
are indistinguishable as straight lines.

60

. to circle :size

repeat 180 [forward :size right 2]
end

The equation ‘‘forward :size right 2"’ is repeated 180 times. Each time it is run
the line is shifted two degrees (right 2). 180 times 2 equals 360 degrees, thus
forming a full circle. A faster, but less accurate circle could be drawn with the
equation repeat 90 [forward :size right 4].

A DESIGN

This procedure will design a ‘‘cell” which will then be used in other pro-
cedures (createl and create2) to create more complex designs. This procedure
is as follows:

to design

repeat 2[forward 60 right 90]
repeat 2[forward 30 right 90]
forward 60

right 90

repeat 2[forward 15 right 90]
forward 30

. end

When stored and executed, this procedure will draw the figure shown below:

t

createl, shown below, executes design twice every time that it runs, and it will
need to run four times to complete its creation. Because createl calls itself at
the end of the procedure, it sets up an endless loop and will run until the STOP
key is pressed twice.

to create
design
design
left 90
create
end

The ‘“‘creation” will look like this:

N
e

61

Create2 produces a different ‘‘creation’ using the design procedure. This pro-
cedure also calls itself, and again it will be necessary to press the STOP key
twice to stop it.

to create2
design

left 45
forward 70
create2
end

SPIRAL

In this procedure you may dramatically alter your output design by using dif-
ferent numbers for the input.

to spiral :angle

ht

make ‘‘side O

repeat 100 [forward :side right :angle make ‘‘side :side + 2]
end

Remember, to execute spiral you will need to type spiral along with a number. .
Here are some suggestions:

spiral 89
spiral 72
spiral 118

A POLYGON SPIRAL

The polygons procedure creates a polygon which spirals outward endlessly. It
requires three inputs: angle, side, and increment of expansion. You must press
the STOP key twice while this procedure is running to halt execution,

to polygons :side :angle :inc
polydraw :side :angle

polygons (:side + :inc) :angle :inc
end

to polydraw :side :angle
forward :side

right :angle

end

62

Here are some suggestions for ‘‘polygons’’:

polygons 5 120 3
polygons 5 144 3
polygons 145 1

PRONTO

Pronto allows you to manipulate the turtle with a single keystroke. In this ex-
ample, forward will be equal to F, right will be equal to R, left will be equal to
L, and clear-screen will be equal to C. To abbreviate additional commands, just
add “‘if :ord” lines to the ‘‘order’’ procedure.

to pronto

order readchar
pronto

end

to order :ord
make ‘‘ord readchar

if ;:ord = “f [forward 10]
if :ord = ‘“r [right 45]
if :ord = 1 [left 45]
if :ord = ‘“‘c [clearscreen]
end

LASER

This procedure creates an action-filled design. Two procedures are required to
execute this program, as given below. After defining the procedures, just type
laser to execute them.

to laser
home
window
penreverse
hideturtle
lasermt
end

to lasermt

setx ((random 600 * - 1)
setx (random 200)

sety ((random 300) * - 1)
sety (random 200)
lasermt

end

63

TEST

The following set of procedures are called test. This program was designed to
drill the user with addition. Slight modifications can be made to create subtrac-
tion or multiplication drills.

This set of procedures utilizes both numeric and text logic functions.

to test

make ‘‘num1 random 100

make ‘“‘num2 random 100

make ‘‘answer :numl + :num2

print (sentence [HOW MUCH IS] :num1 [+] :num2)
make ‘‘reply readnumber

if :reply = :answer [print [good job

sport!]] [print sentence [no, the answer is]
:answer]

test

end

to readnumber
output first readlist
end

By typing in the numeric answers to test’s questions, you trigger a right answer
or wrong answer display which is automatically followed by another question.

LACE

This procedure involves fairly complex mathematical manipulations. The pro-
cedure itself is short, but recursion (the act of a procedure calling itself) will
produce results that are astounding.

to lace :size :limit
if :size < :limit [forward :size stop]
lace :size / 3 :limit
left 90

lace :size / 3 :limit
right 90

lace :size / 3 :limit
right 90

lace :size / 3 :limit
left 90

lace :size / 3 :limit
end

64

Any numbers may be used for the inputs, but here are some you should try:

lace 243 9
lace 243 3

AN ARRAY

This set of procedures illustrates the use of an array (a stored list). File is the
controlling procedure. It allows the creation of a file called array, which has
20 mailboxes. Upon completion of the 20 inputs, file will print the entire list.
The procedure ‘‘setval’’ controls the ‘‘build”’ procedure. Together they create
the file. ‘“‘Display’’ controls the ‘‘find’’ procedure. Together they pull the values
from the file and display them.

to build :name :num :val
make (word :name :num) :val
end

to find :name :num
output thing word :name :num
end

to display :value
if :value = 0 [stop]
print find ‘‘array :value
make ‘‘value :value - 1
display :value

end

to setval :n
if :n = O [stop]
type (make element #] :n [:]
build ‘‘array :n readlist
setval :n — 1

end

to file
setval 20
display 20
end

These sample programs and procedures are just a start, but they may suggest
to you the awesome potential of LOGO PROFESSOR. We hope that we have
planted within you the seeds of ideas to pursue and questions to investigate in
this versatile language.

65

66

This chapter contains

CHAPTER 4

GLOSSARY
definitions for all LOGO PROFESSOR function keys,

primitives, control keys, and general terms. This chapter is intended primarily
as a reference aid. To learn how and when to use the LOGO PROFESSOR keys
and commands, refer to the on-screen help screens. See also Chapter 2, Using
LOGO PROFESSOR, and Chapter 3, Sample Procedures. Then refer back to the
appropriate section in this chapter when you need a reminder about the usage
of a specific key or primitive.

FUNCTION KEYS

This section lists and describes the function keys that have been enabled for
use on the QX-10 with LOGO PROFESSOR.

. —

o
I

Prints graphics designs to the printer.

Calls up the on-screen help screens. When you press
this key, all information in workspace will be tem-
porarily saved, and you will be presented with a
choice between the help screen index (to locate a
specific command function) and full help (to work
through a specified subset of commands]. On exiting
from the help screens, you will be returned to
workspace, where you may resume use of LOGO.

Displays a directory of all files on the LOGO data disk.
(See index in primitives section of this chapter.)

Deletes all characters on the line to the right of the
cursor. If pressed while the cursor is at the end of the
line, it will cause the current line to merge with the
line below it. The UNDO key may be used to recreate
what has been deleted by the LINE key. (See UNDO
key.)

Used to exit LOGO. The system responds: ‘‘remove
your disks and press reset to exit LOGO (or push any
key to continue). When you exit LOGO, all procedures
in workspace will be destroyed. If you would like to
save the procedures in workspace, use the STORE
function key. (See STORE key.)

67

BNl

‘DD

i)

N\

Turns the printer on and off. (See pon and poff.)

Used to retrieve files from the data disk and load them
into the workspace. The retrieve key will display
‘“retrieve. (See retrieve in the glossary of primitives.)

Press this key to switch from window to fence to wrap.
(See these primitives in the glossary for more informa-
tion.)

Use the STOP key to pause or to stop execution, as
described below:

® Pressed once in command mode, the STOP key
will cause execution to pause. Pressing any
other key will cause execution to resume.

* Pressed twice in command mode, the STOP
key will stop execution and present the LOGO
prompt.

e If pressed in edit mode, STOP will exit from
edit, ignoring any changes made.

The STORE key has two functions:

e In edit mode, the STORE key will exit the
editor and process the edited text.

¢ In command mode, the STORE key will display
the prompt:

store”’

To respond to this prompt, enter a filename to save a
copy of the workspace on disk. This filename should
be 8 characters or less and contain no periods. You
may later retrieve this file from disk at any time by us-
ing the RETRIEVE key. (See store in the glossary of
primitives.)

68

. — Switches from fullscreen to splitscreen to textscreen.
- (See these primitives in the glossary.)

. — At the current cursor position, inserts any text that
[\ was previously deleted by the LINE key. (See LINE
key.)

CONTROL KEYS AND ARROWS

This section contains a list of the control characters that function with the
LOGO PROFESSOR procedure editor. A control function is executed by
depressing the control key (CTRL) and the designated character key
simultaneously.

e CTRL A — Moves the cursor to the beginning of the current line.

e CTRLB — Moves the cursor one character to the left (same as
LEFT ARROW).

e CTRLD — Deletes the character at the current cursor position.

e CTRL E — Moves the cursor to the end of the current line.

e CTRLF — Moves the cursor one character to the right (same as

RIGHT ARROW).

e CTRLH — Deletes the character to the left of the cursor.

e CTRL] — Same as RETURN.

e CTRLN — Moves the cursor down one line (same as DOWN AR-
ROW).

e CTRL O — Opens a new line at the cursor position.

e CTRLP — Moves the cursor up one line (same as UP ARROW).

e CTRL Q — Moves the cursor to the end of the previous line.

e CTRLV — Pages the cursor down one screen (24 lines).

e CTRLW — Moves the cursor to the right one word.

69

- = B

THE SHIFT
KEY

2

S

Moves the cursor one position to the right.

Moves the cursor one position to the left.

Moves the cursor to the position immediately above its
present position.

Moves the cursor to the position immediately below its
present position.

Augments the effect of the arrow keys. If used with
UP or DOWN ARROW, SHIFT ARROW will advance
or retreat one full page. If used with RIGHT or LEFT
ARROWS, SHIFT ARROW will set the cursor at the
beginning or the end of the line.

The backspace key deletes one character to the left of
the cursor.

In edit mode, deletes the character the cursor is on.

70

PRIMITIVES

This section lists alphabetically all LOGO PROFESSOR primitives, along with
their definitions. Simple abbreviations are also given for those primitives for
which they are available, in order to help you reduce keying time.

* Multiply. Takes two numbers as input, multiplies
them, and outputs their product. For example:

5*2
Result: 10
print 5 * 2
10

= Equals. Compares two input values. If both inputs are
numbers, compares them to see if they are equal. If
both inputs are words, compares them to see if they
are identical character strings. If both inputs are lists,
compares them to see if their corresponding elements
are equal. Outputs true or false accordingly. For ex-
ample:

print 20 = word ““2 ‘0

true

print “‘a = [a]

false

print [A B] = sentence “A ‘‘B
true

< Less than. Compares two inputs. Outputs true if its
first input is less than its second, false otherwise. (See
if.) For example:

2<5H
Result: true

make ‘“‘a 4
make “b 7
:a <:b
Result: true

71

and

Greater than. Compares two inputs. Outputs true if
the first input is greater than the second, false other-
wise. (see if.) For example:

12 > 45
Result: false

make “‘x 10
make “‘y 7
if :x > :y [stop]

Minus. With two numeric inputs, gives their dif-
ference. With one numeric input, gives it a negative
value, if there is no space between the minus sign and
its input. For example:

print 5 - 2

3

print 1 + (-2)
-1

Plus. Adds two input numbers, and outputs their sum.
For example:

print 5 + 2.5
7.5

Divide. Outputs the first number divided by the se-
cond. Always outputs a decimal value. For example:

print 5/ 2
2.5

print 6 / 2
3

Takes a variable number of input statements (at least
two) and evaluates whether each statement is true.
Outputs true if all statements are true, otherwise out-
puts false. (Compare to or.)

print(and (1 + 1 = 2)(5 = 4)(1 = 1))
false

72

ascii

back

butfirst

butlast

char

Takes a character as input and outputs the number
that is the ASCII code of that character. (Compare to
char.)

ascii “R

82

Abbreviated bk. Takes one number as input and
moves the turtle backward. Draws a line when the pen
is down. (See forward.) For example:

back 100
< Turtle moves backward
100 units >

Abbreviated bf. Prints all elements in a series but the
first. If input is a list, outputs a list containing all but
the first item. If input is a word, outputs a word con-
taining all but the first character. Gives an error when
called with empty word or empty list as input. (Com-
pare to butlast.) For example:

print butfirst [THIS IS A LIST]
IS A LIST

print butfirst ‘‘ABRACADABRA
BRACADABRA

Abbreviated bl. Prints all elements in a series but the
last. If input is a list, outputs a list containing all but
the last element. If input is a word, outputs a word
containing all but the last character. Gives an error
when called with empty word or empty list as input.
(Compare to butfirst.) For example:

print butlast [this is a list]

this is a

print butlast ‘“ABRACADABRA
ABRACADABR

Takes an integer as input and outputs the character
whose ACSII code is that integer. (Compare to ascii.)
For example:

char 67
Result: C

73

clean

clearscreen

cleartext

cos

count

define

Takes no inputs. Clears the graphics screen. Does not
change the turtle’s position. (Compare to home and
clearscreen.)

Abbreviated cs. Takes no inputs. Clears the graphics
screen and centers the turtle on the screen. (Compare
to clean and home.)

Takes no inputs. Clears the text screen and moves the
cursor to the left edge of the screen on the first
available text line.

Outputs the cosine of its input as an angle in degrees.
For example:

cos 59.99999
Result: .5

cos 45

Result: .7071066

Takes a list as input and outputs the number of items
in the list. If the input is a word, outputs the number of
letters. For example:

count [FEE FIE]

Result: 2

print count [FEE FIE FOE FUM]
4

Defines a procedure. This primitive takes two inputs.
The first input is the name that the procedure will be
given. The second input is a list that consists of a
series of “‘sub-lists.”’ The first sub-list contains the in-
puts for the procedure. Each following sublist con-
tains a line of the procedure. For example:

define “‘ptsum [[x y] [print :x] [print :x + :y]]
defines the procedure:

to ptsum :x :y

print :x

print :x + :y
end

74

definedp

.deposit

dot

edit

Note that you normally use to rather than define in
order to define procedures. The define primitive is
useful for writing procedures that define other pro-
cedures.

Returns a true statement if the argument is a user-
defined primitive. For example:

to foo
fd 10
rt 45

end

definedp ‘‘foo
Result: true

An advanced function. Stores byte values at absolute
RAM addresses. (Refer to Chapter 2, Using LOGO
PROFESSOR Section 7, Advanced Procedures and
Concepts.) For example:

.deposit 128 201
<byte 201 is stored at address 128 >

Takes as input two coordinates specifying a screen
position and places a dot at that position. Does not
move the turtle. For example:

dot 20 100
< a dot appears on the screen at position
(20,100)>

Abbreviated ed. Takes as input a procedure name,
and allows you to edit that procedure. (See to.) For ex-
ample:

edit ‘‘square

< sets up procedure square for
editing >

75

emptyp

end

equalp

erase

erasefile

erns

erps

.examine

Takes one input. Outputs true if the input is the empty
word or the empty list, false otherwise.

emptyp [LOLLIPOP]
Result: false

print emptyp butfirst ‘X
Result: true

Terminates a procedure definition that is typed into
the editor. It is not necessary to type end after the
final definition unless you are defining more than one
procedure at a time. In that case, the procedure
definitions must be separated by end statements.

Same as =. For example:

print equalp ““A [A]
false

Abbreviated er. Erases the designated procedure
from workspace. Can also take as input a list of pro-
cedures to be erased. The procedure name or names
must be preceded by a quotation mark (‘). For exam-
ple:

erase ‘‘square
< deletes the procedure SQUARE >

Takes a file name as input and removes that file from
the disk. (Compare to erps and erase.)

erasefile “MYFILE
< deletes the file whose name
is myfile>

With no input, erases all variable names from
workspace. erns does not erase procedures.

With no input, erases all procedures from workspace.
erps does not erase variable names.

An advanced function. Outputs the value of the byte at
the specified address. (Refer to Chapter 2, Using
LOGO PROFESSOR, Section 7, Advanced Procedures
and Concepts.)

76

fence

first

forward

fput

fullscreen

heading

Takes no inputs. Causes LOGO PROFESSOR to display
the message ‘“‘turtle out of bounds’’ in response to any
attempt to move the turtle past the screen boundaries.
The SIZE key can be used to switch to any of the three
screen borders. (Compare wrap and window.)

If input is a list, outputs the first element. If input is a
word, outputs the first character. Signals an error
when called with the empty word or the empty list as
input. (Compare to last.)

print first [THIS IS A LIST]
THIS

print first “ABRACADABRA
A

Abbreviated fd. Takes one number as input, and
moves the turtle forward for the number of units
specified. Draws a line if the pen is down. (Compare to
back.)

forward 100
< turtle moves forward 100 units >

Takes two inputs, the second of which must be a list.
Outputs a list consisting of the first input followed by
the elements of the second input. (Compare to lput.)
For example:

print fput [A B] [C D]

[A B] C D]

print fput “‘dark [in the cellar]
dark in the cellar

In command mode, gives full graphics screen. Com-
plementary to splitscreen and textscreen. No text will
be visible. The STYLE key can be used to switch to any
of the three screen modes.

Outputs the turtle’s heading as a decimal number bet-
ween 0 and 360. (The heading is the turtle’s orienta-
tion on the screen, where 0 is straight up and 180 is
straight down.) For example:

77

hideturtle

home

index

int

heading
Result: 90

setheading heading + 10

<rotates the turtle 10 degrees
clockwise >

Abbreviated ht. Makes the turtle invisible. (See
showturtle.)

Moves the turtle to the center of the screen, pointing
straight up (heading is 0).
Enables you to set up conditional statements. LOGO’s
basic condition form is:

if <condition> [<actionl>][<action2>].
The <condition> is tested. If it is true, <action1> is
performed. If it is false, < action2> is performed. The

< action2 > entry is optional. For example:

>make ‘““x 4

>make ‘‘y 7

if :x = 5 [stop] [print ‘‘hello]
hello

if :x < :y [print ‘‘yes] [print ‘“‘no]
yes

if 10 < y + x [print ‘“‘yes] [print
“no]

yes

An advanced function. Returns the value from the
specified Z80 I/O port. Refer to Chapter 2, Using
LOGO PROFESSOR, Section 7, Advanced Procedures
and Concepts.

Displays a directory of all LOGO files on the currently
mounted data disk. In drive “B’”’, the INDEX key may
be used to display an index.

Takes one numeric input and converts it to a whole

number by truncating any fractional part. For exam-
ple:

78

item

keyp

last

left

list

listp

print int 5.6

5

print int - 5.6
-5

Takes a number n and a list (or word) as input, and
outputs the nth item in the list (or letter in a word).
Signals an error if n is greater than the count of the
list. For example:

print item 3 [FEE FIE FOE FUM]
FOE

Outputs true if a keyboard character is pending (i.e.,
the character input buffer is not empty), otherwise
outputs false.

If input is a list, outputs the last element. If input is a
word, outputs the last character. Signals an error
when called with the empty word or the empty list as
input. (Compare to first.) For example:

print last [THIS IS A LIST]
LIST

print last ““‘ABRACADABRAX
X

Abbreviated It. Takes one numeric input, and rotates
the turtle that number of degrees counterclockwise.
(Compare to right.)

left 90
< turtle rotates 90 degrees
counterclockwise >

Takes a variable number of inputs and outputs a list of
the inputs. It will separate the lists from the rest of the
output with bracket symbols.

print list “A “B

AB
print list “A “B[1 2 3] “°C
AB[123]C

Outputs true if its input is a list. Outputs false other-
wise.

79

Iput

make

mem

memberp

menu

namep

Takes two inputs, the second of which must be a list.
Outputs a list consisting of the elements of the second
input followed by the first input. (Compare to fput.)
For example:

print lput “Z [W X Y]
WXYZ

print lput [A B] [C D]
CD[A B]

Takes two inputs, the first of which must be a word
(which is any character string). Assigns the second in-
put to be the value associated with the first input. For
example:

make “YELLOW 50
print :YELLOW
50

Displays the following information concerning
memory: Nodes, Free nodes, Segment, and Garbage
collections. (See nodes). For example:

>mem

Nodes: 1000
Free nodes: 535
Segments: 1

Garbage collections: 0

Node Refers to total available nodes. Free nodes
refers to nodes not in use. The difference being, nodes
that may be used by LOGO and procedures. Segments
reflects the number of times expand has been per-
formed. Garbage collections reflects the number of
time recycle has been performed.

Takes an item and a list as input. Outputs true if the
item is a member of the list, false otherwise.

print memberp ‘“A [ONCE UPON A TIME]
true

Takes no inputs. Exits LOGO. Will display the state-
ment: ‘‘Remove your disks and press reset to exit (or
press any key to continue).”

Outputs true if its input is a variable.

80

nodes

not

notrace

numberp

or

out

output

pen

pendown

Outputs the number of currently free nodes. This is a
measure of how much storage is available in the
workspace. LOGO PROFESSOR automatically ex-
pands its workspace as it fills up, so do not be alarmed
if the node reading is low. A node is equal to 5 bytes.

Equivalent to ‘‘does not equal.” Outputs true if its in-
put is false, false if its input is true.

if not (1 = 2) [print “HELP]
help

Turns off the trace function. (See trace.)

Outputs true if the input is a number, false otherwise.

Takes variable number of inputs (at least two) and out-
puts true if at least one is true, otherwise outputs
false. (Compare to and.) For example:

4))
4)

print(or (1 + 1 = 3)(5
false

print(or (1 + 1 = 2)(5
(1=1))

true

Advanced function. Outputs <VALUE> for the
specified Z80 port. (See Chapter 2, Using LOGO PRO-
FESSOR and Techniques, Section 7, Advanced Pro-
cedures and Concepts.)

out <PORT-NUMBER> < VALUE >

Abbreviated op. Takes one input. Causes the current
procedure to stop and output the result to the calling
procedure.

Outputs the state of the pen (penup, pendown, or
penreverse). For example:

pen
Result: [pendown]

Abbreviated pd. Causes the turtle to leave a trail

when it moves. (Compare to penup, penerase, and
penreverse)

81

penerase

penreverse

penup

po

poall

pons
popr
pops

pos

pots
primitivep

print

Abbreviated pe. Puts the turtle’s eraser down, so that,
when the turtle moves, any point that it passes over
will be erased. (Compare to pendown, penerase and
penreverse.)

Abbreviated px. Changes the turtle’s pen so that it
“reverses’’ any point that it passes over. (Compare to
pendown, penup and penerase).

Abbreviated pu. Takes no inputs. Causes the turtle to
move without leaving a trail. (Compare to pendown,
penerase and penreverse.)

If given a procedure name as input, prints out the text
of the procedure. Can also take a list of procedure

names as input, in which case it prints out the text of
all procedures in the list. For example:

po [SQUARE XSQUARE]
<Prints the text of “SQUARE”
and “XSQUARE" >

With no input, prints all procedure definitions and the
values of all variables.

Prints the values of all variables.

Prints all LOGO primitives.

With no input, prints the definitions of all procedures.
Outputs a list of two numbers that specify the turtle’s
current position in x,y coordinates. (Compare to xcor,
ycor, and setpos.)

With no input, prints the titles of all procedures.
Outputs true if the input is a primitive, false if it is not.
Abbreviated pr. Takes a variable number of inputs
(one is required). Prints them on the screen, separated

by spaces, and moves cursor to the next line. When
print prints lists, the outermost pair of brackets is not

82

product

quotient

random

readchar

readlist

recycle

printed. See example 3 below:

print ‘‘hi

hi

print ‘‘hello “‘out ‘‘there
hello out there

print [hello out there]
hello out there

Note that this primitive is used in conjunction with
many other commands as shown in the examples.

Multiplies. Takes a variable number of inputs (at least
two) and outputs their product.

print product 34 5
60

Divides. Takes two numeric inputs, divides the first by
the second, and outputs the quotient, rounded off as a
whole number. If the inputs are not integers, it trun-
cates any decimal values. For example:

print quotient 5 2
2

Takes one numeric input, a positive whole number n,
and outputs a whole number between 0 andn - 1. For
example:

print random 100
53
print random 100
27

Abbreviated rc. Outputs the first character entered in
the character buffer, or if empty, waits for an input
character.

Abbreviated rl. Waits for an input line to be typed,
terminated with RETURN. Outputs the line as a list.

Reclaims unused storage space in the workspace.

83

remainder

repeat

retrieve

right

round

Takes two numbers as inputs. Divides the first input
by the second and outputs the remainder. If the inputs
are not integers, it first truncates any decimal values.
For example:

remainder 13.6 10.8
Result: 3

Takes a number and a list as input. Executes the list
the specified number of times. For example:

repeat 3 [print “hello]
hello
hello
hello

Takes as input a filename. Retrieves the given file
from the data disk and places it in the workspace. The
filename should be 8 characters or less. Destroys any
graphics display. This command may be entered
manually or with the RETRIEVE key. (See RETRIEVE
key.) For example:

retrieve ‘‘myfile
<loads ‘“‘myfile’’ into the
workspace >

Abbreviated rt. Takes a number as input, and rotates
the turtle that number of degrees clockwise. Please
note that you can also specify a negative number.
(Compare to left.} For example:

right 45
< turtle rotates 45 degrees
clockwise >

Takes a whole number as input, and outputs the
rounded-off integer. For example:

print round 5.6
6

print round 5.4
5

round 5.5
Result: 6

84

run

scrunch

sentence

setheading

setpen

Takes a list as input. Executes the list as if it were a
typed-in command line.

run [print [good morning]]
good morning

run list “‘print [good morning]
make ‘‘command’’ print
make “‘input [good morning)]
run list :command :input
good morning

Takes no inputs. Displays the current setting of the
graphics screen aspect ratio. (See setscrunch.)

Abbreviated se. Takes a variable number of inputs. If
inputs are all lists, outputs their elements as a single
list. If any inputs are words, they are regarded as one-
word lists in performing this operation. (Compare to
word). For example:

print sentence ‘‘hello ‘‘there

hello there

print sentence [this is] [a list]

this is a list

print sentence ‘‘this [is] [a list]

this is a list

print sentence| [HERE IS] A] [NESTED LIST]
[HERE IS] A NESTED LIST

Abbreviated seth. Takes one numeric input. Turns the
turtle to face the specified heading. Zero is straight
up, with heading increasing clockwise. (See heading.)

setheading 180
< turtle now faces straight down>

Sets the turtle pen according to the input. For exam-
ple:

setpen [penerase]
< sets pen to penerase >

85

setpos

setscrunch

setx

sety

show

shownp

showturtle

sin

splitscreen

Takes a list of two numbers as input and moves the
turtle to the specified point. Draws a line if the pen is
down. For example:

setpos [100 50]
< turtle moves to the coordinate
position (100,50) >

Changes the vertical scale at which LOGO graphics
are drawn. Takes one numeric input and uses this to
change the scale factor. The default value for the fac-
tor is 1. This command may be used to create in-
teresting graphics.

Takes one numeric input and moves the turtle horizon-
tally to the specified x coordinate. Draws a line if the
pen is down. (Compare to setpos and sety.)

Takes one numeric input and moves the turtle vertical-
ly to the specified y coordinate. Draws a line if the pen
is down. (Compare to setpos and setx.)

Similar to print, except that it prints the outer
brackets around lists. Show is often useful in debugg-
ing procedures that deal with lists. Examples are:

print [hi]
hi

show [hi]
[hi]

print ‘‘hi
hi

show ‘“‘hi
hi

Outputs true if the turtle is currently shown, false
otherwise.

Abbreviated st. Makes the turtle appear. (Compare to
hideturtle.)

Outputs the sine of its input (as an angle in degrees).
In command mode, gives mixed text/graphics screen.
Complementary to fullscreen and textscreen. The

STYLE key may be used to switch to any of the three
screen modes.

86

sqrt

stop

store

sum

text

textscreen

Takes a positive number as input and outputs the
square root of that number.

Causes the current procedure to stop and return con-
trol to the calling procedure.

In command mode, accepts a filename of up to eight
characters as input. The filename should have no
periods. Saves the contents of the workspace on disk.
Destroys any graphics display. store may be entered
manually or by use of the STORE key. You may also
specify a single procedure name to be saved. In edit
mode, the procedure being edited will be defined in
workspace. (See STORE Key.) For example:

store ‘‘myfile
store ‘‘onefile ‘‘proc1

Adds. Takes a variable number of inputs (at least two)
and outputs their sums. For example:

print sum 1 2 3 4
10

Takes a procedure name as input and outputs that
procedure text as a list in the same format as describ-
ed for input under define. For example, procedure
ptsum is defined as follows:

to ptsum :x :y

print :x

print :x + :y

end

ptsum may be printed using text as
follows:

text ‘“‘ptsum

Result: [x y][print :x] [print :x + :y]

Hides the graphics screen so that the entire screen
can be used for text. Complementary to splitscreen
and fullscreen. The STYLE key may be used to switch
to any of the three screen modes.

87

thing

to

toplevel

towards

{race

Outputs the assigned value of its input (which must be
a word). thing ‘“xxx is normally abbreviated as :xxx.
(See make). For example:

make ‘‘orange 50
thing ‘‘orange
Result: 50

Begins procedure definition. Enters definition mode if
typed as a direct command. (Compare edit.)

When executed in a procedure, toplevel returns the
user to the LOGO prompt.

Takes a list of two numbers as input. These are inter-
preted as the x and y coordinates of a point on the
screen. Outputs the heading from the turtle to the
point. setheading may then be used to turn the turtle
to that heading. For example:

setheading towards [100 50]
< turtle is now facing point
(100,50)>

Switches on the trace function. trace has three levels,
indicated by a numeric input:

trace 1 Displays the titles of the user-defined pro-
cedures as they are called or stopped.

trace 2 Displays all LOGO primitives as they are ex-
ecuted.

trace 3 Displays both the user-defined procedures
and the LOGO primitives as they are executed
or called.

trace is invaluable for debugging procedures, because
it enables you to observe the flow of execution of pro-
cedures and primitives, so that you can track pro-
blems. In addition to the functions just described,
trace also tracks and displays the levels of sub-
procedures. Such as those encountered in recursive
procedures.

88

type

window

word

wrap

xcor

ycor

Takes a variable number of inputs, like print, but does
not move the cursor to the next line after printing.
With multiple words, does not print spaces between
the words. With lists, it leaves the spaces in place. For
example:

type ‘‘to ‘‘get “‘her
together >

type [to get her]
to get her>

Takes no inputs. Makes the graphics screen act like a
window onto a much larger turtle field. Thus the turtle
can move past the edge of the screen. Only the portion
of the turtle’s trail that lies in the ‘“‘window’’ will ap-
pear on the screen. The SIZE key switches to any of
the three screen border commands. (Compare to wrap
and fence.)

Takes a variable number of inputs. Outputs a single
word that is the concatenation of the inputs (which
must be words). For example:

print word ‘‘mish ‘‘mash
mishmash

print word ‘123 ‘‘45 678
12345678

Takes no inputs. Causes subsequent turtle commands
to “wraparound”’ in response to attempts to move the
turtle past the screen borders. That is to say, a turtle
path that goes off the top of the screen will continue
from the bottom of the screen at the same horizontal
position. A path that goes off the right edge of the
screen will continue from the left edge of the screen at
the same vertical position.

Outputs the turtle’s x coordinate as a decimal
number. For example:

setx xcor +10
<moves the turtle 10 units to the right>

Outputs the turtle’s y coordinate as a decimal number.

89

90

GENERAL TERMS

This section defines terms that you may encounter when using LOGO PRO-
FESSOR. Some of these terms are specific to LOGO, but most are general terms
that are found in computer science or math. The definitions presume no
background in these fields.

Boot The process of initiating the operating system of a
computer. It can be performed manually or
automatically.

Bug A program error. (See debugging).

Bracket A symbol, “[”’, used to designate lists in LOGO.

Calling A procedure which has, within itself, a command to

Procedure execute another procedure.

Command A term used to create action. LOGO Primitives are
commands.

Command The interactive state of LOGO PROFESSOR. Command

mode is the only mode that can execute procedures. (Com-
pare to edit mode.)

Conditional A question whose answer decides the course of action

Expression of a procedure. For example, a certain conditional ex-
pression may execute a print command if the answer
to the question is false, and stop if the answer is true.

Control Refers to using the CTRL key in conjunction with

Characters another key on the keyboard (e.g., CTRL A means, hold
the CTRL key down at the same time as the A key).

Cosine An advanced mathematical function.

CPU Central Processing Unit. The main unit of the com-
puter system. In contains disk drives and memory. It is
used in conjunction with the monitor/keyboard and
printer.

Contiguous Bordering. In relation to computer memory, con-
tiguous refers to memory that is efficiently organized,
with no wasted space.

Cursor A flashing square on the computer terminal. The cur-

sor tells you where your keyboard entry will be
displayed.

91

Horizontal

Inputs

Integer

List

Media

Memory

Monitor

Name

Node

Operating
System

Output

Straight across. Parallel with the horizon.

Any information fed into the computer. This includes
anything entered with the keyboard.

A whole number or zero. Cannot contain any value to
the right of the decimal point.

A list of words, numbers and/or special characters. In
LOGO, lists are enclosed in brackets ““]”.

When used in reference to computers, this term
describes the method by which data is transferred or
stored. For example, most computer programs are
distributed on magnetic media.

The memory of a computer system is a circuit board
inside of the computer system which functions as an
intermediate storage area. Programs are held in
memory when they are in use by the monitor/
keyboard.

CRT or terminal. The monitor is the display screen of
the computer system.

A title assigned to a variable in LOGO. The variable
may a word, list, or numeric value.

A unit of measure for memory space in LOGO PRO-
FESSOR. A node is equal to 5 bytes.

Programs which control the fundamental operation of
computer system software. Sometimes referred to as
the ““brains’’ of a computer system.

This term may mean one of the following:
e Any information exiting the computer. The
most common sources are the CRT and the

printer.

¢ Any information exiting a LOGO PROFESSOR
procedure.

¢ A LOGO primitive. (See the primitive section
of the chapter.)

93

Primitive

Printer

Procedure

Processor

Program

Prompt

Quotient
Recursion

Screen
mode

Software
Sum
Terminate

Toggle

Truncate

Turtle
Graphics

Value

A command in LOGO PROFESSOR vocabulary. {See
the primitive section of this chapter.)

The hardward device that is used to print information
from the computer.

A user-defined command. A procedure may contain
turtle graphics commands, programming commands
or a combination of both.

See CPU.

A series of instructions that tell the computer how to
perform certain tasks.

A computer symbol soliciting an input. The standard
LOGO prompt is “>".

The solution for a division equation.
A procedure which calls itself.

Three modes are available: fullscreen textscreen,
and splitscreen. (See these in the primitives glossary.)

A group of programs that perform a similar function.
The solution of an addition equation.
To end.

A switch that switches back and forth between two
modes with each push of a single button.

To delete a portion of something. For example, if the
fractional value of 10.234 were truncated, only the
number 10 would remain.

The method used by LOGO PROFESSOR to create
impressive drawings on the computer. The user in-
structs the LOGO turtle how to draw graphics.

The strength or worth of an object. The value of a

variable is the number or word that it represents at
given point in time.

94

Variable

Vertical

Word

Workspace

A word created in LOGO PROFESSOR whose value is
changeable.

Straight up and down.

A group of characters with no imbedded spaces. In
LOGO, words are characterized by preceeding quota-
tion marks. (‘).

LOGO PROFESSOR’S working area is referred to as

workspace. All user defined procedures are held in
workspace until they are written to the disk.

95

BIBLIOGRAPHY
AND
REFERENCES

Abelson, H. Apple LOGO. Byte/McGraw-Hill 1982.

Coxeter, H.S.M., Regular Polytopes. Dover Publications, 1973.

Huntley, H.E., The Divine Proportion: A Study in Mathematical Beauty. Dover
Publications, 1970. ,

Kim S., Inversions. Byte Books/McGraw-Hill, 1981.

Nye]J.F., Physical Properties of Crystals. Oxford University Press, 1967.

Papert, S., Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books, 1980.

Pearce, P., Structure in Nature Is a Strategy for Design. MIT Press, 1978.

Phillips, F., An Introduction to Crystallography. Wiley, 1963.

Stevens, P., Handbook of Regular Patterns: An Introduction to Symmetry in

Two Dimensions, MIT Press, 1981.

Thornburg, D.D., Picture This! An Introduction to Computer Graphics for Kids
of All Ages. Addison-Wesley 1982.

Thornburg, D.D., Picture This Too! An Introduction to Computer Grahpics for
Kids of All Ages. Addison-Wesley 1982.

Thornburg, D.D., Discovering Apple LOGO. Addison Wesley 1983.

96

APPENDIX A
HELPFUL HINTS

This appendix provides a series of tips and suggestions for working with LOGO
PROFESSOR. Refer to it as needed as you work with LOGO.

Check the amount of workspace available after working in LOGO PRO-
FESSOR for long periods of time, or when creating large procedures.

When working in LOGO PROFESSOR for long periods of time,
periodically save your workspace to disk in case of any unforeseen pro-
blems that could cause loss of data, such as power failure.

If a single procedure begins to get large, break it down into smaller,
more manageable procedures for ease of programming and debugging.

Fullscreen mode is used for displaying graphics, but it prohibits the
display of text on the screen. When you are in fullscreen mode, if you
want to see what LOGO PROFESSOR may be printing, simply turn the
printer on (press the PRINT Key or enter pon). In this way, you will not
miss any text messages or displays, because these will print on the
printer.

Do not use the expand function unless you are very familiar with LOGO
workspace. Remember that LOGO PROFESSOR will automatically per-
form the recycle and expand when it needs more workspace.

Please note that using penreverse in setscrunch mode will leave ir-
regular dot patterns (see Chapter 4, Glossary, for definitions of these
primitives.

Remember that workspace is cleared when you exit LOGO PRO-
FESSOR. Be sure to save your procedure (use the STORE key). To load
them back into workspace when you need them use the RETRIEVE key.

Make sure you enter all commands or primitives in lower case. LOGO
PROFESSOR will not be able to find a primitive if you request it in up-
per case.

Don’t leave any unneeded procedures in workspace, as this can cause

LOGO PROFESSOR to slow down. To ensure the best execution speed,
load into workspace only those procedures that are required.

A-1

e If you load (or retrieve) into workspace a file of procedures that was
previously saved, and you then erase some of those procedures from
workspace, when you save (or STORE) your workspace file back to
disk, be sure to give it a new file name. If you use the same file name,
save {or STORE) will write over the old file and thus permanently delete
those files that were erased from working storage.

e If you specify a procedure name or variable name in upper case, all
references to that name must be in upper case.

A-2

APPENDIX B
AN EXAMPLE OF RECURSION

The following is a trace of the ‘‘tree’’ procedure presented in Chapter two, Sec-
tion 7. trace 3 was used so it lists all commands and procedures executed. The
indentations represent the levels of recursion. At its deepest point, three levels
of recursion occurred (i.e., tree called tree called tree called tree). Refer back
to the Advanced Procedures and Concepts section in Chapter two for a review
of recursion. Then, for a vivid demonstration of the principle of recursion, try
running the procedure tree, on your own system.

> tree 30 3
tree of 30 3
if of false [stop]
if stops
fd of 30
fd stops
1t of 25
It stops
tree of 27.27272 2
if of false [stop]
if stops
fd of 27.27272
fd stops
1t of 25
1t stops
tree of 24.79338 1
if of false [stop]
if stops
fd of 24.79338
fd stops
It of 25
It stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
rt of 50
rt stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops

B1

if stops
tree stops
It of 25
1t stops
bk of 24.79338
bk stops
tree stops
rt of 50
rt stops
tree of 24.79338 1
if of false [stop]
if stops
fd of 24.79338
fd stops
It of 25
It stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
rt of 50
rt stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
It of 25
1t stops
bk of 24.79338
bk stops
tree stops
It of 25
1t stops
bk of 27.27272
bk stops
tree stops
rt of 50
rt stops
tree of 27.27272 2
if of false [stop]
if stops
fd of 27.27272

fd stops
It of 25
It stops
tree of 24.79338 1
if of false [stop]
if stops
fd of 24.79338
fd stops
It of 25
It stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
rt of 50
rt stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
1t of 25
1t stops
bk of 24.79338
: bk stops
tree stops
rt of 50
rt stops
tI‘ee of 24.79338 1
if of false [stop]
if stops
fd of 24.79338
fd stops
It of 25
1t stops
tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
rt of 50
rt stops

B-3

tree of 22.53944 0
if of true [stop]
stop called
stop stops
if stops
tree stops
1t of 25
1t stops
bk of 24.79338
bk stops
tree stops
It of 25
1t stops
bk of 27.27272
bk stops
tree stops
It of 25
It stops
bk of 30
: bk stops
tree stops
>

APPENDIX C
ERROR MESSAGES

When LOGO PROFESSOR encounters a condition that it can not understand, it
displays an error message describing the error. If the error occurs while a pro-
cedure is being executed, LOGO PROFESSOR will list the name of the pro-
cedure that the error occured in, the line that was being executed and the ap-
propriate message. This appendix contains the LOGO PROFESSOR error
messages, along with an explanation of each. When ‘‘primitive,” ‘“‘text,” or
“procedure’’ is enclosed by parenthesis, this means that when the actual error
message is displayed, the related primitive or procedure name will appear
where shown.

(primitive) doesn’t like (text) as input
A specification that has been made to a primitive is not a valid one.

EXAMPLE:
> fd [2]
fd doesn’t like [2] as input
>fd 2

LOGO PROFESSOR would not know how many steps to proceed forward
because the bracketed entry is not valid input for fd.

(procedure) didn’t output to (procedure)

A procedure didn’t output a result to another procedure which expected to use
the value as one of its arguments.

(text) has no value

A variable has been created with no assigned value, and an attempt was made
to access it.

EXAMPLE:
> make ‘‘dist 2
> :dist
RESULT: 2
> erns
> :dist
dist has no value

(text) is already defined as a variable

An attempt was made to create a procedure whose name is the same as a cur-
rently defined variable.

EXAMPLE:
> make ‘‘dist 2
> to dist :x
dist is already defined as a variable
> er ‘“‘dist
> to dist

(text) is already defined as a procedure

An attempt was made to define a variable with the same name as a defined
procedure.

EXAMPLE:
>to orange
>make ‘‘orange 2
orange is already defined as a procedure

(text) is a primitive
An attempt was made to create a procedure with the same name as a primitive.
EXAMPLE:
> to forward
forward is a primitive

(text) is not a variable or a user defined procedure.

An attempt was made to save or erase a name that is not a user defined pro-
cedure or variable.

EXAMPLE:
> er ‘‘forward
forward is not a variable or a user defined
procedure

(text) is not a variable

An attempt was made to print the value of a word that has not been defined as
a variable.

(text) is not a procedure

An attempt was made to print the definition of a name that is not a valid pro-
cedure.

can not open the file (text)

An error was encountered when attempting to retrieve or store a file.

bad procedure definition

An unacceptable procedure definition was specified with the to, edit, or define
primitive.

EXAMPLE:
> to abc [x vy z]
bad procedure definition
can’t expand
There is not enough node space to expand any further.
division by zero
An attempt was made to divide by zero.

filename too long

An attempt was made to save a file with a name more than eight characters
long.

filename extension too long

An attempt was made to save a file with the extension longer than three
characters.

I don’t know how to (text)

There is no procedure or primitive by the name entered. Check to make sure
that your entry was spelled properly. If it is a procedure, make sure the pro-
cedure was loaded.

EXAMPLE:
>forwaed 100
I dont know how to forwaed
> forward 100

C-3

memory overflow

LOGO doesn’t have enough node space to complete the command or procedure.

not enough inputs to (text)

There are not enough arguments to complete the procedure or primitive. For
example, if the entry fd was entered, without entering the number of steps, this
error message would be generated.

EXAMPLE:
> forward
not enough inputs to forward
> forward 100

out of memory

LOGO PROFESSOR ran out of node space. It may be necessary to erase any un-
nessary procedures.

too few items in (text)

The item primitive was given a number which was greater than the count of the
items in the list.

EXAMPLE:
> print item 4 [fee fie foe]
too few items in [fee fie foe]

LOGO PROFESSOR was asked to print item 4 when there are only three items
in the list.

too much inside () ’s

More than one expression was enclosed inside a matching pair of parentheses.

too many) ’s

An expression contained one or more unmatched right parentheses.
EXAMPLE:

>product (4 +5)) -2
>too many) 's

turtle out of bounds

In “fence”’ mode, an attempt was made to move the turtle beyond the screen
boundries.

word too long

A word was keyed that was longer than 120 characters.

APPENDIX D
TURTLE COMPASS

270° 90°

180°

Use this illustration to identify the turtle heading in degrees. When the turtle is
in the home position, pointing straight up, the heading 0°. Change the turtle’s
direction by turning left or right a number of degrees. You can also use
setheading to point the turtle in the desired direction.

APPENDIX E
INDEX TO HELP SCREENS

This is an index of the Logo Professor HELP SCREENS. At any time, while using
Logo Professor, you may access an individual helpscreen by doing the following:

1. Push the HELP key (to enter ‘‘help”’)

2. Push the INDEX key (to enter ‘‘indexed help”’)
3. Enter the screen number desired.

4, Push [return]

Logo Professor will then bring you directly to the requested screen.

and 527-530

arctan 714

Arrow Keys 309-311

ascii 754-755

B: Drive 110, 113

back (bk) 201, 208

Backup 608

butfirst 428, 431

butlast 428, 432

char 751-753

clean 215

clearscreen (cs) 216

cleartext 441

Command 105

Conditionals 500

cos 710-714

cosecant 713

cotangent 712

count 414

define 745-750

Define 115

definedp 542

Demonstration 122

dot 738, 739

Dots 328

edit (ed) 301

Editor 301, 308-319
349, 600-601

emptyp 543

equalp 536

erase (er) 617

erasefile 607

erns 619

erps 618

expand 612, 616

fence 230, 231

first 428-429

E1

forward (fd) 201, 203, 208

fput 433, 435, 437

fullscreen 226, 228

Garbage Collections 615

Graphics 200

heading 733, 735

HELP 118

hideturtle 212

home 214

if 500, 505, 508, 510-511

in 761

INDEX 108, 606

Indexed Help 119

Inputs 201

int 716

item 416

Item 344, 414-415

keyp 537

last 428, 430

left (1t) 205, 208

LINE 314

list 344, 400, 402, 410, 416

420-421, 439, 440

listp 539

Iput 434, 436, 438

Math Functions 220

make 325-328, 330-331,
341-342, 345, 543

mem 615

Menu 756

name 325-328, 330-331

namep 538

nodes 609-616

notrace 709

not 527,533-534

numberp 540

or 527,531-532

out 762

output 526

pen 733, 736

pendown 211

penerase 212
penreverse 212

penup 211

po 334

poall 340

poff 337

pon 336, 337

pons 340

popr 335

pops 339

pos 733

pots 339

Primitive 102
primitivep 545

print 199, 342, 343, 403, 407
PRINT 336, 338
Procedure 105, 115, 300, 307, 348
product 727

quotient 723, 724
random 720

readchar 520, 521, 524
readlist 341-342, 344, 345, 520, 522
Recursion 700, 703-704
recycle 613-614
reminder 725, 726
repeat 219

RETRIEVE 106, 112, 605
right (rt) 205, 206, 208
round 716

run 115, 439

Screen Size 202

secant 713

Segments 615, 616
sentence 418
setheading 744

setpen 740

setpos 742-743

E-2

setscrunch 729

setx 741

sety 741

scrunch 730

show 403, 412-413
shownp 544
showturtle 213

sin 710-714

SIZE 230

splitscreen 226, 229
square 217

sqrt 728

STOP 318, 349

STORE 306, 317, 348, 600-604
STYLE 226

sum 722

Tail Recursion 701-702
tangent 712

text 440, 747
textscreen 226, 227
thing 341-342, 346
Title 114, 115, 330

to 301, 302

toplevel 513

trace 0 709

trace 1 706

trace 2 707

trace 3 708

type 403, 406, 408-409
UNDO 116, 315
Variable 325-328, 330-331, 507
window 230, 232
word 400-401, 411, 417
wordp 541

Workspace 105, 116, 117
wrap 230, 233

Xxcor 733, 734

ycor 733, 734

.call 760

.deposit 759

.examine 759

USER GUIDE INDEX

! 46 CTRL Q 20, 68

()15 CTRL V 68

[124, 91 CTRL W 20, 68

‘24 define 45, 74

: 20 definedp 38, 75

* 14, 71 Degrees 92

= 15,71 . deposit 53, 75

> 15, 72 diskette 4, 92

< 15,71 disk drives 92

- 14,72 dot 51, 75

+ 14, 72 DRAW Key 14, 66
/14, 72 edit (ed) 75

and 35, 36, 72 ~ Edit Mode 17, 18, 92
An Array 65 emptyp 38, 76
Arrow Keys 18, 19, 69 end 17, 76

ascii 53, 73 equalp 37, 76

axis 52, 54 erase (er) 76

back (bk) 10, 73 erasefile 41, 76
back slash 46 erns 40, 41, 76
butfirst (bf) 28, 29, 73 erps 40, 41, 76
butlast (bl) 28, 29, 73 Error Messages C-1
Calling Procedure 91 .examine 53, 76

.call 53 expand 42, 43, A-1
char 52, 73 fence 13, 77

clean 12, 74 Filename 7, 92
clearscreen (cs) 12, 74 first 29, 77
cleartext 30, 31, 74 forward (fd) 7, 10, 77
Command 7, 91 fput 28, 77
Command Mode 18, 91 Full Help 5
Conditional Expressions 34, 91 fullscreen 9, 77, A-1
Contents of Package 3 Function Keys 5, 66, 67, 92
Control Keys 18-20, 68, 69, 91 Hardware 92

cos 49, 74 heading 50, 77
Cosecant 49 Help, Full 5

Cosine 48, 91 Help, Indexed 5
Cotangent 49 HELP Key 5, 66
count 28, 29, 74 Help Menu 5, 92
CTRL A 68 hideturtle (ht) 11, 12, 78
CTRL B 68 home 12, 78

CTRL D 68 if 34, 35, 44, 78
CTRL E 68 in 53, 78

CTRL F 68 Indexed Help 5
CTRL H 68 INDEX Key 7, 8, 42, 66
CTRL J 68 index 7, 8, 42, 66, 78
CTRL N 68 int 46, 78

CTRL O 20, 68 integer 46, 93

CTRL P 68 item 29, 79

keyp 37, 79

last 27, 29, 79

left (It) 10, 79

LINE Key 19, 66

list 27, 79

listp 37, 79

Iput 28, 29, 80
Machine Code Primitives 53
made 21-23, 30, 80
Media 93

mem 42, 43, 80
memberp 80

Memory 93

Monitor 93

MENU Key 53, 66
menu 53, 66, 80

Name 21, 93

namep 37, 80

nodes 42, 43, 81, 93
not 35, 36, 81

notrace 46, 81
numberp 38, 81
Operating System 93

or 36, 81

out 53, 81

output 24, 36, 81, 93
pen 52, 81

pendown (pd) 11, 12, 81
penerase (pe) 11, 12, 82
penreverse (px) 11, 12, 82, A-1
penup (pu) 11, 12, 82
po 33, 82

poff 7, 8, 33, 67

pon 7, 8, 33, 67

poall 33, 82

pons 33, 82

popr 33, 82

pops 33, 82

pos 50, 82

pots 33, 82

Primitive 6, 7, 93
primitivep 39, 82
PRINT Key 7, 8, 33, 67
print 24-26, 28, 29, 82, 83
Procedure 6, 7, 17, 94
Procedure Names 17
product 48, 83

quotient 47, 83, 94

random 49, 83

readchar (rc) 30, 31, 83
readlist (rl) 30, 31, 83
Recursion 44, 45, 94, B-1-B4
recycle 42, 43, 83
remainder 48, 84

repeat 11, 84

RETREIVE Key 7, 8, 41, 42,67, A-1
retrieve 7, 8, 41, 42, 67, 84, A-1
right (rt) 10, 84

round 46, 47, 84

run 45, 46, 85

Sample Procedures 59-65
Screen Modes 9, 94

scrunch 52, 85

Secant 49

sentence (se) 27, 85
setheading (seth) 52, 85
setpen 52, 85

setpos 51, 86

setscrunch 52, 86, A-1

setx 52, 86

sety 52, 86

show 26, 86

shownp 38, 86

showturtle (st) 11, 12, 86
SIZE Key 13

sin 49, 86

Sine 48

splitscreen 9, 86

sqrt 48, 86

stop 34, 35, 44, 87

STOP Key 18, 19, 44, 67
store 6, 8, 17-19, 40-42, 67, 87, A-1
STORE Key 6, 8, 17-19, 4042, 67, A-1
STYLE Key 10, 24, 68

sum 47, 87, 94

Tangent 49

text 31, 45, 87

textscreen 9, 24, 87

thing 22, 23, 88

to 17, 18, 88

toplevel 35, 88

towards 88

trace 46, 88, B-1-B-4
Truncate 94

Turtle Compass D-1
Turtle Graphics 6, 9, 94
type 25, 26, 89

UNDO Key 20, 68
Value 22, 23, 94
Variable 21-23, 95
Whole Numbers 46
window 12, 89

Words and Lists 24

word 26, 27, 89, 95

wordp 38

Workspace 6, 7, 42, 43, 95, A-1
wrap 12, 89

xcor 50, 89

x Coordinates 50

ycor 50, 89

y Coordinates 50

QX-10 is a registered trademark of Epson American, Inc.

