
*(1(5$/�&2'(� via P.S. Mattarella, 69 30037 GARDIGIANO (VE) - ITALY Tel.: +39-041-449.888 Fax: +39-041-449.730

%$5&2'(�35,17(56

1<61�" % ���"!
BBBBBBBBB

352*5$00,1*�0$18$/

5HY������

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

*(1(5$/�&2'(��7KHUPDO�7UDQVIHU�3ULQWHUV

1<61�" % ���"!

3URJUDPPLQJ�0DQXDO

Copyright  1995/1999 *(1(5$/�&2'(� All rights reserved.

Issue 6, revised March 1995.

Firmware version MA62 V2.13 and above.

7UDGHPDUN�$FNQRZOHGJHPHQWV

Arial font. Copyright  1991-1992 Monotype Corporation PLC.

Bitstream is a registered trademark and Speedo and Swiss are trademarks of Bitstream Inc.
U.S. Patent No. 5,099,435

Centronics is a registered trademark of Centronics Data Computer Corporation.

Helvetica and Ionic are registered trademarks of Linotype AG.

*(1(5$/�&2'(
Via P.S. Mattarella, 69
30037 GARDIGIANO (VE) - ITALY

Tel: 041-449.888 International: +39-041-449.888
Fax: 041-449.730 International: +39-041-449.730

E-Mail: info@generalcode.it
Internet: http://www.generalcode.it

*(1(5$/�&2'(products are subject to continuous development and improvement and
consequently may incorporate minor changes from the information contained in this manual.

http://www.generalcode.it

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

7DEOH�RI�&RQWHQWV
1 ,1752'8&7,21���

�� 352*5$00,1*�*8,'(��
2.1 Label and Continuous Modes...4
2.2 Coordinate System & Measurements...5
2.3 Field Rotation ...5
2.4 Placing Text Fields ...6
2.5 Placing Barcodes ...8
2.6 Block Fill, Box & Line Drawing..12
2.7 Placing Graphics ..13
2.8 Stored Formats...14
2.9 Printing Commands..15
2.10 Variable Fields..16

2.10.1 Defining Fields ...16
2.10.2 Accessing Fields ..17

2.11 Printer Memory Use - Buffers and Caches...................................19
2.11.1 Image Buffers ..19
2.11.2 Font Cacheing..20
2.11.3 Input Buffer Size ..21
2.11.4 Saving Image Space..21

2.12 Cutter Controls ...22
2.13 Status Reporting...22
2.14 Inline Commands ...24
2.15 Miscellaneous Commands ...25
2.16 Error Reporting...26

� *(77,1*�7+(�%(67�3(5)250$1&(��
3.1 Optimising Printer Throughput ...27
3.2 Optimising Print Quality..27

� 35,17$%/(�&+$5$&7(5�&200$1'�02'(��

� &+5&7(5�6(7��&2'(�3$*(��7$%/(6���

� 352*5$00,1*�48,&.�5()(5(1&(��
6.1 Summary of Control Codes ..31
6.2 Summary of Escape Sequences ..32
6.3 Summary of DIP switch settings...33

6.3.1 Data Interface Switches (Left hand bank)............................33
6.3.2 Media Sensor Switches (Right hand bank)33

� 352*5$00,1*�(;$03/(���

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

1 ,QWURGXFWLRQ

The General Code ALFA thermal transfer printer offers high-speed, low-noise, on-demand
printing with a wide variety of media. The thermal transfer process permits printing onto a
range of materials, in a variety of colours. Alternatively, direct thermal printing onto thermal
paper offers the highest print speeds without the need for a transfer ribbon.

The printer will measure the label length automatically and synchronise to the label edge, or
to an index mark on pre-printed paper. Variable length labels can be produced on
continuous stationery.

The printer offers the following features :-

• EAN-8, EAN-13, EAN 2 & 5 digit addendums, UPC-A, UPC-E, EAN-128, Code-128
(subsets A, B & C), ITF-14, Interleaved 2 of 5, Code39 & Codabar barcodes.

• High density LEB code.
• USD-5 Dotcode (Optional).
• Bitmap fonts, 6 - 40 point.
• Bitstream Speedo font-scaling technology, with 4 Speedo fonts.
• Line & box graphics with grey shading.
• Bit image graphics.
• Rotations of 0°, 90°, 180° or 270° for all fields individually.
• Variable & incrementing fields.

This manual contains information about programming the printer directly (i.e without using
the GLWW label design package) for direct connection to stock control systems, etc.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

�� 3URJUDPPLQJ�*XLGH

&RPPDQG�'HVFULSWLRQ�&RQYHQWLRQV

Various typefaces and styles are used in the summary descriptions of commands.

Characters in EROG type are fixed command descriptors. Of these, characters in angle
brackets eg. �(VF! are control characters, identified by their common ascii names. The
decimal and hexadecimal equivalents are given in the ’Control Codes’ section of the
programming reference.

Characters in LWDOLFV are data values used by the command. This may be a length, or a text
message or barcode data. Where the data is not of a fixed length this is indicated by ellipsis,
eg. GGG���GG. Optional items are indicated by placing them in square brackets, eg. >�LL@.

The name shown to the right of the description is the command name, used for reference
purposes only. Spaces are often used to separate the various components of the command
in the descriptions, but this is purely for clarity. The spaces are not to be sent as part of the
command. Where a literal space is required, this is indicated by the character.

��� /DEHO�DQG�&RQWLQXRXV�0RGHV

The printer will operate in two modes depending on the stationery type.

In label mode, the stationery is supplied divided into fixed lengths, either as labels on a roll,
or continuous perforated paper with index marks. The printer measures the distance
between index marks to determine the formlength, and always aligns with respect to the top
of the label. Label gaps and index marks may be up to 25 mm in length. If a gap or index
mark exceeds this length, it will be interpreted as a PaperOut fault and printing will stop. The
label length must lie in the range 5 mm to 600 mm.

In continuous mode, the stationery has no index marks and the formlength is specified by
programming. Labels of any length can be printed in this mode. If a gap or index mark is
detected, it will be interpreted as a PaperOut fault and printing will stop.

The power-on default is determined by the DIP switch settings, but can also be changed
under software control.

�'&�! 6HW/DEHO0RGH
Sets the printer to label mode. If not already in label mode, the label will be measured.

�'&�! 6HW&RQWLQXRXV
Sets the printer to continuous mode.

�(VF!�$�OOOO 6HW)RUP/HQJWK
llll = form length (mm)

Sets the form length when in continuous mode. This command has no effect in label mode,
as the label length is measured automatically. Default length in continuous mode is 15 mm.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

�(VF!�3�\\\\ 6HW3DJH2IIVHW
yyyy = page offset (mm)

Sets the offset of the top-of-form from the physical top edge of the label. The default is 0
mm which places the top of the printed area at the top edge of the label. Setting a positive
offset means that the labels are synchronised to project further from the print head so that
the print starts further down on the label. This may be needed with perforated labels in order
to feed the perforations out past the print head.

��� &RRUGLQDWH�6\VWHP�	�0HDVXUHPHQWV

Printing is page oriented. Text, barcodes, graphics, etc are placed on the page using an
(x,y) coordinate system. Looking out from the print head in the direction of paper motion, x =
0 is the left hand edge of the print head and y = 0 is the top-of-form. Most coordinates are in
pixels by default, and other measurements, e.g. formlength, are in mm. The units of
measurement can be set globally to be in pixels, mm or points (1/72 inch) using the SetUnits
command. In general it is easier to set the units to mm, which not only makes distances
easier to visualise, but also makes the programming independent of print head resolution.
Some commands, eg. graphics must inherently be described in pixels, and these are not
changed by the SetUnits command.

�(VF!�=�X 6HW8QLWV
u = M Millimetres
u = 2 Half-millimetres
u = P Points (1/72")
u = D Dots/Pixels
u = O Original (default) units

Sets the global units of measurement. This affects all following commands that include
measurement or coordinate data.

���)LHOG�5RWDWLRQ

Almost all fields can be rotated North, East, West or South. (Some field types cannot be
rotated at present, but may become rotatable in future versions, so the rotation should
always be set appropriately).

�(VF!�9�U 6HW5RWDWLRQ
r = 1 0° (North)
r = 2 90° (East)
r = 3 180° (South)
r = 4 270° (West)

Sets the rotation of the fields which follow. The default rotation is 1. Field coordinates refer
to the top left corner of the field as viewed from within the field.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

��� 3ODFLQJ�7H[W�)LHOGV

The printer is supplied with 9 pre-scaled bitmap fonts and 4 Bitstream Speedo scalable
typefaces built in. The bitmap fonts is similar to Helvetica typeface and are pre-scaled at
point sizes of 6, 8, 10, 12, 16, 20, 24, 32 and 40. Because they are pre-scaled, they can be
placed on the page more quickly, but the point-sizes are limited and only one typeface can
be used. The printer also incorporates the Bitstream 4-in-1 Processor, V3.1, which
provides independent scaling in vertical & horizontal directions (3 - 999 Points), italics and
different kerning levels. The scaling process is relatively slow compared to character
placement, although a cache can be set up to avoid repeated scaling of the characters. At
larger point sizes (> 32 point) cached scalable characters can be placed faster than bitmap
characters (see the later section on buffers and caches). Either type of text can be rotated
with the RotateField command and bitmap text can be magnified with the SetMagnification
command.

�(VF!�7�[[[[�\\\\�GGG���GG��(RW! 3ODFH7H[W
xxxx = x coordinate
yyyy = y coordinate
ddd...dd = text message

The text is placed at (x,y) in the current font, magnification and rotation. The text must
consist of valid printable characters, but may also include tabs <TAB> and newlines <LF>.
Tabs and newlines are referenced to the placement coordinates. Tabs are set up at a
regular spacing, 12.5 mm by default, although the spacing can be set with the SetTabWidth
command. A newline will return to the start of the next line down, vertically aligned with the
placement coordinates.

�(VF!�)�Q�F 6HOHFW)RQW
n = Font number (0-9)
c = Country code.

Fonts 1-9 are bitmapped fonts. Font 0 selects scalable fonts which are set up using the
SetScalableFont command. The country code selects the ascii code mapping. The default
font and country code are ’1 W’.

Font
number

Point size Country
Code

Name Code
Page

0 Scalable fonts W Windows ANSI ---
1 6 point E English 437
2 8 point M Multilingual 850
3 10 point S Slavic 852
4 12 point P Portugese 860
5 16 point C Canadian 863
6 20 point F French 863
7 24 point N Nordic 865
8 32 point
9 40 point

(6 dot/mm only)

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

�(VF!�<�II�YYY�KKK�L�N 6HW6FDODEOH)RQW
ff = Font number
vvv = Vertical Point Size (3 - 999)
hhh = Horizontal Point Size (3 - 999)
i = Italicize (0 or 1)
k = Kerning level (0 - 3)

Sets the scalable font parameters. Horizontal and vertical point sizes may be set
independantly. The text may be italicized (i=1), and the kerning level may be selected. A
kerning level of 0 represents no kerning, and a kerning level of 3 represents the tightest
available kerning.

Scalable Font
Number

Speedo Typeface Similar Typefaces Print Sample

00 Swiss 721 Helvetica/Arial
01 Swiss 721 bold Helvetica/Arial bold

02 News 701 Ionic No 5
03 Impress

�(VF!�=�E 6HW%DVHOLQH
b = B Place on baseline
b = T Place on topline

This command controls how characters are placed with respect to the placement point. The
topline refers to a point at the top of the tallest character in the font. The baseline refers to
the bottom of the capital letters. The latter is generally a more convenient reference point,
and is more consistent between typefaces, but for backward compatibility reasons, the
default is Topline.

�(VF!�8�ZZZ 6HW7DE:LGWK
www = Tab width (mm)

Sets the width of embedded tabs for the PlaceText command.

�(VF!�:�O�F 6HW&KDU*DSV
l = Inter-Line Gap (0 - 9)
c = Inter-Character Gap (0 - 9)

Increases the gaps between characters & between lines by 10% of the point size for each
incremental value set. E.g. EscW24 increases the inter-character gap by 20% of the point
size and the inter-line gap by 40% of the point size, both with respect to the default gap
sizes. This is independant of scalable font kerning and is mainly to be used with bitmap
fonts. Default settings are ’0 0’.

�(VF!�0�YY�KK 6HW0DJQLILFDWLRQ
vv = Vertical factor (1-15)
hh = Horizontal factor (1-15)

Sets the magnification factors for logos and bitmap fonts (not scalable fonts). Vertical and
horizontal are with respect to a non-rotated field. The magnification factors rotate with the
magnified object, so e.g. magnification 0201 will produce tall thin characters in all rotations.
Default magnification is ’01 01’.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

��� 3ODFLQJ�%DUFRGHV

The printer supports the most commonly used barcode types directly as well as USD-5
dotcodes. Barcode modules are always scaled in dots (necessary for precise widths), but
the module widths can be set up as required. The general format for barcode placement is
as follows :-

�(VF!�%�[[[[�\\\\�W�KK�GGG���GG 3ODFH%DUFRGH
xxxx,yyyy = Coordinates (pixels)
t = Barcode type
hh = Height (mm)
ddd...dd = barcode data

Barcode type Description
1 ITF-14
2 EAN-13
3 EAN-8
4 Interleaved 2 of 5 (ITF)
5 Code-39
6 Code-39 (without checksum)
7 Codabar
8 EAN-128
9 Code-128
A UPC-A
B UPC-E

�(VF!�%�[[[[�\\\\���KK�GGGGGGGGGGGG 3ODFH,7)��

Places an ITF-14 barcode. Exactly 12 data digits must be sent. The leading zero and
checksum are added automatically. If the height is specified as 00, then the barcode height
is set to the correct value for the current magnification.

�(VF!�%�[[[[�\\\\���KK�>D@�GGGGGGGGGGGG�>GG��@ 3ODFH($1��

For a standard EAN-13 code, exactly 12 data digits must be sent. The checksum is added
automatically. If the height is specified as 00, then the barcode height is set to the correct
value for the current magnification. 2 and 5 digit addendums can also be added by sending
’T’ for a 2 digit or ’F’ for a five digit addendum, before the main data digits. The addendum
data should then follow immediately after the main data.

�(VF!�%�[[[[�\\\\���KK�GGGGGGG 3ODFH($1�

Exactly 8 data digits must be sent. The checksum is added automatically. If the height is
specified as 00, then the barcode height is set to the correct value for the current
magnification.

�(VF!�%�[[[[�\\\\���KK�GGG���GG�T 3ODFH,QW�RI�

Up to 50 digits may be sent, terminated with ’q’. The barcode height must be supplied.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH��

�(VF!�%�[[[[�\\\\���KK�GGG���GG�T 3ODFH&RGH��&

Up to 50 data characters may be sent, terminated with ’q’. The character set consists of all
the uppercase letters, numbers and also space, stop, asterisk and dash. The checksum is
calculated and added automatically.

�(VF!�%�[[[[�\\\\���KK�GGG���GG�T 3ODFH&RGH��

Up to 50 data characters may be sent, using the character set described above, and
terminated with ’q’. No checksum is appended.

�(VF!�%�[[[[�\\\\���KK�F�GGG���GG�T 3ODFH&RGDEDU

Up to 50 data characters may be sent, terminated with ’q’. The character set consists of all
the numbers and also dash, dollar, colon, oblique, stop, plus , and asterisk. The start and
stop codes can be selected using the optional format character.

Format character Start code Stop code
@ a a
A (default) a b
B a c
C a d
D b a
E b b
F b c
G b d
H c a
I c b
J c c
K c d
L d a
M d b
N d c
O d d

�(VF!�%�[[[[�\\\\���KK�GGG���GG��(RW! 3ODFH($1���

Up to 50 data characters may be sent. The character set consists of the ascii range 32-127.
Parentheses will be retained in the human-readable text, but stripped out of the barcode
data, and may thus be used to mark the article identifiers in the human readable text. Any
variable length field should be terminated with the GS character (ascii 29). This will not
appear in the human readable text, but will be translated into FUNC1 in the barcode. If the
height is specified as 00, then the barcode height is set to the correct value for the current
magnification.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

�(VF!�%�[[[[�\\\\���KK�QQ�GGG���GG��(RW! 3ODFH&RGH���

Up to 50 data characters may be sent. The character set consists of the ascii range 0-127.
Codesets A, B and C are used to produce the optimum barcode density. The number of
data bytes can normally be set to 00 and the barcode data terminated with <Eot>. If the
<Eot> character itself is required in the barcode data, then the number of data bytes in the
barcode must be specified, and <Eot> will be encoded, rather than terminating the data.

�(VF!�%�[[[[�\\\\�$�KK�GGGGGGGGGGG 3ODFH83&$

Exactly 11 data digits must be sent. The checksum is added automatically. If the height is
specified as 00, then the barcode height is set to the correct value for the current
magnification.

�(VF!�%�[[[[�\\\\�%�KK�GGGGGGGGGGG 3ODFH83&(

Exactly 11 data digits must be sent. The data is converted to UPC-E format by zero
suppression, and the checksum is added automatically. If the height is specified as 00, then
the barcode height is set to the correct value for the current magnification.

�(VF!�1�W�P�Z�Q 6HW%DUFRGH0RGXOHV
t = Barcode type (See PlaceBarcode)
m = Module magnification (1-9)
w = Wide module width (1-9)
n = Narrow module width (1-9)

Sets the magnification factor and the wide & narrow module widths for barcodes. Wide and
narrow module widths can only be set for types 1, 4, 5 and 6. Supplying a value of 0 for any
parameter leaves that parameter unchanged. e.g. <Esc> N 4200 sets the magnification of
type 4 (Interleaved 2 of 5) to 2, but leaves the module widths unchanged.

�67;! (QDEOH%DUFRGH7H[W
Enables automatic placement of human readable text under the barcode. This option is on
by default. For some barcode types the size and position of the text is pre-defined by the
barcode specification, eg. EAN-13. For others an optimum text size is selected and the text
is centred under the barcode.

�(7;! 'LVDEOH%DUFRGH7H[W
Disables placement of human readable text.

�(VF!���[[[[�\\\\�WW�VV�GGG���GG 3ODFH'RW&RGH
xxxx,yyyy = Coordinates
tt = type (05, 07, 09, 11, 14, 17, 20)
ss = Dot spacing (pixels)
ddd...dd = dotcode data

Places a USD-5 dotcode. The dot spacing is measured from centre to centre of the dots. If
the spacing is set to 00, the standard 4 mm spacing is used. The number of digits must
match the dot code type, e.g. type 17 requires 17 digits. The checksum is calculated &
added automatically.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

�(VF!���[[[[�\\\\�/�VV�II�F�GGG���GG��(RW! 3ODFH/(%&RGH
xxxx,yyyy = Coordinates
ss = module size (1-99 dots)
ff = No of fields (01-11)
c = No of codes (1-3)
ddd...dd = field data

The number of fields and codes must be specified - these give the dimensions of the code.
If the data stream is too short, it will be padded with spaces, if too long, the excess data will
be discarded. Invalid characters are converted to spaces. By default, data is encoded as
Type1 with parity checking. Type2 encoding can be selected by inserting an ’h’ character in
the data stream, or Type1 by inserting a ’n’ character. Thus the encoding type can be
switched at will. If the current field is not full when a type switch occurs, it will be padded with
spaces and the next field will be of the new type.

The character set includes 5 foreign characters. These can be used directly in the data
stream, provided the correct code page is selected. Alternatively, they can be represented
by standard ascii characters as follows.
@ = É, [= Ä, \ = Ö] = Å ^ = Ü

Note that the module size is always given in dots, regardless of the current units of
measurement. This follows the same convention as barcode module sizes and is necessary
because of the small dimensions normally used.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

��� %ORFN�)LOO��%R[�	�/LQH�'UDZLQJ

The BlockFill command can be used to place a block of black, white or grey, or to colour
existing fields, e.g. invert text. Basic line drawing can be obtained by specifying a narrow
height or width. Box drawing is obtained either with multiple lines, or by overlaying a black
box with a slightly smaller white box. Block fills are not affected by rotation, so width is
always in the x direction and height in the y direction. (x,y) marks the top left corner.

�(VF!�,�[[[[�\\\\�ZZZZ�KKKK�F %ORFN)LOO
xxxx,yyyy = Coordinates
wwww = Width
hhhh = Height
Colour c

The BlockFill command fills the specified area according to the colour code given. Some of
the colour codes can be used to produce reverse image or coloured text, or to draw dotted
lines.

Colour code Description Effect on underlying text
B Black fill Erased
W White fill Erased
G Grey fill Erased
N Invert White on black
A Grey AND Grey on white
R Grey OR Black on grey
I Grey invert White on grey

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

��� 3ODFLQJ�*UDSKLFV

The printer supports 2 types of graphic images. Logos are small bitmap images which are
stored in memory and can be placed on the page at will. Graphics fields transfer the image
directly onto the page without storing it in memory. Logos can be magnified and rotated, and
can be placed as often as required once downloaded. However, they take up space in the
printer memory, reducing the area available for the main image. Graphics fields do not take
up any additional space, but must be downloaded each time they are used, which can be
extremely slow. Graphics fields cannot be magnified or rotated at present.

In both cases, the data defines a bitmapped image. 1 byte = 8 dots described horizontally.
The most significant bit of the first byte appears on the left hand side and consecutive bytes
work across to the right until the described width is reached. Any unused bits in the last byte
of the line are discarded and the next line begins with the next byte. This continues until the
required height and width have been covered. The command finishes when the correct
number of bytes have been received. Note that if a graphics command has been sent and
insufficient data has been transmitted, any further commands are then ’absorbed’ by the
graphics command which is still waiting for data. Thus the commands are not executed, and
the printer appears to have crashed. Count the bits & bytes carefully! Note that the width
and height of graphics images are always specified in pixels. These values are QRW affected
by the SetUnits command.

Graphics command require an 8 bit communications interface to transfer correctly. This can
be via the Centronics port, or via the serial port set up for 8 data bits or in printable character
mode with 7 data bits.

�(VF!�*�[[[[�\\\\�ZZZZ�KKKK�GGG���GG 3ODFH*UDSKLFV
xxxx,yyyy = Coordinates
wwww = Width in dots
hhhh = Height in dots
ddd...dd = graphics data

Places the graphic data directly into the image at x,y.

�(VF!�.�Q�WWWWWWWWWW�ZZZZ�KKKK�GGG���GG 'HILQH/RJR
n = Logo number (0-9)
ttt...tt = Title (Exactly 10 characters)
wwww = Width in dots
hhhh = Height in dots
ddd...dd = logo data

Defines a logo, storing the graphic data in memory. The logo must be placed on the page
using the PlaceLogo comand.

�(VF!�/�[[[[�\\\\�Q 3ODFH/RJR
xxxx,yyyy = Coordinates
n = Logo number (0-9)

Places a previously defined logo. The logo will be magnified and rotated according to the
current magnification and rotation settings.

�(VF!�;�Q 'HOHWH/RJR
n = Logo number n (0 - 9)

Deletes a logo which has previously been downloaded. The command must be sent twice.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

��� 6WRUHG�)RUPDWV

Stored Formats provide a way of storing a set of commands, normally a label definition, so
that the commands can be replayed with a short command sequence. This gives a macro
facility which can save on communications traffic in critical cases, and also provides a
means of batch printing with incrementing variables (see section on variable fields).

Stored formats take up a small amount of printer memory, but this does not normally reduce
the print area significantly. When a format is stored or deleted, the current image will be lost
as memory is reallocated.

�(VF!�'�Q�WWWWWWWWWW�GGG���GG��97! 'HILQH)RUPDW
n = Format number n
ttt...tt = Title (Exactly 10 characters)
ddd...dd = Commands

The commands are entered directly after the title, terminated with <VT>. Note that Code128
barcodes which include <VT> in the data cannot be stored this way. Graphics fields should
not be defined in a format either for the same reason. Use logos instead.

�(VF!�-�Q /RDG)RUPDW
n = Format number

Loads the specified format as a macro to be replayed once.

�(VF!�M�Q�UUUU 5HSHDW/RDG)RUPDW
n = Format number
rrrr = Repeat count

This command executes a stored format repeatedly. This is useful for printing batches of
labels with incrementing fields (See variable fields section). Note that repeat printing of a
stored format cannot be cancelled with the AbortPrint command as all commands are taken
from the stored format until the command terminates. The InlineAbort command should be
used instead if required.

�(VF!�(�Q (UDVH)RUPDW
n = Format number

Delete format number n from memory. This command must be sent twice.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

��� 3ULQWLQJ�&RPPDQGV

�))! 3ULQW)HHG
Prints one copy of the current label. Sending a further formfeed command will clear the
image buffer and feed a blank label. Use the RepeatPrint command to obtain multiple
copies.

�(VF!�5�QQQ 5HSHDW3ULQW
Repeat nnn times

This command produces one or more copies of the current image. If the image has just
been printed using PrintFeed or RepeatPrint, then further copies of the same image are
produced. If the count is set to 0000, then the printer repeats continuously.

�(VF!�U�QQQQ 5HSHDW3ULQW�
Repeat nnnn times

This command is identical to RepeatPrint, except that the maximum count is 9999.

�(VF!�D $ERUW3ULQW
Stops a repeat print run. This command must be issued after a repeat command but before
other commands if it is to be effective. If another label definition is sent first, then the
AbortPrint command will be held up in the input buffer until the image buffer is free, ie. until
all the repeats are finished, and so will have no useful effect.

�(VF!�P�QQQ 6HW6SHHG
nnn speed (20 - 999)

Sets the print speed. The print speed affects the print quality. See the later section on print
quality. The default speed is 55 mm/s. Each printer type has a different maximum speed
limit, depending on the print width and resolution. Attempting to set too high a speed sets it
to the maximum value.

�(VF!�6�QQ 6HW6SHHG�
nn speed (40 - 139)

This is an older form of the SetSpeed command, retained for compatibility. The speed is
input as 2 digits. Values in excess of 99 mm/s are to be input without the leading 1.

�(VF!�K�QQQ 6HW+HDW/HYHO
Level nnn (50 - 200)

The level represents the percentage of the factory preset level. Different media may require
different heat levels to obtain the best print quality (see also section 3). The maximum heat
setting allowed is 150% in direct thermal mode and 200% in thermal transfer mode.
Attempting to set too high a heat value sets it to the maximum value allowed.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� 9DULDEOH�)LHOGV

Variable and incrementing fields are used in conjunction with stored formats. A format is
defined which includes references to variable/incrementing data and whenever that format
is printed, the variable values are incorporated in the output.

Variable fields are accessed by replacing the normal data for text or barcodes with an
escape sequence which expands to the variable data. This allows several variables to be
used in one text/barcode field, or the same variable to be used in more than one
text/barcode field. It also allows for part of the text to be fixed and part variable.

Each variable fields can optionally be given an increment value when it is defined. There is
a command to update all incrementing variables, which allows incrementing serial numbers
to be added to labels automatically.

The normal sequence of events when programming will be :-
1) Define variable types & sizes, and assign initial values.
2) Define label format, referencing the variables where needed.

If incrementing fields have been used, the format should contain the
command to update the variables.
The format should contain a formfeed or repeat print command.

3) Repeat-load the format to get labels with auto-incrementing variables.

������ 'HILQLQJ�)LHOGV

�(VF!�I�G�U�ZZ��LL��XX��(RW! 'HILQH)LHOG
r = field reference, 0-9 or A-Z.
ww = maximum width of field.
+ii = increment value (optional)
/uu = update frequency (optional)

This command defines a variable or incrementing field which can be used in text or barcode
commands at a later stage. The reference letter may be 0-9 or A-Z, allowing up to 36
variables. ww defines the maximum number of characters that will be used in the field. If the
field is to be incremented or decremented automatically, then an increment value must be
supplied with +ii or -ii (for decrement). If the field is to be updated only every Q labels, then
an update frequency must be supplied with /uu. The <Eot> character ends the definition.

�(VF!�Y�U�GGG���GGG��(RW! 6HW)LHOG9DOXH
r = field reference
ddd...dd = field value terminated with <Eot>

This command enters a new value for a variable.

�(VF!�I�O /LVW)LHOGV

A verbose listing of the variables defined, produced on the serial port. This is mainly for
debugging purposes.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

�(VF!�I�X 8SGDWH)LHOGV

Updates all incrementing fields, according to their field definitions. An incrementing field will
normally be a pure decimal number, but can include any characters. The rules for
increment are as follows :-
0 - 9: 0 + 1 = 1, etc. 9 + 1 = 0, carry 1.
A - Z: A + 1 = B, etc. Z + 1 = A, carry 1.
a - z a + 1 = b, etc. z + 1 = a, carry 1.
Others: Skipped over.
Carries from the most significant digit are discarded.

Examples:-
128 + 3 = 131
1A8 + 3 = 1B1
9Z9 + 1 = 1000
1.6 + 25 = 4.1
1*A,8$ + 99 = 1*K,7$

�(VF!�I�V�''00<<KKPPVV 6HW5HDO7LPH&ORFN
DD = day of month (1-31)
MM = month (1-12)
YY = year (80-99 = 1980-1999, 00-79 = 2000-2079)
hhmmss = hours/minutes/seconds (24-hour clock)

Sets the printer’s real-time clock and updates the date/time field. The real-time clock in the
printer is software generated from the CPU clock frequency. It is not as accurate as a
dedicated clock function over a long time period, but should be accurate enough for time-
stamping labels. It is advisable to set the RTC before starting each run of labels.

�(VF!�I�W 8SGDWH7LPH)LHOG

Field ’t’ is reserved for the date & time field. This field is updated from the real-time clock
using this command. The clock is not used directly since it is possible for the clock to
change within the formatting time for a label. This could give inconsistent results if the time
appeared more than once in a label, e.g. in text and a barcode. Remember to update the
field every label if a fresh time stamp is required for each one.

�(VF!�I�[&OHDU)LHOGV

This command clears all the variable fields, freeing the space to start again. This will not
normally be necessary as each definition of a variable overwrites the previous one. The
ClearBuffers command also clears all variable definitions.

������ $FFHVVLQJ�)LHOGV

Variable fields are accessed by placing a special escape sequence within the data supplied
to a normal text or barcode field. Any number of variables can be included within a field.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

�6RK!�U�IRUPDW��(RW! *HW9DULDEOH),HOG
r = field reference

This sequence can appear within text or barcode data and provides access to the variable
fields, e.g. <Esc> T 0010 0010 Hello <Soh> 1 <Eot>, how are you? <Eot>
inserts variable field 1 into the text. With no formatting information, the variable value
appears as is, and takes the minimum width necessary. This will normally be OK for text, but
barcodes generally need a particular width. The formatting code can be used to specify a
minimum field width, and the padding required. It also allows a decimal point to be inserted
in a number. e.g. a price of £3.99 may appear as 3.99 in text and 00399 in a barcode.

If the first format character is '<' the field is left-justified and padded on the right with spaces.
If the first character is '>', the field is right justified, padded on the left with spaces. If the first
character is '=', the field is padded with leading zeros. If any of these characters are used,
they should be followed by a field width, given as a decimal number. Note that this is a
minimum width and if the variable exceeds the width specified in the format, it will expand
as needed.

If a '.' or ',' character is found in the format information, this specifies a decimal point. It
should be followed with a decimal number representing the number of decimal places to
use.

These are best illustrated by example. Assume field 1 has a value of 258.

Escape sequence Expands to :-
<Soh>1<Eot> "258"
<Soh>1>5<Eot> " 258"
<Soh>1<5<Eot> "258 "
<Soh>1=5<Eot> "00258"
<Soh>1=10<Eot> "0000000258"
<Soh>1=3.2<Eot> "2.58"

�6RK!�W��G��G�IRUPDW��(RW! *HW7LPH)LHOG�
+d..d[-] = days offset.

This command is used in the same way as the variable field command, but the information
is taken from the date/time field. The format information is also different.
The offset may be used for printing expiry or best-before dates. If followed immediately by a
'-' sign, it becomes a negative offset, i.e. back-dated. In the format specifier, the various
parts of the date and time are represented by the letters DMYhms for day, month, year,
hours, minutes, seconds. Also, 'a' and 'A' can be used to produce an AM/PM indicator. 'a'
produces 'a' or 'p', 'A' produces 'A' or 'P'. By default, all fields are represented as 2 digits.
This can be modified by preceding the letter with a '#' which has the following effect:- #D
omits the leading zero from days 1-9. #M omits the leading zero before months 1-9. #Y
gives a 4 digit year. #h gives a 12-hour clock time. Any other characters are passed through
unchanged and may be used as separators in the output. For examples :

If the date/time field is 16:23:40 on 18th August 1994 :-
<Soh>t#D-#M-#Y #h:m:s A<Eot> Expands to "18-8-1994 4:23:40 P"
<Soh>t+60D-M-Y<Eot> Expands to "17-10-94"

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� 3ULQWHU�0HPRU\�8VH���%XIIHUV�DQG�&DFKHV

������ ,PDJH�%XIIHUV

As with other page printers, eg. laser printers, fields are placed in an image buffer in printer
memory. When the image is complete it is transferred to the paper, the image is cleared and
the process can be repeated. The ALFA printer has a number of features designed to
increase the throughput of the printer.

By default, there is a single image buffer which occupies the whole of the printer’s free
memory area, giving the maximum image size. However, once an image is complete, no
further formatting can take place until the image is printed and the buffer cleared. To speed
up the print formatting, a second buffer can be allocated. This is referred to as DoubleBuffer
mode. In this case, a second label can be formatted whilst the first is printing. This allows
non-stop printing in a large number of cases. The penalty is that the effective image area is
halved as the memory is divided between the two buffers.

When formatting complex labels where the majority of the label is invariant and a few fields
change, there are two methods of saving formatting time. The first is to copy previous image
and blank out the areas which are changing. This is relatively simple if the variant data is a
fixed size, but in some cases it is difficult to predict how much blanking is required. An
alternative method is to allocate a BaseImage buffer. The fixed fields are formatted first and
the image frozen in the base image buffer. For each subsequent label, the base image is
copied and the variant fields added on top. This method is easier and more foolproof than
the blanking method, but as with double buffering, requires more memory. Unless the labels
are very small, or extra memory is fitted, double buffering and base image buffering will not
normally be used together as the printer has only one third of its memory available for the
image.

�56! 6HW'RXEOH%XIIHU
Enables double buffering of the image.

�86! 6HW6LQJOH%XIIHU
Disables double buffering. This command does not disable the base image buffer.

�(VF!�L�Q 6HW%DVH,PDJH
n = 0 Disabled
n = 1 Enabled

Enables or disables the base image buffer. This command does not affect double/single
buffer mode.

�62! &RS\&RPSLOH7R%DVH
When the base image buffer is enabled this command copies the current compiled image
into the base image buffer. Has no effect when the base image buffer is disabled.

�'/(! &RS\%DVH7R&RPSLOH
When the base image buffer is enabled, this command copies the base image into the
compile buffer (current image). When the base image buffer is disabled, it copies the
previous printed image into the compile buffer. (This would appear to be a futile operation in
single buffer mode - in fact it simply prevents the previous image from being cleared).

�(0! &OHDU&RPSLOH%XIIHU

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

Clears the current image. The image is normally cleared automatically so this command is
only useful for cancelling a partially formed image if a mistake is made.

�&$1! &OHDU$OO%XIIHUV
Clears all the image buffers and deletes all logos, stored formats and variable fields. Use
with care!

������)RQW�&DFKHLQJ

Scalable fonts, for all their many features and benefits, do incur a speed penalty in the
scaling process. The effect of this can be minimised by cacheing the characters as they are
scaled, so that when the same character is used again (in the same point size & rotation), it
can be retrieved directly from the cache in a fraction of the time required to regenerate it
from scratch. As with multiple image buffers, cacheing consumes memory and reduces the
image size, although in general a large cache is not required as most labels only use a
limited number of characters.

�(VF!�F�D�QQQQ $OORFDWH)RQW&DFKH
Cache size nnnn Kbytes

This command creates a cache area for scalable fonts to speed up text placement. The
current image is cleared as printer memory is reallocated. No cache is allocated by default.
As a rule of thumb, a 20K cache works in most cases, but some experimentation may be
required. The Status command can be used to obtain information on cache useage.

�(VF!�F�G 'LVDEOH)RQW&DFKH
Disables storing of characters into the cache. The cache will still be searched when
characters are placed, but no new characters will be added to the cache. This command
may be used to prevent the cache being filled with infrequently used characters, or very
large characters.

�(VF!�F�H (QDEOH)RQW&DFKH
Enables storing of characters into the cache. Caching is enabled automatically when a
cache is allocated.

�(VF!�F�I)OXVK)RQW&DFKH
Clears all stored characters from the cache.

�(VF!�F�U 6HW&DFKH5HXVH
When the cache becomes full, and further cache space is required, the least-recently used
characters will be ejected from the cache to make room for new data. This option should
only be used if there is sufficient cache allocated to cover all the characters in one label. If
the printer is fitted with additional memory, then a large cache can be allocated at startup,
and should require no further attention. If the cache is too small to accomodate all the
characters on a repeated label, then performance can become worse than with no cache.
When the cache runs out, the earliest characters are ejected. When the next label is printed,
using the same character set, the earliest ones are no longer within the cache. The cache
reuse process restores these characters, but in the process ejects others which will also be
needed, so that the number of cache hits is drastically reduced.

�(VF�F�Q 6HW1R&DFKH5HXVH
When the cache becomes full, no further characters are added until the cache is flushed.
This is the default mode of operation.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

�������,QSXW�%XIIHU�6L]H

The default size of the input buffer is 2K bytes. If required, a larger (or smaller) buffer size
can be set up, e.g. when printing a batch of labels with variable data. Note that the image
buffer uses the general memory pool, so specifying a large buffer will reduce the image area
available.

�(VF!�E�6�QQ 5HVL]H,QSXW%XIIHU
Buffer size nn Kbytes

Resizes the input buffer to the size requested, provided that the new size is large enough to
contain the data already queued in the buffer. This should ideally take place once at power-
on, as changing the buffer size will clear the image buffers along with any stored logos and
formats.

�������6DYLQJ�,PDJH�6SDFH

In a few iolated cases, large labels are required which have a small print area at each end.
The image buffer may not be large enough to hold the entire label, but if the unused space
in the middle is of a known fixed size, the printer can be set up to split the image area
around it. Other (rare) cases involve producing a duplicate copy of the image on a single
perforated label. A duplicate image can be set up if required.

�(VF!�2�\\\\�OOOO 6HW)RUZDUG)HHG
yyyy = Start coordinate
llll = Distance to feed (mm)

This command is used to insert white space in the image without using up image buffer
capacity. NOTE: All Y coordinates, including the start coordinate for this command, refer to
the distance through the image buffer EHIRUH�insertion of white space. This command must
be sent for every label requiring it - the effect is lost when the image is cleared.

�(VF!�R�\\\\ 6HW'XSOLFDWH2IIVHW
yyyy = Offset of duplicate image

This command is used to create a duplicate image without using up image buffer capacity.
The offset specified is the distance from the start of the first image to the start of the second
image. The second image must lie within the formlength set. To disable duplicate images,
set the offset to zero. This command need not be sent for every label - it remains in effect
until the offset is set to 0000.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� &XWWHU�&RQWUROV

The following commands are only effective in printers fitted with a cutter.

�)6! (QDEOH&XWWLQJ
Enables cutting operations. Enabled by default.

�*6! 'LVDEOH&XWWLQJ
Disables cutting operations.

�(VF!�&�\\\\ 6HW&XW3RVLWLRQ
yyyy = Y-Coordinate (mm)

This command sets the distance from the start of the label to the cut position. In label mode
cutting then takes place automatically on every label when cutting is enabled. In continuous
mode, the cut position must be redefined for each label. Note that repeat printing or copying
the print buffer will also copy the cut position.

���� 6WDWXV�5HSRUWLQJ

�(VF!�H�F 6WDWXV5HSRUW
c = c Font cache status
c = e General status report
c = f List stored formats
c = l List stored logos
c = r List resources loaded
c = t Show current date/time
c = v Printer type & software version

Provides various status reports via the serial line, which may be of value to programmers
when optimising for throughput or memory usage. Most of the reports are in a verbose
format and are not intended to be machine readable. The following have a fixed format :-

Type & version :-
PP��P�SS��S�9Y�YYV��

Printer model mm..m
Program suite pp..p
Version v.vv
Special version s..

e.g.
1048 MA62 V2.02C
Printer type 1048, program suite MA62, Version 2.01, special version for cutter.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

List logos :-
QQ VWRUHG�ORJRV
U� ZZZZ�KKKK�O�WWWWWWWWWW (one line for each logo stored)

number of logos nn
reference r
width wwww (dots)
height hhhh (dots)
location R=ROM, M=memory
title tttttttttt

List formats :-
QQ VWRUHG�IRUPDWV
U� ssss O�WWWWWWWWWW (one line for each format stored)

number of formats nn
reference r
size ssss (bytes)
location R=ROM, M=memory
title tttttttttt

�(14! 6KRUW6WDWXV
Provides a single character status report via the serial line. In general, numeric codes
indicate normal activity, and alphabetics indicate a fault condition. The status values are as
follows :-

0 Printer OK
P Paper out
R Ribbon out
C Cutter jammed
M Media error (head open/rewinder full)

�(VF!�V (QDEOH5HSRUWLQJ
Enables a message reporting the number of characters left in the input buffer after each
label is printed. The format is "OK nnnn<CR><LF>", where nnnn is the (hexadecimal)
number of bytes remaining unprocessed in the input buffer. This facility is required for
backward compatibility with programs which look for this message. Enabled by default at
power on.

�(VF!�W 'LVDEOH5HSRUWLQJ
Disables input buffer reporting.

�(VF!�]�V 6KRUW5HSRUWLQJ
Replaces the input buffer report with a single ’
’ character as each label is printed.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� ,QOLQH�&RPPDQGV

Most printer commands pass through the input buffer, and any command which is forced to
wait for printing to finish, e.g. formatting a label in single buffer mode, will hold up all input
data. Also there is no way to cancel logo or graphic data input part way through. Inline
commands are intercepted before being placed in the input buffer and can be acted upon
almost immediately, irrespective of the state of the input buffer. To maintain compatibility,
inline commands must be specifically enabled before they will be trapped.

�(VF!�]�Q 6HW,QOLQH
n = 0 disabled
n = 1 enabled

�6XE! (QWHU,QOLQH
Characters received after <Sub> will be placed in the inline buffer, not the main input buffer.
To send a literal <Sub> character, e.g. as part of graphics data, send the character twice.

�(RW! ([LW,QOLQH
Exits back to normal command mode.

H ,QOLQH6KRUW6WDWXV

D ,QOLQH$ERUW3ULQW

K�QQQ ,QOLQH6HW+HDW

P�QQQ ,QOLQH6HW6SHHG

These commands are functionally identical to their main input counterparts, except that the
effect is immediate.

V ,QOLQH%XIIHU6SDFH
Shows input buffer free space as a 4 digit hex value.

[,QOLQH5HVHW
Terminates any inline command currently executing, flushes the input buffer and clears the
compile buffer, then sends a ShortStatus report. This command can be used to regain
control during a graphics download.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� 0LVFHOODQHRXV�&RPPDQGV

�(VF!�N�I 6HQVRU&RQWURO
Flags f
1 = Enable rewinder
2 = Enable label-present sensor

Controls the external rewind motor and the label-present sensor. The flags value is derived
by summing the values for the individual controls. E.g. <Esc>k3 enables both the rewinder
and the label-present sensor. Note that the label-present sensor must also be physically
enabled by the DIP switches, if it is used. Both sensor and rewinder are enabled by default.

�(VF!�[(QDEOH;RII
Enables XON/XOFF serial data flow control. Enabled by default at power on.

�(VF!�\ 'LVDEOH;RII

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

���� (UURU�5HSRUWLQJ

The printer checks the validity of all commands received and reports errors where
appropriate. The normal causes of errors are :-

• Part of a field is positioned so that it falls outside the print area.
• The command does not make sense, or contains illegal values.
• Logos, formats or variables referred to by an invalid reference.
• Attempt to define a logo or format that already exists.

Not all errors are reported. Some are ignored where nothing reasonable can be done, and
some attempt to produce output, even if it is in the wrong place. Text fields will wrap around
to the next line if they are too long and back to the top of the page if they are still too long. If
the placement coordinates lie outside the print area, the coordinates of the previous field are
used.

Where an error message is printed it takes the form :-

Barcode error: Page overflow

printed at the top right corner of the label. The first part of the message indicates the item
which caused the error and the second part indicates the cause of the error. The following
causes of error are possible :-

Error message Possible causes
Invalid data Command contained an invalid sequence, or referenced a

non-existent logo, format or field, or attempted to define a logo
or format which already exists.

Illegal command Attempted to define, execute or delete a format from within
another executing format.

Page overflow An item was placed such that part or all of it fell outside the
current print area. Note that available print area depends on
the buffer mode in use, stored logos and formats, font cache
and input buffer size.

Memory full There was not enough memory available to store a logo or
format.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

� *HWWLQJ�WKH�%HVW�3HUIRUPDQFH

��� 2SWLPLVLQJ�3ULQWHU�7KURXJKSXW

The ALFA printer is designed to give maximum throughput, and the following guidelines
should be followed when writing programs.

• Use double buffering where possible to allow formatting on the fly.

• Use a font cache when working with scalable fonts.

• Use the base image buffer or copy the previous print buffer when working with complex
and mainly invariant labels.

• Do not magnify or rotate logos. If possible, download them in the orientation & size that
they will be placed in.

• Use logos rather than graphics if the graphical data will be required more than once, to
save download time.

• Trim surrounding white space from logos to minimise the area downloaded, stored &
placed.

• Use stored formats and variable fields to reduce the amount of data sent to the printer.

• Avoid unnecessary commands, e.g. repeatedly setting rotation & point size.

��� 2SWLPLVLQJ�3ULQW�4XDOLW\

The ALFA printer has been set up to produce optimum print quality with a broad range of
media. The following guidelines will enable you to produce the highest quality output.

• Do not set the print speed faster than is really needed. As with all thermal printers, print
quality reduces as the speed increases. If the printer is pausing between labels, reducing
the speed may allow it to print continuously, improving print quality and reducing noise
and wear, without reducing overall throughput.

• Select media appropriate to the conditions of use. Print quality is to a very large extent
dependent on the papers and ribbons in use. Some papers are optimised for high
speeds, whereas others will blur. Wax ribbons can be used at higher speeds than resin
ribbons, although the durability of the print is not as good.

• Print barcodes so that the bars are perpendicular to the print head. This gives the best
readability as there is no blurring between bars.

• Keep the print head and paper/ribbon path clean. Accumulated dust and dirt on the head
reduces the efficiency of the heat transmission to the paper, producing uneven results.

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

� 3ULQWDEOH�&KDUDFWHU�&RPPDQG�0RGH

This mode is used when the host computer cannot provide 8 bit characters or control codes.
This may be the case with some mainframe systems. The method relies on the use of four
’escape’ characters. These are defined in terms of the action taken by the printer :-
! The following character must have its top bit set (OR with 80h).
The following character must be converted to a control character (AND with 1Fh).
% The following character must be converted to a high control character

(AND with 1Fh, then OR with 80h).
& Special characters: ! # % and & are interpreted literally.

d is interpreted as DEL (127).
D is interpreted as HiDEL (255).
No other characters should be used after &.

All incoming characters will be masked to 7 bits, and control characters and DEL will be
ignored. The following table shows the conversions for all possible characters.

Printable Character Conversion Table.
000 = #@ NUL 032 = 064 = @ 096 = ` 128 = %@ 160 = ! 192 = !@ 224 = !`
001 = #A SOH 033 = &! 065 = A 097 = a 129 = %A 161 = !! 193 = !A 225 = !a
002 = #B STX 034 = " 066 = B 098 = b 130 = %B 162 = !" 194 = !B 226 = !b
003 = #C ETX 035 = &# 067 = C 099 = c 131 = %C 163 = !# 195 = !C 227 = !c
004 = #D EOT 036 = $ 068 = D 100 = d 132 = %D 164 = !$ 196 = !D 228 = !d
005 = #E ENQ 037 = &% 069 = E 101 = e 133 = %E 165 = !% 197 = !E 229 = !e
006 = #F ACK 038 = && 070 = F 102 = f 134 = %F 166 = !& 198 = !F 230 = !f
007 = #G BEL 039 = ' 071 = G 103 = g 135 = %G 167 = !' 199 = !G 231 = !g
008 = #H BS 040 = (072 = H 104 = h 136 = %H 168 = !(200 = !H 232 = !h
009 = #I HT 041 =) 073 = I 105 = i 137 = %I 169 = !) 201 = !I 233 = !i
010 = #J LF 042 = * 074 = J 106 = j 138 = %J 170 = !* 202 = !J 234 = !j
011 = #K VT 043 = + 075 = K 107 = k 139 = %K 171 = !+ 203 = !K 235 = !k
012 = #L FF 044 = , 076 = L 108 = l 140 = %L 172 = !, 204 = !L 236 = !l
013 = #M CR 045 = - 077 = M 109 = m 141 = %M 173 = !- 205 = !M 237 = !m
014 = #N SO 046 = . 078 = N 110 = n 142 = %N 174 = !. 206 = !N 238 = !n
015 = #O SI 047 = / 079 = O 111 = o 143 = %O 175 = !/ 207 = !O 239 = !o
016 = #P DLE 048 = 0 080 = P 112 = p 144 = %P 176 = !0 208 = !P 240 = !p
017 = #Q DC1 049 = 1 081 = Q 113 = q 145 = %Q 177 = !1 209 = !Q 241 = !q
018 = #R DC2 050 = 2 082 = R 114 = r 146 = %R 178 = !2 210 = !R 242 = !r
019 = #S DC3 051 = 3 083 = S 115 = s 147 = %S 179 = !3 211 = !S 243 = !s
020 = #T DC4 052 = 4 084 = T 116 = t 148 = %T 180 = !4 212 = !T 244 = !t
021 = #U NAK 053 = 5 085 = U 117 = u 149 = %U 181 = !5 213 = !U 245 = !u
022 = #V SYN 054 = 6 086 = V 118 = v 150 = %V 182 = !6 214 = !V 246 = !v
023 = #W ETB 055 = 7 087 = W 119 = w 151 = %W 183 = !7 215 = !W 247 = !w
024 = #X CAN 056 = 8 088 = X 120 = x 152 = %X 184 = !8 216 = !X 248 = !x
025 = #Y EM 057 = 9 089 = Y 121 = y 153 = %Y 185 = !9 217 = !Y 249 = !y
026 = #Z SUB 058 = : 090 = Z 122 = z 154 = %Z 186 = !: 218 = !Z 250 = !z
027 = #[ESC 059 = ; 091 = [123 = { 155 = %[187 = !; 219 = ![251 = !{
028 = #\ FS 060 = < 092 = \ 124 = | 156 = %\ 188 = !< 220 = !\ 252 = !|
029 = #] GS 061 = = 093 =] 125 = } 157 = %] 189 = != 221 = !] 253 = !}
030 = #^ RS 062 = > 094 = ^ 126 = ~ 158 = %^ 190 = !> 222 = !^ 254 = !~
031 = #_ US 063 = ? 095 = _ 127 = &d 159 = %_ 191 = !? 223 = !_ 255 = &D

Note that is used to represent the 'space' character.

E.g. To send "<Esc>T00050005Hello<Eot>" in printable character mode, send :-
"#[T00050005Hello#D"

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

� &KDUDFWHU�6HW��&RGH�3DJH��7DEOHV

W - Windows ANSI E - English (CP437)

M - Multilingual (CP850) S - Slavic (CP852)

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

P - Portugese (CP860) C/F - Canadian/French (CP863)

N - Nordic (CP865)

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

� 3URJUDPPLQJ�48,&.�5HIHUHQFH

��� 6XPPDU\�RI�&RQWURO�&RGHV

Some control codes are used as single character commands. Others form part of an escape
sequence. The latter use is shown below in brackets.

NUL ^@ 0 Ignored
SOH ^A 1 (Introduces variable fields in text & barcodes)
STX ^B 2 EnableBarcodeText
ETX ^C 3 DisableBarcodeText
EOT ^D 4 (Data terminator)
ENQ ^E 5 ShortStatus (serial)
ACK ^F 6 Reserved
BEL ^G 7 Reserved
BS ^H 8 Reserved
HT ^I 9 (Tab in text command)
LF ^J 10 (LineFeed in text command)
VT ^K 11 (Terminates format definition)
FF ^L 12 FeedPrint
CR ^M 13 (CarriageReturn in text command)
SO ^N 14 CopyCompileToBase
SI ^O 15 Reserved
DLE ^P 16 CopyBaseToCompile
DC1 ^Q 17 (Xon flow control character)
DC2 ^R 18 SetContinuous
DC3 ^S 19 (Xoff flow control character)
DC4 ^T 20 SetLabelMode
NAK ^U 21 Reserved
SYN ^V 22 StatusReport (Logo directory)
ETB ^W 23 StatusReport (Format directory)
CAN ^X 24 ClearAllBuffers
EM ^Y 25 ClearCompileBuffer
SUB ^Z 26 (Starts inline command)
(6& A> �� �6WDUWV�HVFDSH�VHTXHQFH�
FS ^\ 28 EnableCutting
GS ^] 29 DisableCutting
RS ^^ 30 SetDoubleBuffer
US ^_ 31 SetSingleBuffer

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

��� 6XPPDU\�RI�(VFDSH�6HTXHQFHV

<Esc> A llll SetFormlength
<Esc> B [[[[�\\\\ 1 KK�G���� PlaceITF14
<Esc> B [[[[�\\\\ 2 KK�>D@�G�����>G�����@ PlaceEAN13
<Esc> B [[[[�\\\\ 3 KK�G��� PlaceEAN8
<Esc> B [[[[�\\\\ 4 KK�G������ q PlaceInt2of5
<Esc> B [[[[�\\\\ 5 KK�G������ q PlaceCode39C
<Esc> B [[[[�\\\\ 6 KK�G������ q PlaceCode39
<Esc> B [[[[�\\\\ 7 KK�>F@�G������ q PlaceCodabar
<Esc> B [[[[�\\\\ 8 KK�G������ <Eot> PlaceEAN128
<Esc> B [[[[�\\\\ 9 KK�QQ�G������ <Eot> PlaceCode128
<Esc> B [[[[�\\\\ A KK�G���� PlaceUPCA
<Esc> B [[[[�\\\\ B KK�G���� PlaceUPCE
<Esc> C \\\\ SetCutPosition
<Esc> D Q�W�����GGG���GG��VT> DefineFormat
<Esc> E Q EraseFormat
<Esc> F I�F SelectFont
<Esc> G [[[[�\\\\�ZZZZ�KKKK�GGG���GG PlaceGraphics
<Esc> I [[[[�\\\\�ZZZZ�KKKK�F BlockFill
<Esc> J Q LoadFormat
<Esc> K Q�W�����ZZZZ�KKKK�GGG���GG DefineLogo
<Esc> L [[[[�\\\\�Q PlaceLogo
<Esc> M YY�KK SetMagnification
<Esc> N W�P�Z�Q SetBarcodeModule
<Esc> O \\\\�OOOO SetForwardFeed
<Esc> P OOOO SetPageOffset
<Esc> R UUU RepeatPrint
<Esc> S VV SetSpeed
<Esc> T [[[[�\\\\�GGG���GG <Eot> PlaceText
<Esc> U ZZZ SetTabWidth
<Esc> V U SetRotation
<Esc> W O�F SetCharGaps
<Esc> X Q DeleteLogo
<Esc> Y II�YYY�KKK�L�N SetScalableFont
<Esc> Z 0�3'2 SetUnits
<Esc> Z 7% SetBaseline
<Esc> a AbortPrint
<Esc> b S QQ ResizeInputBuffer
<Esc> c a QQQQ AllocateFontCache
<Esc> c d DisableFontCache
<Esc> c e EnableFontCache
<Esc> c f FlushFontCache
<Esc> d \\\\ SetPrintlineToCutter
<Esc> e FHIOUWY StatusReport
<Esc> f d U�ZZ��LL��XX <Eot> DefineVariableField
<Esc> f l ListFields
<Esc> f s DDMMYYhhmmss SetRealTimeClock
<Esc> f t UpdateTimeField
<Esc> f u UpdateFields
<Esc> f x ClearFields
<Esc> h QQQ SetHeat
<Esc> i Q SetBaseImage
<Esc> j Q�UUUU RepeatLoadFormat

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

<Esc> k F SensorControl
<Esc> o \\\\ SetDuplicateOffset
<Esc> r UUUU RepeatPrint4
<Esc> s EnableReporting
<Esc> t DisableReporting
<Esc> v U�GGG���GG <Eot> SetVariableField
<Esc> x EnableXoff
<Esc> y DisableXoff
<Esc> z Q SetInline
<Esc> z s ShortReporting
<Esc> . [[[[�\\\\�VV�G���� PlaceDotCode
<Esc> : [[[[�\\\\ L VV�II�F�G������� PlaceLEBCode
<Esc> : [[[[�\\\\ U WW�VV�G������ PlaceUSD5Code
<Soh> U�>�_!_ �Q��@�>�_��Q��@ <Eot> GetVariableField
<Soh> t >�G��@�>�'0<KPV$D@ <Eot> GetTimeField

��� 6XPPDU\�RI�',3�VZLWFK�VHWWLQJV

����� 'DWD�,QWHUIDFH�6ZLWFKHV��/HIW�KDQG�EDQN�

6ZLWFK ON OFF
1 Cutter fitted No cutter
2 Command set by

printable characters
Command set by
control codes

3 Direct printing Transfer printing
4 Odd parity Even parity
5 Parity off Parity on
6 7 data bits 8 data bits
7 -Baud rate- See below
8 -Baud rate- See below
9 Label mode Continuous mode
10 Not used

%DXG�5DWH Switch � Switch � Notes
1200 On On If no parity, set SW4 Off
2400 On Off
4800 Off On
9600 Off Off
19200 On On Set SW4 On, SW5 On
38400 On Off Set SW4 On, SW5 On

����� 0HGLD�6HQVRU�6ZLWFKHV��5LJKW�KDQG�EDQN�

Switch ON OFF
1 Transmissive sensor Reflective Sensor
2 Present sensor on Present sensor off

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

� 3URJUDPPLQJ�([DPSOH

This example program is written in BASIC for a 1048 printer.

Setup stage.
Define some constants to make the control characters easier.
Use COM1 port to send data to the printer.
Set the printer buffer mode and measurement units.

soh$=chr$(1) ’introduces variable fields
stx$=chr$(2) ’enable barcode text
etx$=chr$(3) ’disable barcode text
eot$=chr$(4)
lf$ =chr$(10)
vt$ =chr$(11)
ff$ =chr$(12)
so$ =chr$(14) ’copy compile to const
dle$=chr$(16) ’copy print/const to compile
e$ =chr$(27)
gs$ =chr$(29)
rs$ =chr$(30) ’double buffer
us$ =chr$(31) ’single buffer

open "com1:9600,n,8,1" as #1

’ Set up to use coordinates and distances in millimetres, single buffer.
print#1,e$;"ZM";us$;

Print a testcard label with text, barcodes & grey block.

print#1,e$;"F6W";e$;"V2"; ’ Large text, rotation 2
print#1,e$;"T01000000ABCDEFGHIJK";lf$; ’ Place 3 lines of text ..
print#1,"abcdefghijklmn";lf$; ’ starting at (100, 0)
print#1,"1234567890";eot$;
print#1,e$;"B00400026615ABCDq"; ’ Code-39 barcode "ABCD"

’ at (40,26), height 15 mm
’

print#1,e$;"I0045000000300050G"; ’ Grey filled box
print#1,e$;"V1";e$;"B00020000200501234567890"; ’ EAN-13 barcode
print#1,e$;"F3W";e$;"T00020026";date$;lf$;time$;eot$; ’ Date & time
print#1,e$;"F1W";e$;"T00020043abcdefghijklm";lf$; ’ Small text
print#1,"abcdefghijklm";lf$;
print#1,"abcdefghijklm";eot$;

print#1,ff$; ’ Formfeed to print label

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

EAN-128 barcode demonstration.
This example is taken from the ANA manual and describes a quantity of 21 and batch
number 123456. Note the use of GS to terminate the quantity field (which is of variable
length), when concatenated with a batch number.

print#1,stx$;e$;"V1"; ’ Set rotation 1, add human-readable text
print#1,e$;"N8300"; ’ Set barcode magnification 3
’ Place barcode type 8 (EAN-128) at (20, 10), and use the default height.
’ The barcode data which follows uses the EAN-128 data structure.
print#1,e$;"B00200010800(30)21";gs$;"(10)123456";eot$;
print#1,ff$; ’ Print label

Logo demonstration.
Normally a logo will be a graphic image, but for simplicity, this demo defines a simple
chequerboard logo and places it on the page.

’ Download logo number 0.
print#1,e$;"X0";e$;"X0"; ’ Delete any existing logo 0 first
print#1,e$;"K0LogoName 00640064"; ’ Define 64 x 64 pixel logo as Logo 0

’ This loop outputs the logo data for a chequerboard.
for i = 1 to 16
 for j = 1 to 16

print#1,chr$(204); ’pattern CCh
 next j
 for j = 1 to 16

print#1,chr$(51); ’pattern 33h
 next j
next i

’ The logo is now stored in memory and can be applied anywhere on the label
print#1,e$;"M0505"; ’ Magnification 5x5
print#1,e$;"L000500050"; ’ Place logo 0 at (5, 5)
print#1,ff$; ’ Print label

print#1,e$;"X0";e$;"X0";e$;"M0101"; ’ Delete logo when no longer required

1<61�" % ���"! �������������������� PROGRAMMING MANUAL�������3DJH���

Base image buffer demonstration.
Demonstrates how invariant fields can be formatted once and re-used on subsequent
labels.

’ Set up the invariant part of the label
print#1,e$;"i1"; ’ Enable base image buffer.
print#1,e$;"F0W";e$;"Y0204004000"; ’ Speedo font 02 @ 40 point
print#1,e$;"T00000020ABCDEFGHIJKLMNOPQ";eot$;
print#1,so$; ’ Copy to base image buffer

’ Set up a loop to print varying information.
print#1,e$;"F5W"; ’ Bitmapped font 5
for i = 3 to 1 step -1
 print#1,dle$; ’ Copy base image to compile buffer
 print#1,e$;"T00000000";i;"Green bottles";eot$; ’ Add new text
 print#1,ff$; ’ Print label
next i
print#1,e$;"i0"; ’ Disable base image buffer

Variable fields example
Sets up a single variable and uses it to print a fixed width barcode and some text.
Also shows the use of the date formatting commands and date offset.

’ Set up a string containing DDMMYYhhmmss and set printer date & time
ldate$=date$
ltime$=time$
setdate$=mid$(ldate$,4,2)+left$(ldate$,2)+right$(ldate$,2)
setdate$=setdate$+left$(ltime$,2)+mid$(ltime$,4,2)+right$(ltime$,2)
print#1,e$;"fs";setdate$;

’ Define field 0 as an incrementing field, max width 10, & set initial value.
print#1,e$;"fd010+01";eot$;e$;"v0123450";eot$;

print#1,rs$; ’ Set double buffer mode for speed
print#1,e$;"N4252"; ’ Set Int2of5 module sizes
’ Define format 0 (delete any existing version first)
print#1,e$;"E0";e$;"E0";e$;"D0FormatName";
 print#1,e$;"ft"; ’ Update date-time field
 print#1,e$;"F5W";
 print#1,e$;"T00100006Serial Number: ";soh$;"0";eot$;eot$;
 print#1,e$;"F4W";
 print#1,e$;"T00100012Manufactured: ";soh$;"t#D-#M-#Y #h:m:s a";eot$;"m";eot$;
 print#1,e$;"T00100018Display until: ";soh$;"t+30D-M-Y";eot$;eot$;
 print#1,e$;"T00100024Best before: ";soh$;"t+60D-M-Y";eot$;eot$;
 print#1,e$;"B00100030420";soh$;"0=10";eot$;"q";
 print#1,ff$; ’ Print the label
 print#1,e$;"fu"; ’ Update variable fields
print#1,vt$; ’ End of format definition

print#1,e$;"j00004"; ’ Replay format 4 times

----- (1'�2)�0$18$/ -----

