Chapter 7:

THE INDEXER

INTRODUCTION

Indexer is the system’'s file directory: it manipulates
files and is, itself, easy to manipulate. Version 1.18 Index
consists of a simple database of extended directory records
and three specialized pointers.

INDEX.CHN is loaded onto bank #3 and is resident
throughout Valdocs operation. INDEX.CHN provides system hooks
for either TPM or CPM files. Filenames may have up to 16
words and extensions, unlike CPM’'s 1ll—-character
specification.

INDEX STRUCTURE

The database is a single file, called INDXDATA.NDX, that
contains extended directory records of valuable document
tiles (also called val files or data files). Three index or
pointer files point to the data file. These three index
files, INDEXALPH.NDX, INDEXDATE.NDX and INDXCROS.NDX, index
according to alphanumeric, date, and cross—-reference,
respectively. INDXCROS.NDS cross-references alphanumerically
(e.g., "Moms apple pies" will appear before "Xerxes apple
pies").

Sequencing is determined by whichever pointer file is in
memory. When records are added or deleted, corresponding
changes are made in the pointer files.

FILE STRUCTURE
INDXDATA.NDX Data File Header:
2 bytes = the next free (deleted) record. Simply a record
number between 0 and EFFF. FFFF means no deleted records, in

which case it looks for the next four bytes, which is the
available record number.

2 bytes = next available record number.
4 bytes = Julian Date, which is the date the file was last
used.

2 bytes = next sequence, the next sequential number. The
number of the file created that day. It resets when the day
changes.

Data File Record Header:

115

i byte = deleted record +f1lag.

= deleted record.
FF = not deleted.
4 bytes = a pointer to the next free record if there is

an asterick in the first byte. Between 0O and EFFF.
FFFF = the last deleted record.

Data File Record Format:
111 bytes = index entries by keywords; 16 keywords maximum.

13 bytes= CPM file name to which index entry refers.
This file name has its own format of:

2 bytes = year

1 byte = month

2 bytes = day

X bytes = sequence number

1 byte = decimal point

3 bytes = sequence number

1 byte = backup flag, not used

Index File Headers

Each of the three index files has the same type of
header, which merely counts the number of index entries.
INDEXALPH.NDX, INDEXDATE.NDX and INDXCROS.NDX index by
alphanumeric, date, and cross-reference, respectively.

The first two files index their entries with a 2-byte record
pointer, while the third file uses 3 bytes. The last byte
places the keywords in alphanumeric order (e.g., "Mom’'s apple
pies" will appear before "Xerxes’' apple pies”).

Header:
2 bytes = number of index entries.

Index Entry Format:
2 bytes = record pointer to data file.

Cross—index Entry Format:
2 bytes = record pointer.
1 byte = alphanumeric keyword number.

INDEX OPERATIONS

Control over INDEX operations is determined by the
command line that is passed during the chain operation (see
TPM section for a description of the chain operation). The
command line is at 80Hex in memory. All operations require
user input, but there are provisions in the design that allow
other programs to make direct use of INDEX operations.

The command line can contain several parameters. While

116

the arder 11 which parameters are supplied 1s not strict, it
is best to supply them in the order given. All parameters
must be described in uppercase and separated by at least one
space.

OFERATION COMMANDS

There are four operation commands: INDX, STOR, RTRV, and
DISF.

INDX causes INDEX to bring up a display of the most
recent files, and a menu permitting multiple operations on
the index database.

STOR passes a file name to INDEX and requests that it be
stored for the user.

KRTRY requests that a file or list of files be retrieved
for the calling program.

DISF permits display of the index database for use by
such programs as Copydisk and Menu.

PRIMARY FILE NAME <+F>

A primary file name is passed to INDEX by the caller and
1s returned by INDEX on a retrieve or UNDO from STOR.
The parameter appears in the form ‘+F=" immediately followed
by a file name (i.e., no intervening spaces). For example:

RTRV +F=filename.fil

The file name can contain a disk name, or, both a name
and extension, but it may not contain a user number (that
number which divides a disk into sets or groups——for example,
on disk B the user number would be B10 or B3, etc.).

The file name can also specify multiple extensions by
means of a list of extensions, separated by commas and
enclosed in angle brackets (“<" | "3»v) following the period
(".") in the file name. Currently, the list is used only on
a STOR operation. The file name with each extension will be
renamed, for example:

STOR +F=filename.<val ,tmp,4th>

ORIGINAL FILE NAME <+0>

In those instances where a file has a previous version,
the original name is passed to STOR following a "+0=" (letter
0) prefix. For instance, STOR +0O=original.name.

If the index reference does not change, the original

117

fi1le wili be deleted; i+ the reference does change, the
original version will be retained. The file will not be
deleted 1f the drives specified by ‘+F=’' and '+0=" are
diffterent, as INDEX assumes that this indicates the result of
Copydisk. Thus, copying between users with Copydisk can
cause problems.

NEW NAME RETURNED <+N>

1{f a STOR operation is successful, a "+N=" followed by
‘the new name assigned to the file is returned to the caller
(i.e., +N=newfile.name).

If the user does an UNDO out of STOR, INDEX returns a
‘+F=" {followed by the incoming file name, just as if this
were a return from RTRV (+F=incoming.filename).

CALLER RETURN INFORMATION <\>»

The name of the caller and any initial arguments the
caller expects upon return from INDEX are specified following
a '\’ on the command line. In other words, INDEX must know
who was calling it in order to be able to return to it——
otherwise, INDEX will default to the Editor. For example,
to return the INDEX to MAIL:

STOR +F=filename,val \MAIL

NO LIST FLAG <-L>

A '-L’ indicates that the caller cannot handle a list of
files on retrieve, and restricts INDEX to returning a single
name. While this parameter is recognized, it is not acted
upon since list building features have not yet been
implemented.

PARAMETER COMPATABILITY

The following chart is provided for reference purposes:

OPERATION - +F= +0= +N= \
INDX Y N#* N N Y
STOR N Y Y Y Y
RTRV Y Y* N N Y
DISP N Y# N N Y

* Supplies drive name only. Will support extension lists in
later versions.

Again, the command line may have several parameters,

118

best suppi:ed in the order given. All parameters must be
described 1n uppercase, and separated by at least one space.

CONCLUSION

By use of the provided parameter chart and file
structures, the programmer should find Indexer easy to use.
Any error messages encountered can be found in the TFPM
section.

119

	pg2v115
	pg2v116
	pg2v117
	pg2v118
	pg2v119

