Chapter é&:

' THE EDITOR

INTRODUCTION

The Editor is the Valdocs word-processor and is also treated
as the default application in the system. It is designed to
be easy to use with little or no training. The following
chapter describes its structure, operation, and files.

HISTORY

The 1.18 version of the Valdocs Editor developed from an
existing STOIC "text editor", which only worked with files
that would fit in memory, and an amalgam of older documents
and original work. A "Restart file" concept and a block menu
were also incorporated into the design, along with imbedded
sequences and a state stack.

In a "what you see is what you get” wordprocessor such as
Valdocs, a method of allowing for invisible commands had to
be worked out. The use of ANSI extended ASCII sequences
produced commands that are invisible to the user, but that
control all characteristics of a document. Such sequences are
referred to as the Imbedded Sequences.

Unlike most wordprocessors, Valdocs maintains the "form" of a
document dynamically so the user does not have to call a form
routine for a paragraph or sentence. Although the Control-Q
menu contains a command to form the entire document, it is
mainly intended for use with non-Valdocs files that have been
brought over or produced from a formed document.

TWO FILE TYPES

The Editor is designed to work within a file-oriented
environment. Editor files fall into one of two
classifications: those with a .TMP extension, which are
working files for use by the Editor alone; and those with the
extension .VAL, which are valid Editor document files. The
exact contents of the files with a .TMP extension are
determined by which file it is, but none of the documents are
valid. Those files with the extension .VAL can be manipul ated
by the Editor or any other application (e.g., PRINT or MAIL)
that manipulates document files.

108



STORING A DOCUMENT

When the user presses STORE, all current work merges into a
new file called TEXTACTV.VAL and is passed to the Indexer.
The Editor never alters a source document, which preserves
the integrity of the system. The Indexer then renames the
file to a system—dependent name known to Indexer, and
returns control to the Editor. Editor reappears with a clean
slate to begin a new task.

The user may opt, via a menu option, to store the new file
under a TPM name of his choice. This, too, will return the
Editor to a clean slate status. If the user presses "undo"
from the Indexer, TEXTACTV.VAL is returned to the Editor,
which then renames the file to TEXTBKUP.VAL and treats it as
a new source file. Thus the life of an active file, at least
under that name, is quite short.

RESTART FILE

Should the user leave the system to go to any other
application, without first storing the current work, the
Editor will close all working files and store all working
data currently in RAM into a file called TEXTRSRT.TMP. This
file is recreated each time there is a chaining to another
part of the system. It is used to restore the Editor to its
most recent state, in the event that the user powers down or
has problems.

When the Editor comes up, it tries to establish itself to the
most recent state, preserving as much of the user’'s work as
possible. The Editor first looks for a stray active file
which, if found, is renamed to TEXTBKUP and loaded in as a
source document. In lieu of that, the Editor searches for a
restart file. If found, this file is used to reestablish the
Editor ‘s state. Otherwise, Editor searches for a backup
file, which, if found, is brought in as a source document.
Finally, in lieu of that, the Editor is brought up in its
default "clean slate" state, and work may begin. Normally
the system comes up in clean-slate or restart.

109



LONG FILE HANDLER

DELETED TEXT

The Editor handles deleted text in one of two ways. First, it
checks to see if the text deleted is large or small. if
large, such as a block or end-of-file, deleted data is stored
in a restart file. If small, such as a character, word, or
sentence, the deleted item is stored in a virtual stack.
Items are popped off the stack by repeatedly striking the
UNDO key. If, however, the system chains to another
application, the Undo stack is cleared and all deleted data
that was stored in the stack is lost.

OTHER FUNCTIONS

8TOP: The Editor only recognizes the STOF key in one case:
when it is formatting the entire document (from the CTRL-@
menu) .

HELP: The Editor has its own help file on the disk. There is
only one help message for Editor. The help file itself is
not created with Valdocs because the imbedded sequences would
be displayed with the rest of the text.

D-opcodes: The Editor uses D-opcodes only for resetting the
screen. Characters are output through a regular console
output call.

Fonts: The fonts (Bold, Italic, Size, Style) are simply calls
to the bit-driver. Style currently performs underlining and
Size controls variable line spacing.

VALUABLE DOCUMENT

Editor sees the valuable document as a stream of bytes. The
Editor traverses this stream, displaying text to the user,
continually modifying the text on a keystroke by keystroke
basis, and keeping the document formatted at all times to
preserve the "what you see is what you get” effect.

A valuable document consists of three types of information:

Hard Characters: entered by the user in the form of text via
the keyboard. This is the text itself. Any non—control

character (30h to 7Eh and AOh to FEh) may be entered. These
characters are entered and deleted only by the user; the

Editor does not create or destroy hard characters.

110



Soft Characters: soft spaces and soft carriage returns. These
characters format the text, and are inserted and removed by
the system as needed. Soft character insertion is performed
as a matter of course in such functions as word—-wrap and line-—
centering.

Imbadded Sequences and Control Characters: placed into the
text by the system, at the user 's direction. Normally these
characters affect the state of the system in some way or
other, although the user never sees the actual imbedded
sequences. They are only inserted into the text——never
deleted. Examples of imbedded sequences are: margin
settings, bold on/off, and forced page break.

The effect of an imbedded is nullified by entering a counter-
balancing imbedded. Thus text characters may appear to be
close together, but are, in fact, separated by many
sequences, which accounts for the system slowdown as it tries
to read a large number of sequences. The user can tell
whether or not an imbedded sequence occurs on a line of
text, by noting an asterisk (#) on the far right side of the
screen.

Imbedded Sequence Parameters and Identifiers

An imbedded sequence consists of a series of parameters
followed by an ASCII identifier of one or two characters. The
sequence is deliminated by a leading 9B Hex character and a
following 9C Hex character. These "markers" allow for the
detection of a sequence in a document.

a semi—colon (;). Valdocs 1.18 has either one or two
parameters in its sequences.

The indentifier can be one or two characters. A lowercase
letter identifies a single character; a space (20 Hex) and an
uppercase letter identify a double character. The following
is an example of a typical sequence, which gives the command
"turn underlining on":

(9B Hex) 13s(9C hex)
In the imbedded sequences listed below, the parameters will
be called Pl and P2 (optional). The identifier will be called

the ID . (In the above example there is no P2, Pl is set to
1, and the ID is "s".)

111



1D

ib

ID

1D

"v' Conditional and Unconditional Fage Brears

F2=0 Fage break.

F1=0: Unconditional, new page after next carriage

return.

Fi=Non Zero (conditional), if within Pl lines of

end of page, new page after next carriage
return.

P2=1 Set line number.
F1=0: Do nothing (NOP).
Pl=Line number (set the line number).

"m" Font Selection

P2 not present
P1=0: Set font normal.
Pl1=1: Set font bold.
P1=3: Set font italic.

P2=3
P1=1: Set font bold italic.

s" Underlining
2 not present.

Pl=1: Underlining on.
P1=0: Underlining off.

"t" Tabs and Margins

FP1=0
P2=Tab set in pixels, count starts with one.
Valdocs 1.1x a character was B pixels wide.
Pi=1
P2=Tab release in pixels.

P1=2

In

P2=Left margin release in characters, number of

characters left of margin.

F1=3
P2=0:Right margin release off.
P2=1:Right margin release on. Pl1=4.
P2=Left margin setting in characters.

P1=3
P2=Right margin setting in characters.

112



ID = " H' Centering

P2=0:Centering of+f.
PZ2=1:Centering on for this line only.
ID = "w" Page Format Commands
P1=1 and on first line of document only!'
P2=Page length in lines, size of text plus the

top and bottom margins.

F1=2 and on first line of document.
P2=Top margin in lines.

F1=4 and on first line of document.
P2=Bottom margin in lines.

ID

]

" F" Wrap and Justify commands

P1=0
P2=0:Wrap of text off.
F2=1:Wrap of text on.

P1

i
[

P2=0:Right justification of text off.
P2=1:Right justification of text on.

By and large, application programs using Valdocs files can
ignore these sequences.

Note that the Soft-Space and the Soft—Carriage—-Return (SCR)
are the codes for space (20 Hex) and carriage-return (OD Hex)
with the high bit set (80 Hex). The Non-Break Space is
inserted by the user to prevent wordwrapping because text has
been entered past the right margin; a SCR is inserted after
the space where the editor wraps the text. A Non-Break—Space
(1F hex) is a means of telling the Editor not to wrap a line
at this point.

File Conversion from Valdocs
A quick conversion to an ASCII file can be accomplished by
copying the Valdocs file to a new file, with the following

conversion criteria:

1. If a 9B hex is found, delete it and all
characters up to and including a 9B hex.

2. If a Non—Break Space (1F Hex) is found,
convert it to a 20 Hex (Space) character.

113




—
T

. After the two above steps, if the high bit

(B0 Hex) is set, mask it out (set bit to
zero).

The use of the TAB key in Valdocs does not insert a Tab
character. TAB will insert a number of spaces, depending on
the "size" of the tab set.

i14



	pg2v108
	pg2v109
	pg2v110
	pg2v111
	pg2v112
	pg2v113
	pg2v114

