S S E ad GGaeeE-E oo ea-
. . p— — !
T S B G ehhe s ool e -

LI rs o aaaaa

o (B D LI LI D L It L B o sy

) LA) (2 L) L5 120 D) L) L L) L L [~ TR
& L) LU LSO L L) G \ VL L2 L2
| =) =) \1' YT

Extended I/O Programming

The HP 9825A Calculator

Hewlett-Packard Calculator Products Division
P.0O. Box 301, Loveland, Colorada 80537, Tel. (303) 667-5000
(For World-wide Sales and Service Otfices see back of manual.)
Copyright by Hewlett-Packard Company 1976

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

a
@
<
X
§)
>
a
e
’-—
L
-]
=
]
T
i
S

(@] HEWLETT- PACKARD

HEWLETT: PACKARD

[z

Manual Changes

HP 9825A Calculator
Extended 1/O Programming Manual

(For Manual P/N 08825-90025, Dated October 1, 1876)

Page 8:
Replace the fast paragraph with this:

The rotate (rot) function right-rotates the 16-bit equivalent of the value by the specified number
of places and returns the result. The value is rotated left when the number of places is
negative. Bit.0 is rotated to bit 15 when the number of places is positive. Thus, no bits are lost
when the value is rotated.

Page 16:

Change the last line of the address sequence from: Compute
) uic
TMuseurn

e Listen address 1 (onbus7) to

e Listen address 11 (on bus 7)

Page 20:
Change the fourth line to read:

e i ¥ " source : destination[= character count| : last character] J(see page 72)

Delete the sixth line.

Page 22:
Replace the first printout with this:

0: dev "gen",706,"clock",720
1: wtb "gen,clock"
2: clr7

Replace the third printout with this:

0: dev "dmm",722
l: rem"dmm”

- July, 1978 - Supplement A to 09825-90025

10of 3

Page 30:
Add to The Poll Configure Statement:

NOTE
Bit 3 determines sense, and bits 0, 1, 2 determine the re-
sponse line.

Page 37:
Change the example program lines -

9: cmd"timer","time";cmd "clock”,"C"
18: cmd "dmm","100kohm";red "dmm",D

Page 43:
Add the following note to the bottom of the page:

NOTE
The on error statement cannot be used to trap errors if the
program is stopped for an enter statement. For example, in
the following program you enter a string that exceeds two
characters. When you press CONTINUE, Error S9 is dis-
played and the program stops. The program wiil not branch
to error routine “E” because the error occurred on an enter
statement.
: dimB$[2]
: onerr "E"
ent "B$",BS
prtBS$;stp
"E":dsp "Error";stp
end

Ut s W= O
LX)

Page 48:
Delete the paragraph following the conversion protocol diagram.

Page 55:
Change paragraph 3, last sentence, from:

idk to tkd

July, 1978 20 3 Supplement A to 09825-90025
o

Page 57:
Replace line 10 of the example program to:

10: if1>1000;gto21

Page 60/
Change program lines 55 and 56 to:

55: "TALK":wrt 731,A[I];ret
56: "LISTEN":red731,ASeee;ret

Page 73:
Add this paragraph to the bottom of page 73.

When using the transfer statement with the HP-IB to input into a buffer, the transfer can be
terminated as described above or by End Or identify (EO!). Refer to the Appendix; The HP
Interface Bus.

Page 76:
Replace the last paragraph and example with this:

When unwanted data remains in the buffer, as after step 8, it can be removed by executing the
buf statement with the buffer name as shown.

In the case where a string variable is used as the buffer (refer to the next section), it can be
seen (by printing the string) that the contents of the buffer are not changed, only the input and
output pointers are reset (buffer status = 50) by the buf statement.

Page 76, Step 5:
Change (butfer status remains unchanged) to:
(butter status = 17)
Page 77:
Change paragraph 3; last sentence should begin:

For byte-type buffers... .

Change the last line of the next to last paragraph to read:

But the buffer size will still be 10 bytes even though the first three bytes have been changed to
ABC and the length of A$ is 3. Bytes 4 through 10 are unchanged.

July, 1978 Supplement A to 09825-90025
., 3of 3

Table of Contents

Chapter 1: General Information

Description
Inspection and Installation
Syntax

Unnecessary Parameters
Requirements

Chapter 2: Binary Operations

Introduction
Binary Representation
Decimal/Octal Mode Statements
Decimal/Octal Conversion Functions
The Binary AND Function
The Exclusive OR Function
The Inclusive OR Function
The Complement Function
The Rotate Function
The Shift Function
The Add Function
The Bit Function

Chapter 3: HP-IB Operations

Introduction

Bus Messages

Transfer Parameters
Extended Bus Addressing

Non-Active Controller Address Parameter

The Device Statement

Multiple Listeners
Data Messages
Sending Data Messages
Receiving Data Messages
Sending the Trigger Message
Sending the Clear Message
Sending the Remote Message
Sending the Local Message
Sending the Local Lockout Message

Sending the Clear Lockout/Set Local Message

w D DN =

O O W w 0 0 ~N N N O 0 O

—_ .

13
13
16
16
17
17
18
19
19
20
20
21
22
23
23
24

Service Requests and Polling

Sending the Require Service Message

Receiving the Require Service Message

Sending the Status Byte Message

Serial Polling or Receiving the Status Byte Message
Sending the Status Bit Message

Parallel Polling or Receiving the Status Bit Message
The Poll Configure Statement

The Poll Unconfigure Statement

Sending the Pass Control Message

Sending the Abort Message

Sample Application

The Command Statement

The Equate Statement

Extended Read Status

Chapter 4: Potpourri

Autostart

The Timeout Statement

The On Error Statement

The Conversion Table Statement
Substring Conversion Tables

The Parity Statement

Conversion Protocol

Interface Control Operations
The Write Interface Statement
The Read Interface Function
The I/O Flag Function
The I/O Status Function

1/O Drivers Example

Chapter 5: Interrupt Control

Introduction

The Programmable Interrupt Scheme
Vectored Interrupt

The On Interrupt Statement

The Enable Interrupt Statement

The Interrupt Return Statement

The HP-IB Interrupt Control

Abortive Interrupts

Interface Control Bits

24
25
25
26
26
28
29
30
30
30
31
32
35
37
38

41
42
42
44
46
47
48
48
49
50
50
50
51

53
53
54
55
56
57
58
61
63

Interrupt Lockouts 64
Variables with Interrupt Service Routines 64

Chapter 6: Buffered 1/O

Introduction 67
The Buffered I/O Scheme 67
Automatic Interrupt 68
Buffer Types 68
The Interrupt Buffer 69
The Fast Read/Write Buffer 69
The DMA Buffer 70
Buffer Underflow and Overflow 70
The Buffer Statement 70
The Transfer Statement 72
Data Output 72
Data Input 73
I/O Buffer Status 74
Buffer Pointers 75
String Variables as Buffers 77
inverted Data 77
Buffered /O Example 79
Demonstration Programs 80
Appendices
The HP Interface Bus 85
HP-1B Lines and Operations 85
Interface Functions 88
Extended I/O Status Conditions 90
ASCII Character Codes 91
Buffered I/O Benchmarks 92
Extended 1/O Syntax Summary 97
Syntax Conventions 97
Binary Statements and Functions 97
HP-IB Statements : 98
The Timeout Statement 100
The On Error Statement 100
The Conversion Table Statement 100
The Parity Statement 101
Interface Control Operations 101
Interrupt Control Statements 101

Buffered I/O Statements 102

Extended 1/O ROM Error Messages 103

General I/O ROM Error Messages 105
HP Sales and Service Offices 108
Figures
ROM Installation 2
A Typical HP-IB System 32
Conversion Protocol 48
The 1/O Buffer Scheme 67
HP-IB Signal Lines 85
Tables
Sample HP-IB Operations with the 9825A Calculator 15
Calculator Response When Not Active Controller 31
[/O Buffer Types 71
HP-1B Command and Address Codes 88
HP-1B Interface Functions 88
Functions Used By Each Bus Message 89
Extended /O Status Conditions 90
ASCII Character Codes 91

Buffered I/O Benchmark Times 92

Chapter l
General Information

Description

The Extended I/0 ROM expands the capabilities of the General I/O ROM operations and adds
42 new statements and functions. This manual describes Extended 1/O operations in this
order:

o Bit Manipulations — There are 12 instructions for manipulating and testing 16-bit binary
values.

e HP-IB Control — In addition to extending General /O ROM operations, there are 14

statements and functions to provide complete control of any current HP Interface Bus
system.

e Potpourri — 11 additional statements and functions include a 256-character conversion
table, parity checking and generation, error recovery, direct interface access, and a
timeout routine. An Autostart routine, which automatically loads and runs a program, is
also covered.

e Interrupt Control — Three statements allow you to program interrupt routines for servic-
ing peripheral devices. An interrupt-priority scheme based on interface select codes is
used.

e Buffered I/O — Areas of the read/write memory can be allocated as “buffers” for use in
transferring data under one of three special schemes: interrupt I/O, fast read/write, or
direct memory access (DMA). The transfer (tfr) statement is used to exchange data
between the buffer and the peripheral, while General I/O ROM operations are used to
exchange data between the buffer and calculator variables.

The Extended 1/O ROM uses 94 bytes of calculator read/write memory (RWM) when installed.

The Extended I/O ROM is packaged with one or two other ROMs in a single ROM card. This
manual describes Extended I/O operations only. Another manual is furnished with the card to
describe operations of each additional ROM.

2 General Information

Inspection and Installation

Refer to the HP 9825A System Test Booklet for the procedure to verify operation of each ROM.
The ROM card can be plugged into any one of the four ROM slots located on the bottom front
of the calculator, as shown in the next photo.

ROM Installation

To install the card, first turn the calculator off. With the ROM label right side up, slide the card
through the ROM slot door; press it in until the front of the card is even with the front of the
calculator. Then turn the calculator on.

Syntax

The following conventions apply to the syntax for the statements and functions found in this
manual.

¢ i — All items printed in dot matrix are required exactly as shown.

[] — All items in square brackets are optional, unless the brackets are
printed in dot matrix.

— Dots indicate that successive parameters are allowed, when each is
separated by a comma.

Unnecessary Parameters

Certain Extended /O statements will allow the specification of more than the required number
of parameters. If any unnecessary parameters are given, they will be ignored at execution
time; an error message will not indicate these unnecessary parameters.

See the Appendix for a summary of all Extended 1/O statements and functions.

General Information 3

Requirements

The Extended I/O ROM requires that a General /O ROM also be installed. If not, Extended 1/0
operations may be keyed in and stored, but an error will occur if an attempt is made to execute
them.

Before using this manual, you should be familiar with the 9825A Calculator and the HPL
programming language described in the HP 9825A Operating and Programming Manual.
Since Extended I/O operations are based on the General I/O ROM operations, you should also
have read the General I/O Programming Manual.

4 General Information

Chapter 2
Binary Operations

Introduction

The Extended 1/0 ROM has 12 functions and statements for manipulating and testing 16-bit
binary values. For each function, the value can be any expression whose integer value is in the
range of decimal —32768 thru 32767. Fractional values are handled differently depending on
which number mode is currently set. Fractional values are rounded up when the decimal mode
(mdec) is set, but fractional values are truncated when the octal mode (moct) is set.

If the value of any parameter is outside of the above range, error E6 will result. If flag 14 is set,
however, no error will occur; instead, flag 15 will be set to indicate the overflow and the 16-bit
binary result will be used as is. Thus, with flag 14 set, the range of the parameters may be
extended to 0 thru 65535 and treated as 16-bit positive binary values rather than the normal
16-bit 2's complement representation (described in the next section).

The binary functions described here should not be confused with the logical operators and, or,
xor, and not which are described in the calculator operating and programming manual. Each
of those operators is used to evaluate expressions and return a 0 or 1, depending on the
Boolean operator.

Binary Representation

The 16-bit numbers used for the binary operations explained in this chapter are represented
internally as binary numbers. To represent a negative value, the calculator stores the 2's
complement of the value. Here is how to find the 2's complement for a value such as —37
decimal. First convert 37 to 16-bit binary (0 000 000 000 100 101). Then complement’ the
value (1111111 111 011 010). This intermediate value is the 1's complement of 37. To get the
2's complement, add 1 to the 1's complement. Thus, —37 would be represented as 1 111 111
111 011 011 or octal 177733.

To complement a binary number, convert the 0’'s to 1's and 1's to 0's.

6 Binary Operations

Decimal/Octal Mode Statements

The Extended 1/0 ROM allows you to set the calculator in either of two number modes, octal’
(base 8) or decimal (base 10).

Set Octal Mode Syntax:
Set Decimal Mode Syntax:

The currently set mode affects all Extended /O binary functions, the General /O binary
operations, and all other operations which use 8- or 16-bit binary parameters. A complete list
of parameters affected by the number mode follows below. The calculator is automatically set
to the decimal mode when it is switched on.

For example, if the data byte 01011101 (binary) is to be read from a device on select code 3:

(

I/O Parameters Affected by the Decimal or Octal Mode

General /0 ROM:
e Values input or output under the b format spec.

e Values output using the write binary (wtb) or write control (wtc) statements.
e Values returned using the read binary (rdb) or read status (rds) functions.

e Conversion codes used in the conversion (conv) statement.

Extended 1/0O ROM:
e Values used in all binary functions (band, ior, eor, cmp, rot, shf, add, and bit).

e Byte parameters with the require service (rgs), poll configure (polc), and enable interrupt
(eir) statements.

e Byte returned with the parallel pol (po!) function.
e Character parameter in transfer (tfr) statement.
e Register number and expression parameters in the write interface (wti) statement.

e Data returned with the read interface (rdi) function.

'QOctal notation is explained in the Appendix of the General I/O Programming Manual.

Binary Operations 7

Decimal/Octal Conversion Functions

Two functions are available for converting specified values from decimal to octal form. The
working range is from decimal —32768 thru 32767.

Decimal to Octal Conversion Syntax:

n iexpression !

Octal to Decimal Conversion Syntax:

Lol lexpression

The Binary AND Function

Syntax:

71 Lexpression , ¢ expression g !

The binary AND (band) function combines the A | B | band(AB)
given values, bit-by-bit, and returns the resuilt. 8 ? g
The truth table for the logical AND operation is 1 0 0
shown on the right. 1 1 1
For example, to AND decimal 20 and 24, execute these lines:
(i (000G 0000 0001 0100) U
(e (0000 0000 0001 1000) D
[(0000 0000 0001 0000) D
The Exclusive OR Function
Syntax:
" iexpression A ¢ expressiong i
The exclusive OR (eor) function combines the '3 | Iz | eor E)A’B)
values, bit-by-bit, in a logical exclusive OR op- 0] y
eration and returns the result. The exclusive 1 0 1
1 1 0

OR truth table is shown on the right.

8 Binary Operations

The Inclusive OR Function

Syntax:

© lexpression 4 : expressiong

The inclusive OR (ior) function combines the A | B | ior(AB)

values, bit-by-bit, in a logical OR operation and 8 ? ?

returns the result. The logical OR truth table is 1 0 1

shown on the right. 1 1 1

For example, to combine octal 57 and 21 in an inclusive OR operation:
L L (0000 000 000 101 111) D
L ol (0 000 000 000 010 001) D
L S (0000 000 000 111 111) D

The Complement Function

Syntax:

L eXpression

The complement (cmp) function takes the binary 1's complement of the 16-bit value and
returns the result. For example, execute these lines:

L e (0 000 000 001 010 111) D

[

(1111111 110 101 000) g]

The Rotate Function

Syntax:

‘expression @ or = no. of places :

The rotate (rot) function right-rotates the 16-bit equivalent of the value by the specified number
of places and returns the result. The value is rotated left when the number of places is
negative. Bit 0 is rotated to bit 15 when the number of places is negative. Thus, no bits are lost
when the value is rotated.

Binary Operations 9

For example, execute these lines:

(0000 0000 0000 1111) B

{
(6000 0111 1000 0000) O

[(1110 0000 0000 0001) D
Here is a sequence which inputs two 8-bit 20: rdb (3)+A;rdb(3)+B
bytes, combines them into a 16-bit word, and 21: rot(A,8)>A
prints the resulting value. This sequence could 22: prt ior(A,B)

be combined into one statement:

The Shift Function

Syntax:

‘expression “or - no. of places !

The shift (shf) function shifts the 16-bit binary equivalent of the expression the specified

number of places to the right. The value is shifted left when the number of places is negative.
Bits shifted left of bit 15 or right at bit O are lost.

For example, set A = 255 (0000 0000 1111 1111) and execute these lines:

(0000 0000 0000 0111) xj

{0111 1111 1000 0000) S:]

mdec

rdb(3)-+A

prt "(MSB)",shf(A,12)
shf(A,-4)+B;prt shf(B,12)
shf(A,-8)+B;prt shf(B,12)
prt " (LSB)",band(A,15)

Here is a sequence which inputs a 16-bit word
from a device on select code 3. The word is
then printed in four 4-bit segments.

nds W — O

10 Binary Operations

The Add Function

Syntax:

il lexpression , ¢ expressiong
The add function adds the binary equivalents of the two expressions and returns the result.
This function is identical to the calculator's + operation for decimal integers. The add function

can be used in the octal mode, however, permitting the addition of octal values.

For example, if A = 37 and B = 2, execute these lines:

The Bit Function

The bit function is used to test one or more bits of a given value, and return either a 1 to

indicate true (all bits match) or 0 to indicate false (no match).

Single Bit Test Syntax:

‘bit position = expression

Multi-bit Test Syntax:

. “mask " : expression !

When a numerical value is given for the first parameter, it indicates to test one bit {(position 0
thru 15) in the value; 0 tests the least-significant bit. When the first parameter is text, each bit in
the value is tested according to the corresponding character intext: the character 1 requires
a 1-bit for a match, the character 0 requires a 0-bit for a match, and any other character
indicates not to check that bit. If all specified bits match, a 1 is returned. Up to a 16-bit mask is
allowed. If fewer than 16 characters are in the mask, they correspond to the least-significant
bits in the value; in this case, any higher bits are not tested.

For example, set A = 65 (0000 0000 0100 0001} and test the eight least-significant bits of A
using the mask “0100 0001":
[(true) S]

Now set A = 66 (0000 0000 0100 0010) and test A using the same mask:

Binary Operations

=

UMSe)\:]

As another example, suppose that a tape reader is connected via a 98032A Interface (at

select code 2) which sends this status byte in reply to the read status function:

(LSB)

8 7 6 5 4 3 1 @
End
Power Tape
X X 1 & X of
On Loaded Tape

Status bits 7, 6, 3 and 2 indicate interface status conditions. This program could be used to
monitor the tape reader and input data only when the reader is powered up (bit 8) and a tape
is loaded (bit 1). The first bit function checks only bits 1 and 8 by using a mask. The second bit
function checks bit 0 to halt the program when the end of tape is reached.

: dim AS$[{10,50]

rds(2)-+A

if bit("lxxxxx1x",A)=0;jmp -1
red 2,A$

if bit(0,A);jmp 2

if (I+1+I)>50;g9to |

end

YU b W — O

More examples using the bit function are in Chapter 3.

11

12 Binary Operations

Chapter 3
HP-1B Operations

Introduction

The Extended 1/0 ROM provides the statements and functions for complete control of HP
Interface Bus (HP-IB) systems. In addition to using General /O ROM operations to transmit
data and control instructions, the calculator can now transmit all bus control messages (e.g.,
trigger, clear, local, and remote), conduct serial and parallel polls, and pass bus control to
another device on the same bus. The user can assign device names to be used in place of
select code parameters. When the calculator is not the active controller, it can transmit the
Require Service message and automatically respond to serial and parallel polls. The com-
mand (cmd) statement is provided for compatibility with other HP calculator programs.

This chapter describes all Extended I/O bus operations. It assumes that you are familiar with
the General I/0O ROM operations, as described in the General I/O Programming Manual. You
should also know the bus operations for each device in your HP-IB system. Refer to their
operating manuals.

The HP-IB is Hewlett-Packard’s implementation of IEEE standard 488-1975. A copy of this
standard can be ordered from the |IEEE Standard’s Office; 345 East 47th Street; New York,
N.Y. 10017. A brief technical description of the HP-1B is in the Appendix of this manual.

Bus Messages

The communication capabilities of each device on the HP-IB can be exercised by using the
messages described here. The General /O ROM permits using three messages (Data, Re-
mote, and Abort) for addressing one instrument at a time (the calculator is assumed to be the
system controller). The addition of an Extended 1/0O ROM, however, provides all 12 bus mes-
sages to permit complete bus capability. Messages can be transferred among:

¢ Device and Device(s)
¢ Controller and Device(s)

e Controller and Controller

14 HP-IB Operations

The 12 bus messages are categorized and listed below. A more complete description of each
message is given later.

Device Communication:

e Data — The data characters transferred between devices by a calculator instruction (such as red,
wrt, or cmd).

Device Control:

e Trigger — Causes a device or group of devices to simultaneously initiate a device-dependent
action.

e Clear — Initializes device-dependent functions to a predefined state.

e Remote — Switches selected devices to remote operation, allowing parameters and device
characteristics to be controlled by Data messages.

e Local — Causes selected devices to revert to manual control for future parameter modifications.

e Local Lockout — Prevents the device operator from switching the unit to manual control.

e Clear Lockout and Set Local — Removes all devices from local lockout mode and causes all
devices to revert to local.

Interrupt and Device Status:

e Require Service — Asynchronously indicates a device’s need for interaction with the controlling
device.

e Status Byte — Presents device-dependent status information; one bit indicates whether or not the
device currently requires service. The remaining 7 bits indicate status defined by the device.

e Status Bit — A single bit of device-dependent status which may be logically combined with status
bit messages from eight devices.

System Control:

e Pass Control — Causes bus management responsibilities to pass from the sending device to the
receiving device.

e Abort — Stops all communication and causes control to pass back to the system controller,
independent of the device currently in control.

To determine which messages are needed to control and exchange data with each device,
first review the programming requirements for the device as explained in its operating manual.
Then find the appropriate bus message syntax in this chapter. Remember that most instru-
ments must be set to Remote before they will respond to other bus messages, and that the
Data message is used to transfer control characters and data between devices.

If the operating manual does not describe which bus messages are required by that device,
you can determine which messages are required by knowing which HP-1B interface functions
are implemented on the device. Refer to the Appendix for more details.

The following table summarizes the bus operations available with the General I/O and Ex-
tended I/O ROMs. Each message and operation is further described in the remainder of this

chapter. The table on page 31 summarizes calculator response to bus messages when it is not
in active control of the bus.

HP-1B Operations

Sample HP-IB Operations with the 9825A Calculator

Message Name

Description

Sample Operations! 7

Data

Trigger

Clear

Remote

Local
Local Lockout

Clear Lockout/Set Local

Pass Control

Require Service
Status Byte

Status Bit

Abort

Output text and variables to single devices

Output single characters.

Input data from a device.

Input single characters.

Specify device address and send data in the form of
ASCII characters.

Output data to multiple listeners.

Transfer data from device to device.

Send a Group Execute Trigger to all instruments.
Send a GET to selected devices.
Clear all devices.

Clear selected device.

Enable remote mode on all devices. Switching the
calculator on also sends a Remote message

Set remote mode on selected device.
Return selected device to local mode.
Prevent all devices from returning to local mode.

Set local mode and disable local lockout on all de-
vices. (r] also sends this message.

Transfer bus control to a selected device.

Request Service from the controller and send an
8-bit status byte for response to a Serial Poll.

Bit and logic level for responses to a Parallel Poll.

Clear all bus operations and return control 1o the
original system controller. {~+] also sends an abort
message.

'In each case, a device name can be assigned and substituted for the select code parameter. See "The Device Statement”

15

16 HP-1B Operations

Transfer Parameters

Transfer parameters specify each message’s origin (sender) and destination (receiver) on the
bus. For most messages, the calculator, as controller, specifies the device sending the mes-
sage and the device or devices receiving the message.

The select code parameter is used to specify transfer parameters in the same form described
in the General I/0O Programming Manual. Here is a review of the general syntax:

ce[dd][- f] cc

one or two digit select code of interface card.

dd

HP-1B address from 00 thru 31" (must be two digits).
.f = format number (read and write statements only).

The address code within each select code parameter specifies the appropriate address
(origin or destination) of the device on the bus. Except for the command (cmd) statement, all
IO operations which have an address code automatically transmit the calculator's preset
talker/listener address and the specified address code in the appropriate order on the bus.
When the calculator is the active controller, this address sequence is preceded by the bus
Unlisten command to clear all listeners previously set. For example, this statement i+
1. sends this address sequence before sending data:

e Unlisten command
e Calculator talk address

e Listen address 1 (on bus 7).

Extended Bus Addressing

When communicating among devices which use extended addressing on the HP-IB, the
extended address can be specified by adding two more digits to the select code parameter.
Here is the complete syntax:

cc[dd[ee]ll - f] ee = extended address, from 00 thru 31 (must be two digits).

Extended addressing is provided by the bus definition (see IEEE Std. 488-1975). The primary
address of a bus device is followed by another byte of addressing information. This byte has
an allowed range of 00 thru 31, with the Secondary Command Group (SCG) bits (bits 5 and 6)

'Address 31 is a special address. See next page.

HP-IB Operations

set. This optional byte is automatically sent by the Extended /O ROM when the two additional
digits are specified in the select code parameter. For example, the statement i+ ¢
: . =is ... outputs this address sequence:

e Unlisten command

Calculator's preset talk address

e Device listen address 03 (on bus 7)

e Secondary device address 21.

As controller on the bus, the calculator has the ability to send secondary addresses. As a
device on the bus (not controller), the calculator does not respond to a secondary address.

Non-Active Controller Address Parameter

When a device is not the active controller on the bus it can not address other devices to talk or
listen. If the calculator specifies a device address from 00 thru 30 in an 1/O operation when it is
not in active control, an error message will occur. The calculator can still send Data and other
messages when addressed to talk or tisten, however, by specifying device address 31. For
example, this sequence sends a Data message (contents of variables A, B, and C) when the
calculator is addressed to talk:

5: rds(7)+A;if bit(6,A)=0;gto +0
6: wrt 731,A,B,C

The calculator continually executes line 5 until it is addressed to talk. The read status function
is described at the end of this chapter.

The Device Statement
Syntax:

© "name 1« select code 1 [device address]
[: " name 2 ~ :select code 2 [device address]...]

The device statement sets up a name/address list for peripheral devices. Once each name is
set up, it can be used in place of the select code parameter in each I/O operation. Each new
device statement adds the new names to the previous list; each name can have only one
select code parameter assigned at a time. The device list is erased when the calculator is
reset (==, run command, erase command, or switch power on). This statement can be used
with any interface with a select code of 2 thru 15, but the optional device address is allowed
only with the HP-IB interface.

17

18 HP-IB Operations

In this example sequence, line 6 sets up the names “printer”, “dvm”, and “punch”. Thenlines
7 thru 11 use the device names instead of numeric select codes. Notice that the tape punch
(select code 3) is assigned a name, even though it is not a bus device.

dev "printer",701,"dvm",711,"punch", 3
wrt "dvm","R3FOTIE"
red "dvam",A
wrt "punch",A
if A=64;jmp -3
wrt "printer"”,"value =",A

—— \0 0 ~J O

— CD st s ws as

Each select code parameter can be a positive integer from 2 thru 15. If a format number other
than O is to be specified, it can be specified in the read or write statement by using the syntax:

“device name . formatno.”

For example, line 13 in this sequence references format 1, while line 14 references format 0.

12: fmt 1,"R3F",b,"TIE"
13: wrt "dvm.l",F
l14: red "dvm",A

Some of the example programs in this manual were output using an HP 9871A Printer. To
output program listings via the bus, the list statement is used. For example, this statement was
used to output the sequence shown above:

Multiple Listeners

More than one listener can be specified for Data messages and certain other messages by
using device names, separated by commas, in place of the select code parameter in each
statement. For write operations, the calculator is set to the talker and all names in the list are
set to listeners. For read operations, the first name in the list is set to the talker and the
calculator and all other names in the list are set to listeners. This method assumes that the
calculator is to be either the talker or the listener in the operation. If a talker and one or more
listeners is to be set up without the calculator participating in the transfer, the command
statement must be used.

For example, this program sequence first defines device names, and then simultaneously
outputs the variables A, B, and C to a voltmeter and an HP 9871A Printer. The next line outputs
the string A$ to the printer and the HP 59304A Display. The last line inputs a reading from the
voltmeter, and also sends it to the printer and the display.

HP-18 Operations

43: dev "printer",701,"dvm",722,"display",724
44: wrt "printer,dvm",A,B,C

45: wrt "printer,display",AS$;wait 1000

46: red "dvm,printer,display”,D

Multiple device names are not allowed within these bus statements: trg, clr, cli, rem, llo, Icl,
pct, polc, and polu. [nstead, either execute the statement repeatedly (using one device name
at a time), or use the method shown on page 21 to send the message simultaneously.

Data Messages

The primary reason for the existence of the interface bus is to transmit Data messages. It is the
Data message that exchanges device-dependent data among bus devices. Data messages
are one or more 8-bit bytes (characters) sent over the bus from one Talker to one or more
Listeners. For example, a Data message from the controller might send a function code to set
a frequency counter to the frequency mode. The message might be a pair of ASCII characters
such as “F2". Another Data message might be an ASCII string of alpha prefixes and numbers
that are the measured value. A Data message thus may impart control information, or a
measured value, or a command of some sort. Any Data message is multi-valued. That is, it will
be transmitted over the 8 data lines of the interface. A Data message can have either an
implicit termination or an explicit termination, for example, carriage return/line feed.

Sending Data Messages

The following I/O operations are used to send Data messages from the calculator to the bus:

e i % selectcode[. format no.][= expression 1[= expression 2...]] (see General 1/O)
e i i:selectcode: expression [: expression z...] (see General |/O)
. ¢ [# select code [. non-zero digit]][= line nos.] (see General I/O)
e ¥ r source: destination [: character count [: last character]] (see page 72)
o o.iiselectcode: “address characters ” [: “data characters]
or

wmoi Tdevice name(s) © or select code [: “data characters]
(see page35)
The select code parameter previously explained is used to specify the listener address(es).

The write statement (wrt) can reference a format statement for controlling the output of the expres-
sions. A Carriage Return/Line Feed (CR/LF) is sent at the end of the write statement unless edit
spec z is specified in a format statement. No CR/LF is sent after the write binary statement (wtb).

19

20 HP-IB Operations

Receiving Data Messages

When the calculator is a listener, the following 1/0 operations are used to receive data messages
from the bus:

e i select code [. format no.]: variable 1 [« variable 2...] (see General 1/O)
e il iselectcode ! (see General I/O)

e iun Iselectcode ! (see General I/O and page 38)

e i v source: destination[: character count[: last character]] (see page ---)
e i) iselectcode ! (see page 29)

./ select code : “address characters * [: “data characters]

or

“device name(s) * or select code [- " data characters '] (see page 72).

The read statement (red) can reference a format statement to control the incoming data. Read
binary (rdb) and read status (rds) are both functions, which means that they must appear as
part of a statement (such as i £ 5 sior ciam ¢ 1)inorder to be stored as part of
a program. Read binary (rdb) reads only one byte (8 bits on the HP-IB) at a time.

Sending the Trigger Message

The Trigger message is always sent from a controller to a selected device or set of devices.
The purpose of the Trigger message is to initiate some action, for example, to trigger a digital
voltmeter to perform its measurement cycle, or a digital voltage source to go to a new setting.
Neither the Trigger message nor the interface indicates what a device does when it receives
this message. The action taken is entirely up to the device designer.

Syntax:

= select code [device address]
Specifying only the interface card’s select code (e.g., * =) outputs a Trigger message to
all devices currently addressed to listen on the bus. Including a device address (e.g., % %
©17%) triggers that device only. Multiple device names cannot be used to specify multiple
listeners with the trigger statement.

Here's a sequence that presets functions on a frequency counter and a voltmeter, and then
outputs a Trigger message (line 51) to simultaneously initiate action on both devices. Line 52
then inputs the data for the DVM. The device names have been defined earlier in the program.

HP-1B Operations 21

49: wrt "count","I2E8E?G?52"
50: wrt "dvm","TOFIM3E"

5l: wtb "count,dvm";trg 7
52: red "dvm" ,A,B

Notice that line 51 first outputs the device addresses to specify them as listeners, and then
sends the Trigger message to both devices.

Some devices do not respond to the Trigger message but still have ‘trigger” capability. In
most cases they can be triggered by receiving an appropriate ASCII character via a Data
message.

For example, this sequence inputs 50 data readings from an HP 3490A Multimeter. Line 2
presets the meter functions and executes a reading by sending the character E. Line 4
re-executes the preset functions for another reading.

dim AS$[50,20];0+A;1+1+N
dev "dmm",722

wrt "dmm","FOR6TIM3E"
red "dmm",AS[I]

wrt udmmn , IIEII

if (I+1+I)<51;jmp -2
0105

O bW — O

LD ** sv ss g0 e e

Sending the Clear Message

The purpose of the Clear message is to provide a way to initialize devices to some predefined
state. A Clear message can be sent either to all devices or to a selected set of devices. Only
the controller can send a Clear message. The message is single-valued in the sense that it is
either true or not true.

Syntax:

. L+ select code [device address]
Specifying only the interface select code (such as . i+ 7
command to all devices addressed to listen on the bus. Specifying an individual device
address (such as i+ 1 1), however, outputs a Selected Device Clear (SDC) command to
reset only the specified device.

22 HP-IB Operations

For example, these lines send (simultaneously) the Clear message to the devices name “gen”
and “clock’’:

0
1

wtb "gen,clock"
clr 7

But this statement sends the Clear message only to the clock:

ll1: clr "clock"

Sending the Remote Message

The Remote message causes devices on the bus to switch to remote, program control from
local, front panel control. It is single-valued, true or false. A device in remote control may be so
designed as to remain unresponsive to some or all of its front panel controls.

Syntayx:

= select code [device address]

The Remote message is automatically output whenever the calculator is switched on or is
pressed. To prevent a device from being switched back to local by a front panel switch, use
the Local Lockout statement (llo).

In the following example, the remote message is sent to the digital multimeter at select code 7,
device address 22.

dev "gen" ,706,"clock",720
wto "gen,clock"
1

U
l
2: clr 7

All devices on the bus which can respond to remote enable (REN) are set to remote by this
line:

2: rem 7

HP-IB Operations 23

Sending the Local Message

The Local message always originates with a controller and is sent to selected devices with the
purpose of returning them to local, front panel control. During system operation, it is some-
times necessary for an operator to interact with one or more devices. For instance, an operator
might need to work from the front panel to make special tests or to troubleshoot. Also, it is

good systems practice to return all devices to local control upon the conclusion of automatic
operations.

Syntax:

i1 select code with device address

When an interface select code with a device address is specified, a Local message (Go To
Local — GTL) is output to the specified device only. The Icl statement also sends the Clear
Lockout/Set Local message (as explained later) when only the interface select code is
specified.

The following lines send the Local message to the digital multimeter at select code 7, device
address 11.

0: dev "dmm",711
l: 1cl "dmm"
*15637

Sending the Local Lockout Message

This message prevents an operator from returning a device to local control from its front panel.
Since it always orjginates with the controller and is issued to all devices, transfer parameters
are implied and need not be stated explicitly. As long as the Local Lockout message is in
effect, no device can be returned to local control except through the controller itself, thus
maintaining system integrity. In effect, this message locks out the “local” push-button present
on most device front panels. This message prevents a casual passer-by from interfering with
systems operations by pressing buttons.

Syntax:

L% select code

To cancel local lockout, send a Clear Lockout/Set Local message (Icl). The Abort message
(cli) does not cancel local lockout.

Itis a good practice, especially when devices that are connected to the bus are used for other
purposes, to send the Local Lockout message when they are used by the bus. The f~llowing
line sets local lockout:

0: 1lo 7 -

24 HP-IB Operations

Sending the Clear Lockout/Set Local Message

This compound message returns all devices to local, front panel control and simultaneously
clears the Local Lockout message. It is used instead of the Local message when the control-
ler, in an earlier action, issued the Local Lockout message.

Syntax:

i1 select code

Executing the local statement without a device address sends the Clear Lockout/Set Local
message (REN), which sets all devices to local operation and cancels local lockout if it is in
effect.

As an example, if the Local Lockout message is sent in line 0, and all bus activity is complete
by line 30, the Clear Lockout/Set Local message is sent to return front panel control to all bus

devices:

0: llo 7

31: 1lcl 7

Service Requests and Polling

Service Requests and polling provide an additional means of communications between the
calculator (controller) and other devices on the bus. A device may use the Require Service
message (rgs) to ask for the attention of the controller. The controller could then use polling to
find out the status or condition of a device on the bus. Typically, the controller uses polling to
locate the source of a service request, and then the cause. Polling, however, is not limited to
situations involving service requests.

Two polling methods are available with the Extended I/O ROM: serial polling and parallel
polling. A device responds to a serial poll by sending a Status Byte message (a value between
0 and 255) containing up to 8 bits of status information. A device responds to a parallel poll by
sending a Status Bit message, which places one pre-selected bit of data on the bus. Use of
the parallel poll allows the controller to quickly check up to eight devices at once, while use of
the serial poll enables receiving a full byte (8 bits) of information from one device at a time.
Each method is further described in the following pages.

HP-1B Operations

Every bus-compatible device that is designed to use the service request should also respond
to a serial and/or parallel poll. However, a device can be designed to respond to polling even
though it does not use service request.

The operating manual for each device describes whether it can transmit Require Service
messages and how the device responds to a poll.

Sending the Require Service Message

The Require Service message originates with devices other than the controller. The Purpose of
the message is to let a device alert the controller to the device's need for some action by the
controller. The Require Service message provides a system with an additional level of com-
munications outside and asynchronous to the run-of-the-mill interchanges.

When the calculator is not the active controller (either it passed control' to another device or
the System Controller switch on the interface is OFF), it can transmit the Require Service
message and respond to both types of polls.

Syntax:

i select code, status byte

The status byte specifies an 8-bit byte (number between 0 and 255) to be sentin responseto a
serial poll, as explained in the next section. Bit 6 (decimal 64) is the SRQ bit which must be set
if the Require Service message is sent. To clear the SRQ line, send a zero for the status byte.
The SRQ line is also cleared if the controller serial polls the calculator. To send the Require
Service message, the following program segment could be used:

0: pct 705
®
[
[
20: rgs 7,64

Receiving the Require Service Message

When the calculator is the system controller, it can be programmed to identify the source of a
request and to service the requesting device(s), or the calculator can completely ignore all
service requests. In most cases, however, a Require Service message indicates that the
calculator should take some action to maintaining proper system operations. The calculator
can use serial or parallel polling to identify the source of a service request and reveal the
cause. The calculator can then service the device.

'See pass control statement on page 30.

25

The Require Service message controls the bus management line SRQ. The calculator can
check the status of this line to see whether a service request is present. All devices on the bus
use the same line to request service. So when the calculator detects a service request, one or
more devices may be the source.

Sending the Status Byte Message

The Status Byte message is sent at the request of the controlier and is usually a response to
the controller's poll taken to discover which device or devices are sending the Require Service
message. The byte is specified via the require service (rgs) statement previously described.
Bit 6 (decimal 64) must be set if the calculator requires service. The remaining bits may
optionally be set to transmit other status information. In the usual case the message is directed
to the controller for its interpretation and possible action. However, there is no restriction. Any
device with the talker function can send the Status Byte message to any other devices with the

listener function.

v A o s

The interface card automatically responds to a serial poll by sending the byte as a Status Byte

eSS40

Serial Polling or Receiving the Status Byte Message

The serial poll is so named because the calculator polls devices one at a time, in sequence,
rather than all at once. When serial-polled, a device transmits a single byte of information to
indicate its status. This transmission is called the Status Byte message. For example, a status
byte may indicate that a device is overloaded (power supply), a device output has stabilized
at a new level (signal generator), or a device has requested manual service (any of several
types of devices). Once the calculator has serviced each device that has been requesting
service, the SRQ line is cleared (assuming no new requests are received).

To serial poll for checking the presence of a service request use the read status (rds) function
to check interface card status. As shown in the General 1/O Programming Manual, bit 7
(decimal 128) indicates when the SRQ line is true.

For example, this program line checks for a service request:

7: if bit(7,rds(7));gto 15

HP-IB Operations 27

If a service request is present, the program branches to line 15 to conduct a polling operation.
The bit function is described in Chapter 2. Also, interrupt control can be used to automatically
detect a service request and branch to a service routine which polls the bus. See Chapter 5 for
details. The Extended I/O ROM increases the capability of the read status function, permitting
you to conduct a serial poll by specifying the device address in the select code parameter. For
example, executing this statement: iz § 71 1+ conducts a serial poll on a device with
decimal address 11 and returns its status byte to A.

As another example, assume that a bus system has two devices that can send Require
Service messages. One device has talk address X (decimal 24) and the other has talk address
Y (decimal 25). When polled, each device returns status byte 64 (decimal) to indicate that it
requires service (only bit 6 is set true). Otherwise, 0 is returned.’

Here's a sequence that checks for a service request (lines 5-6), and then conducts a serial
poll when a request is seen (lines 7 and 8). Then the program automatically branches to a
display statement to indicate the device requesting service.

: rds(7)-A

: if bit(7,A)=0;gto 12

: if bit(6,rds(724));9sb 10

: if bit(6,rds(725));g9sb 11

: gto 5

0: dsp "SERVICE DEVICE X";stp ;ret
l:

5
6
7
8
9
1
| dsp "SERVICE DEVICE Y";stp ;ret

This sequence assumes that each device requires manual servicing (e.g., change printer
paper) and that device X gets preference when both request service at the same time.

'For convenience, the calculator assumes that bus status bits are numbered 0 thru 7 (0 is least-significant bit). Other devices may
assume that the bits are numbered 1 thru 8 (1 is least-significant bit); see each manual for details.

28 HP-IB Operations

Some devices return more than the service request bit (bit 6) in the Status Byte message. For
example, here is the status byte sent by an HP 9871A (option 001) Printer:

bit 7 6 5 4 3 2 1 a2 (LSB)
] Data Print
2 Service Cover Latch ;\leter Buffer))
Request Off Ready Ready Space

e Bits 0, 1 and 7 are always logical zero.

e Bit2is alogical 1 when the buffer is within 16 characters of being filled. It remains true until the
buffer is empty. Bit 2 is a logical 0 when the buffer is empty.

e Bit3isalogical 1 when the printer is not ready to accept data (e.g., cover interlock broken, self
test) or if the controller is not ready.

e Bit4is alogical 1 when the printer's HP-1B interface assembly is ready to accept data.
e Bit5is alogical 1 when the printer's front cover is off.

e Bit6is alogical 1 when the printer has sent a Require Service message.
0871A Status Byte!

The sequence shown here conducts a serial poll (printer address is 01). If the printer has sent
a Require Service message (bit 6 is 1), lines 4 thru 6 check other status bits and report
conditions.

rds(701)-+A

if bit(6,A)=0;9to 7

if bit(2,A) ;dsp "PRINTER BUFFER FULL";stp

if bit("xxx01xxx",A);dsp "PRINTER NOT READY";wait 100;gto 2
if bit(5,A);dsp "PRINTER COVER OFF";stp

YU W
o« o8 g

Sending the Status Bit Message

When the interface responds to a parallel poll, it sends the status bit message. The rqgs

statement sets or clears the status bit on the interface. When bit 6 of the status byte is set, as in

.1 the status bit is set. To clear the status bit, clear bit 6, as in 4 The

status byte is erased when the interface responds to a parallel poll.

Two switches on the interface card are associated with the Status Bit message. A rotary switch
with ten positions corresponding to one of 8 bit positions (switch positions 9 and 10 are null
positions) determines the location of the bit in the byte. A slide switch can be used to reverse
the logic sense of the status bit (positive or negative true logic).

'For convenience, the calculator assumes that bus status bits are numbered 0 thru 7 (0 is least-significant bit). Other devices may
assume that the bits are numbered 1 thru 8 (1 is least-significant bit); see each manual for details.

HP-iB Operations 29

Parallel Polling or Receiving the Status Bit Message

Parallel polling enables the calculator to check the status of up to eight devices at a time. This
is possible since each device with parallel poll capability is pre-programmed to output one
status bit when parallel polled. The bit is output as the Status Bit message. The status bit for
each device indicates either that it has sent a Require Service message or that a predefined
condition exists (e.g., a printer is out of paper). The poll function executes a parallel poll:

Syntax:
wo: i iselect code
The poll function causes all devices to output their Status Bit messages simultaneously. The

function then returns the combined byte for the calculator to analyze. The calculator can now
quickly see which device(s) require service and take appropriate action.

As an example, suppose that three devices named X, Y, and Z can respond to a parallel poll.
Each device is assigned to output a different Status Bit message when polled as shown here:

bit 7 6 5 4 3 2 1 @ (LSB)
Device Device Device
X Y Z

A logical 1 for devices X and Y indicate that they have sent a Require Service message. A
logical 1 for device Z, however, indicates that it is out of paper. So for this system, the
calculator can respond to the Device Z status bit by displaying R e
kR but it must perform a serial poll to determine the exact status of devices X and Y.

Here is a sequence which checks for a Require

Service message on the bus (lines 0 and 1), i(fisézt)::l; A)=0;gto 7
[4 =V
and parallel polls all devices when a message pol(7)-+B

if bit(4,B);gsb "srvcx"
if bit(2,B);gsb "srvcy"
if bit(0,B);gsb "srvcz"
gto 0

is seen. The program then determines which
device requires service (lines 3-5) and

SN WNN—O
se ©0 o8 se ee ee e

branches to the appropriate service routine.

In this sequence, notice that device X gets the highest priority service, while device Z (the
printer) gets serviced last. The entire sequence is repeated until all service requests are
cleared.

30 HP-IB Operations

The Poll Configure Statement

Some devices having parallel poll capability can be programmed remotely to output a given

status bit. The poll configure (polc) and poll unconfigure (polu) statements permit the cal-
culator to set and clear status bits on these devices.

Syntax:

" select code with device address, status byte

The "poIl:Configure statement sends the Parallel Poll Configure (PPC) command to set the
device specmed to send the specmed status bit when parallel polled. For example, the

statement: : programs the device at address 24 to send status bit 5

(decimal 16) in response to a parallel poll.

The Poll Unconfigure Statement

Syntax:

=+ 1! select code [device address]

The poll unconfigure statement clears all programmed status bits on compatible devices. If

)

Disable (PPD) command clears only the specified device. If the select code does not contain

the select code parameter contains a device address (e.g., a Parallel Poll
a device address, however, a Parallel Poll Unconfigure (PPU) command clears all compatible
devices on the bus.

Sending the Pass Control Message

The pass control statement sends a Pass Control message to transfer bus controller responsi-
bility to another device which can assume active control of the bus.

Syntax:

. select code with device address

After passing control the calculator can be addressed from the new active controller, and can
send a Require Service message and respond to both serial and parallel polls, as described
earlier. If the other controller cannot pass control back to the calculator, the Abort message
(cli) must be used to halt all bus operation and return control to the calculator. An error occurs
if a device address is not specified.

HP-1B Operations

NOTE
Do not execute the pass control statement while a transfer
(tfr) operation is being executed on the HP-IB. To check if a
transfer operation is active, execute rds (“buffer name”). If
—1is returned, then the transfer is active.

Message

Calculator Response when Not Active Controller

Response

Data
Trigger
Clear

Remote

Local

Local Lockout
Clear Lockout/Set
Require Service

Status Byte
Status Bit

Pass Control

Abort

Can branch to I/O routines when addressed to Talk or Listen.!

No response.

No Response.
Local

Status Byte sent in response to serial poll.
Status Bit sent in response to parallel poll.

Can branch to "‘controlier” routines when addressed
to control.?

The 98034A Interface halts all bus operations, clears status
bits and regains active control if preset to be System
Controller.

'See “Extended Read Status' and Chapter 5.

Syntax:

The clear interface statement sends the Abort message to halt all bus operations and return

Sending the Abort Message

~ i i select code

bus control to the calculator. Pressing also outputs the Abort message.

The Abort message can be sent only when the calculator is preset as the System Controller; if

not, error E9 occurs. The System Controller Switch is on the 98034A Interface.

Can branch to ““clear” routine, by monitoring interface card status.’

31

32 HP-18B Operations

Sample Application

Systems designed around the 9825A can be used in many areas for a wide variety of applica-
tions. The block diagram shown below outlines a typical HP-IB configuration. One possible
use for this system would be to study temperature variations in a flowing stream or some other
body of water near a power plant or factory in order to ascertain certain pollution effects.

For this simple application, temperatures are measured by thermistors, which output voltages
read via the digital multimeter. Various channels of the scanner correspond to individual
thermistor or temperature inputs. At pre-entered intervals, the calculator commands the scan-
ner to rotate channels and reads the corresponding voltage equated to temperature from the
multimeter. The calculator then prints the date, time and temperature readings on its internal
printer. A listing and analysis of the program are on the following pages.

s

/98034A Interface

59308A 59309A 3490A _
Timing ASCII Digital 3495A Thermistor
Generator Clock Multimeter Scanner Inputs

A Typical HP-IB System

HP-IB Operations

dim T(S]

dev "timer",706,"scan",709,"clock”,720,"dmm",722

ent “ENTER SAMPLE INTERVAL IN SECONDS" ,N; jmp N>10 and N<1000
fmt |,"T",£23.0,"E6ASR",2

fmt 2,2/,2f22.0,/,£22.0,":" ,£22.0,":",£22.0

fmt 3,/,"Channel”,2x,"Temp(C)",/,16"-"

fmt 4,3x,f1.0,5x,£7.4

fmt 5,"C",fz2.0,"t",z

fmt 6,"R7FISITIM3E",2

wrt "timer.1",N;wtb "clock","C"

— OOV e WN—O

l1l1: red "clock",T; -1

12: 100frc(T/100)+T(1);int(T/100)~+T;jmp (I+1+1)=6

13: wrt 16.2,"Date: ",T(S5),"/",1(4}),"Time: ",T(3]),T(2]),T[!])])
l14: wrt 16,3

15: |+C

17: wrt "scan.5",C

18: wrt "dmm.6";red "dmm",D

19: 3807/(log(D)+9.39)-273+D

20: wrt 16.4,C,D;if (C+1+C)<8;gto 16

21: if bit(6,rds("timer"))=1;trg "timer,clock”;gto 10

22: jmp -1
23: end
*8694
Line 0 — Dimensions a simple array for date/time reading.

e Line 1 — Defines device names for the I/0O devices.
Line 2 — Allows the user to enter the sample interval time (range: 10<N<1000).

e Lines 3 thru 8 — Are formats for the timing generator, printer, scanner, multimeter and
clock.

e Line 9 — Programs the timer and triggers a time interval. The timer will output a Require
Service message when the interval has elapsed. The write binary statement triggers the
clock to store the current time.

Lines 10 and 16 — Are null lines added to separate the “read” routine in the program
listing.

33

34 HP-IB Operations

e Lines 11 and 12 — Take the current date/time reading and separate the data. The HP
59309A Clock outputs the reading in this format:

MM = Month
DD = Day

MMDDhhmmss @ hh = Hour

mm = Minute
ss = Second

e [ine 13 — Prints the current date and time.

e Line 17 — Sets the scanner to the channel indicated by variable C.

e Lines 18 and 19 — Program the multimeter, input a data reading, and convert the
voltage reading to degrees Celsius.

e Line 20 — Prints the channel number and temperature. The remainder of the line con-
tinues the reading routine until all 7 channels are read. A sample printout is shown
below.

m =

i
T S U

e 1k
ot s ot

¢ Lines 21 and 22 — Monitor the bus, waiting for a Require Service message from the
timer which indicates that the current time interval has elapsed. When this occurs, the
trigger statement simultaneously restarts the timer and causes the clock to store the
current time. Then the program branches to the read routine.

Although this is a simple example of bus operation, it shows the power available for controlling
bus systems. In this example, the calculator would spend considerable time at lines 21 and 22
waiting for a long timing interval. Instead, line 21 could branch the program to a data reduction
routine, or other time-consuming operation, while waiting to take the next set of data samples.

HP-1B Operations 35

The Command Statement

The command statement allows direct addressing of one or more devices on the bus by using
ASCII characters to specify talker or listener addresses and data.?

Syntax:

+i select code: ~address characters [: ~data characters]
or
w0 device name(s) T or select code [: “data characters]

As shown above, when a select code is specified, the address parameter is used to specify
the talker and listener addresses for the Data message. But, as shown in the second syntax,
device names or a select code can be used in place of the select code and address-
characters parameter. (The device statement is described at the start of this chapter.) In either
case, the data characters are outbut to the addressed listeners. Also, an equate name can be
used in place of the data characters. The equate statement is described later.

The command statement is provided for compatibility with HP 9820A, 9821A, and 9830A
calculator programs. Use of this statement is completely described in the HP-IB User's
Guides: for 9820A/9821A Calculators, specify part number 59300-30001; for 9830A/B Cal-
culator, specify part number 59300-90002.

When comparing this command statement with the ones available for the 9820A, 9821A, and
9830A/B Calculators, notice that a select code parameter is now required, since the 98034A
Interface Card has a variable select code. Also notice that only one set of address-data
parameters can now be included in each statement.

For example, this sequence could be used to send the data message “L100.0=" to program
an HP 3330A Synthesizer responding to address $ (decimal 04):

Clear all listeners A T t Listen address (3330A)
Talker address (calculator)

If the device name were defined as “GEN" in the device (dev) statement, this sequence could
be used to send the same data message:

'ASCIl address characters are described in the General /O Programming Manual and in each device's operating manual.

36 HP-IB Operations

The ? character should be included at the start of each address parameter to clear (unlisten)
all listeners on the bus. This instruction is automatically sent, however, when other |/O opera-

tions (wrt, red, tfr, etc.) are used on the bus, or when a device name is used in the command

statement, as shown above.

Here are two versions of a program that inputs, stores and computes the average of 50 data
samples from an HP 3490A Multimeter. The program shown on the left uses ASCII characters
to specify talker/listener addresses, while the one on the right uses device names. A brief

analysis of the program follows.

Using ASCII Characters

0: dim AS[50,20];0+A;1+I+N
l:

2: cmd 7,"25V","FOR6TIM3E"
3: emd 7,"2U6";red 7,AS[1]
4: cmd 7,"25v","E"

5: if (I+1+I)<51;jmp -2

6: A+val(AS[N])-A

7: if (N+1+N)<51;jmp -1

8: prt A/50

9: end

*3790

Using Device Names

0: dim AS$[50,20];0+A;1+I+N
l: dev "calc",721,%"dmm",722
2: cmd "dmm","FOR6TIM3E"
3: cmd "calc";red 7,AS$[I]
4: cmd "dmm" ,"E"

5: if (I+1+I)<51;jmp -2

6: A+val(AS[N])=+A

7: if (N+1+N)<51;jmp -1

8: prt A/50

9: end

*27174

e Line 0 — Sets up a 50-element string array and initializes three varaibles.

e Line 1 — Sets up a device name table for the program on the right.

e Line 2 — Programs the 3490A to the 1 volt range and instructs it to take a data sample.

e Line 3 — Inputs the data sample into a string array element.

e Line 4 — Instructs the 3490A to take another data sample.

e Line 5 — Exits the data input loop when 50 samples are stored.

Lines 6 thru 8 — Compute and print an average value from the data.

Another version of this program, which does not use command statements, is in Chapter 4 of

the General I/O Programming Manual. For another program using the command statements,

see the following pages.

HP-1B Operations 37

The Equate Statement
Syntax:

i ‘name :datastring1[: ‘name 2 ' :data string 2...]

The equate statement sets up a list of names and data character strings for use with the
command statement. Each name can then be used in place of the data parameter in com-
mand statements to output the associated string of ASCII characters. The data string can be
either a sequence of text or a string variable name (String ROM needed). Each successive
equate statement adds the new names to the equate list; the same name, however, cannot be
used for more than one string at a time. The equate list is cleared when the calculator is reset
((==), run, erase, or power on).

For example, the following program is identical to the one shown on page 33 except that
command statements are used in most cases to control devices on the bus. The equate
statement in line 4 allows command statements to reference equate names “time” and “100
kohm”, rather than specify the exact output strings. Using a string variable name as the data
string for “time” allows the string to be entered by the user (lines 2 and 3) before it is
“equated” in line 4. Notice that once the string is equated, however, it cannot be altered or
deleted until the calculator is reset. The rest of the program is as described on page 32.

dim T[5],A${9]):"1 L6ASR" +AS

dev "timer",706,"scan",709,"clock",720,"dmm",722

ent "ENTER SAMPLE INTERVAL I SECUNDS" ,N; jmp N>10 and N<1000
str(w)+AS$12,4]

egu "time",AS$,"100kohm","R7S1TIM3E"

fmt 1,2/,2f22.0,/,£22.0,":",£22.0,":",£22.0

fmt 2,/,"Channel”,2x,"Tenp(C)",/,16"-"

fmt 3,£f4.0,£12.4

fmt 4,"C",f22.0,"E"

wrt "timer","time";cmd "clock","C"

WO IOV WN —O
e %e 08 00 a4 es s

ll: rea "clock",T; I+l

12: 100frc(T/100)+T{I);int(T/100)+T;jmp (I+1+1)=6

13: wrt 16.1,"Date: ",T{5],"/",Y[4),"Time: ",T[3),T(2]),T(]]
14: wrt l6.2

I5: |+C

17: wrt "scan.4",C

18: wrt "dmm","100kohm";red "dmm",D
19: 3807/(log(D)+9.39)-273+D

20: wrt 16.3,C,L;if (C+1+C)<B;gto 16

21l: if bit(6,rds("timer"))=1;trg "timer,clock";gto 10
22: jmp -1
23: end

*19634

38 HP-IB Operations

Extended Read Status

Syntax:

iselect code [: variable 1[= variable o[variable 3]]] i+ variable 4

or
w1z iselect code with device address !

The Extended I/0 ROM enables the read status function either to return up to four interface

status bytes or conduct a serial poll.

When only the interface select code is specified (2 thru 15), up to four variables can be

specified to return status bytes from the 98034A Interface. The fourth variable returns the
same status byte described in the General I/O Programming Manual. The interface status

bytes are shown on the next pages. The first status byte is returned to variables, the second

status byte is returned to variablez, and so on.

When a device address is specified in the select code parameter (as in the second syntax), a

serial poll is automatically conducted on the specified device. The function then returns the

status byte. Serial polling is described beginning on page 26.

bit 7 6 5 4 3 2 g (LSB)
|

2 R 2 R R
e Bit0: Is 1 when erroris detected.
e Bit2: Is 1 whenaClear (DCL) message has been received.

First Status Byte

bit 7 6 5 4 3 2 # (LsB)

1 1 7] — HP-IB Address

(MSB) l | | (LSB)

e Bits Othru 4: Indicate the bus address set on the 98034A Interface.

Second Status Byte

bit 7

]

HP-1B Operations

(LSB)

EO!I

REN

SRQ

ATN

IFC

NDAC

NRFD

DAV

e Logical 1 indicates that the corresponding bus control line is true. These lines are described in
the 98034A Installation and Service Manual.

Third Status Byte
bit 7 6 5 4 3 2 1 @ (LSB)
Soce | Comoter | Jaber | bt |G |0 | ol | ko
Set Set
Bit 0: Is 1 when the EOQI (end of data) line has been set true. This bit is cleared by a read status
(rds) operation.
Bit 1: 1s 1 when the Serial Poll function is set.
Bit2: s always 1.
Bit 3: Is 1 when the System Controller function is set.
Bit4: Is 1 when the calculator is an active listener.
Bit 5: Is 1 when the calculator is an active talker.
Bit 6: Is 1 when the calculator is an active controller.
Bit 7: Is 1 when an instrument has sent a Require Service message.

Fourth Status Byte

39

40 HP-IB Operations

Chapter 4
Potpourri

This chapter describes additional operations available with the Extended 1/0 ROM.

Autostart

When the Extended /0O ROM is plugged in and a tape cartridge is installed, the calculator
automatically executes a load program 0 (. -)} statement from track 0 immediately after
the calculator is switched on.

The autostart routine permits the calculator to automatically load and run a supervisory pro-
gram, which in turn could define special function keys or load other programs without operator
instructions. The autostart routine is also performed after a power failure, enabling the cal-
culator 1o automatically reload and restart a program.

The autostart routine may also be initiated by a remote controller on the HP-IB. This is de-
scribed in Chapter 5 under "“Abortive Interrupts”.

As an example, suppose the calculator is being used in an environment where power interrup-
tions occur frequently. File 0 on track O contains the following program:

File 1 contains a memory file. Periodically, the calculator executes the record memory
(o1 L) statement, storing the memory in its present state. If the power is interrupted with the
cartridge in the transport and the power comes back on, the system can be brought back up
without having to start over.

42 Potpourri

The Timeout Statement
Syntax:

w4 v limit in milliseconds

The timeout statement specifies a maximum time in which the calculator will wait for a
peripheral device to respond to an input or output operation.! (Normally, the calculator simply
waits until the device becomes ready to send or accept data.) Whenever a device does not
respond within the specified time interval, the calculator exits the I/O operation and displays
¢ =4 The time limit can be up to 32767 milliseconds (about 32 seconds). If O is
specified, the time limit is cancelled. When the timeout routine is in effect, Q will not abort
the 1/O operation. The timeout routine can be cancelled, however, by resetting the calculator
(erase command, run command or switch power on).

The timeout routine may be used in conjunction with error recovery to take alternate action if a

peripheral is not responding. See the next section.

The On Error Statement

Syntax:
sy Ulabel
The on error statement enables an error recovery routine and specifies a label to branch to

when a calculator error occurs. Then, when an error is seen, the calculator does not halt and

display the error message; instead, it branches to the specified label and assigns values to
three read-only variables:

i ~ The ROM in which the error occurred. 0 = mainframe; an ASCll-equivalent value

indicates the letter for plug-in ROM errors (an ASClI-decimal table is in the Appen-
dix).

7+ — The error number.

“. — The line in which the error occurred.

For example, if <:r1 v+ w7 s executed and then error E2 occurs in line 17, the
calculator immediately exits the current line, branches to label “error”, and assigns these
values to the error recovery variables: rom = 69,em = 2, erl = 17,

"1/0 operations used with Buffered 1/Q (transfer statement) are not affected by the timeout routine. Butfered 1/0 is described in
Chapter 6.

Potpourri

The error recovery routine is cancelled after the calculator branches to the specified label.
Another on error statement must be executed to re-enable the routine. Resetting the calculator
((==), run command, erase command, or switch power on) also cancels the routine.

NOTE
The on err statement should not be placed in the first line of
the error recovery routine; if it is, the calculator may con-
tinuously loop in the routine when an error occurs in that
line.

Here is a short program which reads and prints data readings from a digital voltmeter at select
code 3. Line 0 specifies a time limit of one second for each I/O operation. The on error
statement before each /O operation specifies a routine to branch to when an error is seen.

time 1000

on err "dvm error"

red 3,A,B,C

on err "alt-prt"

wrt 6,A,B,C

gto 1

"dvm error":dsp "DVM DOWN";stp ;gto I

"alt-prt":

i1f rom=69 and ern=4;prt "TIMeOUT";gto 3

if rom=71 and ern=8;prt "PRINTER LUWK"
if rom=71 and ern=9;prt "CHECK INTERFACE"

: prt A,B,C

12: gto 1

13: end

*10921

— PO AU WN —C

CO ®s es 04 ee se 04 80 s ee e

—
—

The “dvm error” routine displays DVM DOWN and halts the program whenever any error
occurs in line 2. The “alt-prt” routine however, checks the error recovery variables and prints
the error which occurred. Then it prints the three items and continues the program.

Notice in each case that the on error statement must be re-executed to reset the error recovery
routine after an error occurs.

43

44 Potpourri

The Conversion Table Statement

Syntax:

% i | [string variable name]

The conversion table statement assigns a pre-dimensioned string variable (String ROM
needed) to act as a conversion table for all General I/0O and Extended I/O ROM input and
output operations. This statement sets up a conversion table completely separate from the
General I/0 ROM'’s conversion statement, which is intended for conversion of delimiters, etc.
with read and write statements only. The ctbl statement can be used to set up a table of any
length up to 256 characters, allowing conversion to or from foreign (non ASCII) code.

To use the conversion table statement, a string variable must first be dimensioned and filled
with the ASCI| characters to be converted. The position, or index, of each ASCII character in
the string corresponds to the value of a foreign-code character. These positions are all offset
by one, however, to allow conversion of a binary zero in the foreign-code set. Thus, the first
character in the table corresponds to a foreign code of 0, the second character corresponds

to a foreign code of 1, etc. Once the string is filled, the ctbl statement assigns the string as a
conversion table.

For input, each data character is read from the peripheral and used as an index into the
conversion table; the content of that location is then substituted for the input character. For
output, the table contents are searched (starting from the first character) for the character
being output; when it is found, the index of the character at that location is used as the output
code. If the ASCII code being searched for is not found, the code is sent untransformed. For
input conversion, if the character code read is larger than the size of the currently established
conversion table, the code is not converted.

Only one conversion table at a time is active. Executing another ctbl statement cancels the
former table and establishes the new one. A ctbl statement with no parameters cancels any
previous conversion string. This table should only be activated for the duration of the 1/0
operation requiring the foreign code set; it should then be de-activated.

NOTE
I/O operations will also reference conversion (conv) and
parity (par) statements in addition to referencing ctbl. Refer
to “Conversion Protocol” later in this chapter.

Potpourri

For example, suppose that you wish to read and print sets of X-Y values from a paper tape
punched in EIA" code. Each value is separated by a comma and each set of values is followed
by a carriage return (CR). Here is the complete foreign code to be used:

Decimal Equivalent
Character EIA ASCII
0 32 48
1 1 49
2 2 50
3 19 51
4 4 52
5 21 53
6 22 54
7 7 55
8 8 56
9 25 57
59 44
. 107 46
Carr. Ret. 128(CR) 10(LF)

The ASCII decimal-equivalent values were found by using the ASCII table at the back of this
manual. Notice that the ASCII line feed was entered instead of carriage return, since the
calculator ignores CR but responds to LF as a terminating delimiter during free-field read.

Now a conversion table can be set up by using the table above. First, dimension a string
variable having one more element than the largest foreign code value to be converted (deci-
mal 128 in this case):

0: dim CS$[129];1-+1I

Next, fill the string with spaces (ASCII decimal 32) so that other characters can be assigned to
individual positions:

l: " "sCs$[1,129]

Then store each ASCII character in the string position determined by the corresponding EIA
decimal value. (Remember that the string position is the foreign code value plus 1.) Either of
these methods can be used:

'Electronic Industries Association standard.

45

46 Potpourri

2: char (48)+C$[33,33] 2: "0"+»C$[33,33]
3: char(49)+C$[2,2] 3: "1"+CS$[2,2]
4: char(50)+C$[3,3] 4: "2"+C$[3,3])
5: char (51)+C$[20,20] 5: "3"+C$[20,20]
6: char (52)+C$[5,5] 6: "4"+CS$([5,5]
7: char (53)+C$(22,22] 7: "5"+C$(22,22]
8: char(54)+C$[23,23] 8: "6"+CS$[23,23]
9: char (55)+CS$[8,8] 9: "7"+Cs$[8,8]
10: char(56)+C$[9,9] 10: "8"+»C$[9,9]
11:

ll: char(57)+C$[26,26] : "9"+C$[26,26]

12: char(44)+C$[60,60] 12: ","+C$[60,60]

13: char(46)+C$[108,108] "."+Cs[108,108]

14: char(l10)+C$[129,129] char (10)+C$(129,129]

—
B W

Finally, the string can be assigned as a conversion table:

15: ctbl C$

With the above instructions, definition of the conversion table is complete. Since all remaining
elements in the string are defined as spaces, the table will convert any EIA character not in the

set to an ASCII space. The calculator, in turn, will ignore all spaces when reading with the
free-field format.

Once the conversion table is assigned, all I/O operations which follow will reference it. For
example, the next sequence will read ten sets of X-Y values, automatically reference the
conversion table as each character is input, and print the converted data items. Line 21
cancels the table so that other /O operations do not reference it.

l16: 1+I

17: red 3,X,Y

18: prt X,¥;spc 2

19: if (I+1+1)<=10;jmp -2
20: ctbl

2]l: end

This conversion table could also be used to output numeric data, converting only the charac-
ters in the string to EIA (see the previous table) and passing all other characters, unchanged,
in ASCII. Note, however, that ASCII space (decimal 32) would be converted to binary 0 (ASCII
NULL), since the first position in the string contains decimal 32.

Substring Conversion Tables

The conversion table need not be based on an entire string. The index of the conversion table
is based on the string specified by the ctbl statement and not on the absolute locations of
characters in the original string variable.

Potpourri

As an example, here is a sequence which dimensions and fills a string with the entire ASCII
character set, but then sets up a conversion table using only ASCII A through Z (decimal 65
through 90):

0: dim AS$(129]
l: char(I)+»A$[I+1,I+]l};jmp (I+1-I)>128
2: ctbl A$[66,91]

So a 26-character conversion table is set up so that:

A=0B=1C=2D-=3,.

The Parity Statement

Syntax:

ol parity type

The parity statement enables a parity check routine for input data and a parity-bit generating
routine for output data. The parity type specifies the routine:

type O — parity disabled.
type 1 — parity always 1.
type 2 — parity even.
type 3 — parity odd.

When parity is enabled, the output data is masked to 7 bits; then the specified parity bit is
calculated and set as the 8th bit. Input data is checked for the proper parity type; & & i

o is displayed if the parity bit is not correct.

The parity routine should only be active when using ASCII or another 7-bit code. If parity is
active during 8-bit or higher data transfers, erroneous results will occur. If a parity type outside
the above range is given, only the two least-significant bits of the binary representation of the

given parity type will be used. Thus, = % is the same as =+ 1. Execution of =+ i
turns off the parity routine.

For example, the following program sequence inputs 50 data items from a paper tape
punched in ASCII with even parity. If an error occurs in line 1, the program jumps to the error
recovery routine, disables parity, and checks the error recovery variables. If error E7 has
occurred, the calculator displays BAD DATA. If any other error has occurred in line 1, how-
ever, the rest of the routine displays an error message.

47

48 Potpourri

par 2;on err "error"

red 2,A;prt A; jmp (I+1+I)=50

gto 8

"error":par 0

if rom=69 and ern=7;dsp "BAD DATA";beep;stp ;gto 0
rom+R; if R=0;32+R

fmt b,2£.0

wrt 0,"ERROR " ,R,ern," IN LINE ",erl;beep;stp

end

O~V W —O
00 86 se 60 s o0 o8 e e

Notice that parity is disabled at the beginning of the “error” routine, so that it will not be
referenced by succeeding I/O operations.

Conversion Protocol

When more than one of the conversion routines: conversion (conv), conversion table (ctbl),
or parity (par) are active at the same time, they are executed in the following order. Remember
that conv is referenced by only read (red) and write (wrt) statements, while ctbl and par are
referenced by all General I/O and Extended 1/0 ROM input/output operations.

out —e

calculator| (conv)” (ctbl) (par) | device
in e— — —tPan,__

Conversion Protocol

When more than one of the conversion routines: conversion (conv), conversion table (ctbl),
or parity (par) are active at the same time, they are executed in the order shown below.
Remember that conv is referenced by only read (red) and write (wrt) statements, while ctbl
and par are referenced by all General I/0O and Extended /O ROM input/output operations.

Remember also that ctbl and par are not applied to data being transferred between buffers
and peripherals, as described in Chapter 6. These conversions are applied at the time that
data is being written to, and read from the buffer using the normal read and write operations.
So the buffer always contains an exact representation of the data that came from, or is going
to, the peripheral.

Interface Control Operations

The following four operations allow direct transfer of data or status information between the
calculator and the control registers on each interface card. It should be noted that, since these
operations are fundamental I/O routines, the user must completely understand the function
and I/O protocol of each interface card and peripheral device. If not, unexpected and/or
unwanted results could occur!

Potpourri 49

The Write Interface Statement

CAUTION
UNEXPECTED (AND SOMETIMES UNWANTED) RESULTS
CAN OCCUR WITH THE WTt STATEMENT IF THE USER DOES
NOT FULLY UNDERSTAND THE REQUIREMENTS OF THE
DEVICE BEING ADDRESSED.

Syntax:
s select code

i register no. = expression

The first syntax is used to specify a select code for successive write interface and read
interface operations. The specified select code remains set until either another one is

The second syntax is used to output 16-bit binary values directly to the pre-specified inter-
face. The register number may be an integer from 4 thru 7. The binary equivalent of the
expression is sent to the specified register. A general description of the interface control
registers is given below. For more details, refer to the appropriate interface installation and
service manual.

e R4 — Primary data register.
e R5 — Primary status/control register.
e R6 — Secondary data register.
e R7 — Secondary status/control register.
Extreme care should be taken when the wti statement is used with the select code 0 or 1.

These are the addresses of the internal display and tape cartridge, respectively, and require
special /O and data protocol.

50 Potpourri

The Read Interface Function
Syntax:

. register number :
This function returns the 16-bit binary equivalent value of the interface register specified. The

select code currently set by a previous write interface statement determines the interface
addressed. i i i returns the currently set select code parameter.

The I/O Flag Function
Syntax:

{select code

This function returns a 1 or 0, indicating the state of the specified interface flag (FLG) line: 1
usually indicates that the peripheral is ready; 0 indicates that the peripheral is busy.

The /O Status Function
Syntax:

iono iselect code
This function returns a 1 or 0, indicating the state of the specified interface status (STS)

line: 1 usually indicates that the peripheral is functioning; 0 indicates an error condition.
Refer to the interface installation and service manual for more details.

Potpourri 51

/O Drivers Example

Using the write interface (wti) statement, the read interface (rdi) function, the /O flag (iof)

function, and the I/O status (ios) function, the input and output drivers can be simulated for the
98032A and 98033A interfaces.

This program example imitates the output drivers:

"Output subroutine":
ent "Select code?",S
ent "Data?",D

wti 0,8

if iosS=0;g9sb "down"
if i0ofS5=0;jmp O

if bit(2,rds(S));cmpD+D
wti 4,D

wti 7,0

9: ret

*3651

e~k WwWwhh=—O

This program example imitates the input drivers:

"Input subroutine":
ent "Select code?",S
wti 0,S

if iosS=0;g9sb "down"
if i0ofS=0;jmp O

rdi 4+D

wti 7,0

if i0fS=0;jmp O

rdi 4-+D

if bit(3,rdi 5);cmpD+D
: ret
6352

*— OO UNEWN—O
e o0 o0

) #0 se 00 ss s %0

52 Potpourri

Chapter 5
Interrupt Control

Introduction

The Extended 1/O ROM provides the 9825A Calculator with the ability to run user-written
programs in various interrupt modes. That is, normal program execution may be interrupted to
perform other program lines at the request of external devices.

There are two types of interrupt capability: programmable and automatic. Programmable
interrupt is available for you to write routines for controlling peripheral devices and transfer-
ring data via special interfaces, such as the HP-1B. Automatic interrupt is a built-in feature of
certain 1/O operations, providing them with a higher leve! of 1/O control than a programmable
interrupt scheme could allow.

This chapter describes the three statements which provide you with programmable interrupt
capability: the on interrupt (oni), enable interrupt (eir), and interrupt return (iret) statements.
Chapter 6, Buffered 1/0, shows how automatic interrupt is used with the 1/O buffer feature for
handling data transfers in various formats. Automatic interrupt is also used by the calculator
keyboard, and has priority over programmable interrupt routines.

The Programmable Interrupt Scheme

The program lines which perform an interrupt service task are called a “service routine”. The
oni statement is used to specify an interface card and the location in read/write memory of a
service routine to be executed when that interface card interrupts the calculator. The eir
statement is used to enable, or allow the interface card to interrupt when its peripheral device
requires service. The conditions which actually determine when the interface will interrupt
depend upon the interface card and the eir parameters, as described later.

When the interface card interrupts, the calculator “logs in” the request for service, disables
the interface from further interrupts, and branches to the pre-specified service routine after
completing the current program line. The service routine must be terminated with an iret
statement, which returns program control to the line which would have been executed next if
the interrupt hadn’t occurred.

54

Interrupt Control

The general set up for an interrupt service routine is as follows:

= o (specify interface and label of service routine)
(enable interface card to interrupt)

(main program)

i (service routine lines) :

The service routine can be any number of program lines needed to service the interrupting
device. The last line must be terminated by an iret statement. The iret must not be executed
except when accessed via interrupt control.

The calculator normally branches to each service routine between lines of the main program.
This is called End of Line (EOL) branching, and is described in the following sections. For
extreme cases, an “abortive interrupt’” routine can be initiated, which causes the calculator to
immediately branch to the service routine. This is explained under "Abortive Interrupts”.

Vectored Interrupt

The calculator I/O structure provides for two levels of EOL interrupt priority, based on interface
select codes: select codes 2 thru 7 have iow-level priority, while select codes 8 thru 15 have
high-level priority. Automatic interrupts from the keyboard and the I/O Buffer feature (see
Chapter 6) are given priority over these high/low levels.

As the calculator is executing each program line, it logs in each interrupt request and assigns
it a priority. If more than one interrupt within a priority level is received, the one with the highest
select code is given highest priority. Then, at the end of the current program line, the cal-
culator compares any interrupts logged in with the current interrupt routines (if any) being
executed: if a new interrupt has a higher priority than the current routine, the calculator
branches to the new routine. But if the new interrupt is of equal or lower priority, the calculator
continues with the next program line of the current service routine.

Interrupt Control

For example, if a low-level interrupt routine is being serviced and a high-level interrupt comes
in, it does not need to wait until the low-level routine is finished. Rather, at the end of the
current line of the low-level service routine, control passes to the high-level routine. When the
high-level routine finishes (by executing its iret statement), control passes back to the low-
level routine to finish its service. The iret from that routine then returns control back to the main
program. Had another high-level interrupt logged in while the first high-level routine was in
progress, its priority would not be sufficient to interrupt that routine. When the first high-level
routine finished, however, the second high-level routine would have been executed entirely
before the calculator returned to finish the low-level routine.

Notice that within this EOL branching scheme, any interrupts logged in within a program line
are considered simultaneous interrupts. So if (within one line of the program) select code 4
interrupts and logs in, followed immediately by select code 6, they would both be logged in by
the end of the line, and select code 6 would be granted service first, even though it interrupted
slightly after select code 4. Once the service routine for select code 6 has started, however, a
new interrupt from, say select code 7, would have to wait for the select code 6 service routine
to be completed before being granted a branch to its service routine.

A line executed under the live keyboard mode takes priority over all service routines. It will be
executed at the end of the current program line, regardiess of the current interrupt-level being
serviced. So the operator is never “locked out” by the EQL branching scheme, unless the live
keyboard has been previously disabled using the Idk statement.

The On Interrupt Statement

Syntax:

©:¢7 i select code @ label T or string variable [¢ abort byte]

This statement establishes linkages between each select code that will interrupt and the
location of a service routine in the program.

Only interfaces can interrupt, not internal devices. The select code must be a value from 2 thru

15. Since the keyboard (select code 0) and the tape drive (select code 1) are handled
automatically by the calculator, they are not available as interrupting devices.

The label or string variable specifies the first line of a service routine beginning with the
matching label. A line number cannot be used to specify the location of a service routine.

The optional abort byte is described later, under “Abortive Interrupts”.

55

56

Interrupt Control

For example, this statement specifies to branch to the service routine labelled “plot” when the
interface at select code 5 interrupts.

0: oni 5,"plot"
This sequence sets up the same branch, but uses a string variable to specify the label name:

: dim AS[5];"plot"+AS

: oni 5,AS

At any time (including within the service routine itself) another oni statement for the same
select code may be executed, either to re-establish a new location for interrupts from that
device or to modify the abort byte. Each oni for a given select code cancels any previous oni
for the same select code.

The Enable Interrupt Statement

Syntax:

= 1 " select code [¢ interrupt enable byte]

Once a service routine and interface have been specified via the oni statement, the eir
statement actually enables the interface to interrupt. When the calculator is switched on or
is pressed, all interfaces are disabled from interrupting the calculator.

When the enabled interface interrupts, the calculator logs in the fact that the interface would
like service, and then disables the interface from further interrupts. This is to prevent the
interface from continually interrupting until its service routine has been executed. If you wish to
enable the interface for further interrupts after the service routine is complete, another eir
statement with the desired interrupting conditions specified should be executed before exit-
ing the service routine (i.e., before the iret statement). This provides for repeated calls to the
service routine each time one of the specified conditions occurs.

To disable an interrupt, set the interrupt enable byte to zero (e.g., eir 7,0). The conditions for
which an interface can interrupt depends on the interrupt enable byte and the type of inter-
face. For example, specifying an interrupt enable byte of 128 (octal 200) sets control bit 7 on
the 98032A Interface, causing it to interrupt whenever its peripheral device is ready for more
operations (indicated by the peripheral flag line being true). So whenever an eir statement is
executed and no interrupt enable byte is given, a byte to set control bit 7 is automatically

given. The transfer statement (page 72) automatically enables an interrupt when it is used.

Since mos. peripherals connected via the 98032A Interface indicate “ready” most of the time,
the programmable interrupt scheme is not suited for data transfer operations with them. (An
exception is the 9862A Plotter, as described later.) The automatic interrupt scheme is specifi-

Interrupt Control 57

cally designed for data transfer with these devices. Examples of data transfer under automatic
interrupt control are in Chapter 6.

The Interrupt Return Statement

Syntax:

This statement is always the last statement executed in an interrupt service routine. It causes
program control to return to the program line that would have been executed next if the
interrupt had not come in. Although iret is the service routine equivalent of the ret statement for
a subroutine called by a gsb statement, the two statements cannot be mixed; so a gsb call
must end with a ret statement, and a branch to an interrupt service routine (initiated by the
interface card) must end with an iret statement.

Example Application

The 9862A Plotter is a device which requires data in non-ASC!H code and in a special format.
The 9862A Plotter ROM generates the special code to control the plotter. Although the plotter
is a comparatively slow device (due to its mechanical plotting requirements), it is connected
via the 98032A Interface, so the programmable interrupt scheme can be used to speed up
program execution time by reducing the time spent waiting for the plotter.

The following sequence shows one method to allow the calculator to rapidly calculate and
store data points in an internal array, while a service routine outputs the points to the plotter.
This enables the calculator to perform lengthy calculations, or even control other I/0 devices,
while also driving the plotter at its fastest rate.

0: dim A[1000,2]
l: cni 5,"plot"
2: 0»J;1-1
L4
°
L J
lu: if 1>1000;gtc 19
L J

18: X+A{Ll,1];Y»A|IL,2]
19: I+i-I

20: eir 5;g9tc 10

21: if u+1<I;eir 5;jmg 0O
22: pen;plt 100,100

23: ena

25;: "plot":

26: 1if J+1>=I;jJmp 2

27: Jd+1+J;plt A[J,1],A[J,2]
28: iret

58 Interrupt Control

e Line 0 — Dimensions an array to hold 1000 sets of plotter coordinates.

e Line 1 — Sets up an interrupt routine such that the program will branch to label “plot”
whenever the plotter is ready for another set of coordinates.

e Line 2 — Initialize J, the output pointer, and |, the input pointer.

e Line 10 — Check if computation of plot coordinates is complete.

e Line 11 thru 18 — Compute one set of X-Y coordinates.

e Line 19 — increment input pointer.

e Line 20 — Enable interrupt 5 and continue computing X-Y coordinates.

e Line 21 — Plot computation is complete, so continue in loop until output pointer plus one
equals input pointer.

e [ine 22 & 23 — Lift pen & move out of way at the end.

e Lines 25 thru 28 — Interrupt routine to plot each point.

HP-IB Interrupt Control

The 98034A HP-IB Interface can interrupt for a variety of conditions, each of which may be
independently enabled (in any combination) by specifying the appropriate interrupt enable
byte in an eir statement. The byte is specified as a decimal (or octal when the octal mode is
set) equivalent of an 8-bit binary value, where each bit specifies an interrupt condition as
shown below.

bit 7 6 5 4 3 2 1 @ (LSB)
Active Active Active
SRQ Controller Talker Listener (Internal IUse Only) BCL g

e Bijt 7: Interrupt on Require Service {SRQ) Message.
e Bjt6: Interrupt on becoming Active Controller.

e Bit 5: Interrupt on becoming Active Talker.

e Bit4: Interrupt on becoming Active Listener.

e Bit 3: Interrupt on input register full.?

e Bit2: Interrupt on output register empty.’

e Bit 1: Interrupt on Clear (DCL) message.

e BitG. Awayssetto 0.

'These bits are for internal use only; see text.

98034A Interrupt-Enable Byte

Interrupt Control

When the calculator is the active controller on the bus, the Require Service (SRQ) message
(bit 7) is the only interrupt condition needed from a device; therefore bit 7 is automatically set
when an interrupt byte is not specified. This is equivalent to specifying a byte of decimal 128
or octal 200.

Bits 1, 4, 5, and 6 are useful when the calculator is not the active controller on the bus. This
allows the program to go on with other tasks, but to be interrupted when the controller addres-
ses the calculator (as a peripheral device) to talk, listen, respond to a Clear (DCL) message,
or take active control. Bits 0, 2, and 3 are used by automatic interrupt control routines only,
and should not be set by the user.

When an interrupt enable byte is specified for a 98034A Interface, bits 1, 4, 5, and 6 are not
automatically cleared when the calculator logs in an interrupt from the card. Only bit 7 (SRQ) is
cleared automatically. So an interrupt is enabled again whenever any of those bits (1, 4, 5, and
6) are set, until either another eir statement changes the byte or the calculator is reset.

For example, suppose that you wish to monitor three devices that can send Require Service
messages and respond to a parallel poll via the HP-IB. When parallel polled, device X re-
sponds by sending status bit 4, device Y sends bit 2, and device Z sends bit 0. The parallel
poll (pol) function returns all bits in one 8-bit byte. Here is a sequence which sets up service
routine “SRQ" to parallel poll the bus and then branch to a subroutine to service each device.
(Bus polling methods are described in Chapter 3.)

: oni 7,"SRQ"
ll: eir 7
®
o
®

40: "SRQ":pol(7)+P

41: if bit(4,P)=1;gsb "SvVC X"
42: if bit(2,P)=1;gsb "svC y"
43: if bit(0,P)=1;gsb "svC Z"
44: eir 7;iret

45: "SVC X": ee00 ;ret

46: "SVC Y": ee06e ;ret

47: "SVC Z": eee ;ret

48: end

By using this method, the calculator runs its main program (lines 12 through 39) while waiting
for a device to interrupt. When a Require Service message is seen (bit 7 on the 98034A
Interface), the calculator automatically branches to the service routine between program
lines. The eir statement (line 44) is needed to re-enable interrupt on bit 7 (SRQ) after each
pass through the service routine.

59

60

Interrupt Control

Remember that interrupts are not generated by specific devices on the bus, but only by the
98034A Intertace itself. So, if more than one device on the bus is able to request service, the
only interrupting condition is via the SRQ line. The service routine can determine which de-
vices on the bus are currently requesting service, however, via a serial and/or parallel poll.

Also, it is not possible to establish two different service routines for the same interface: one
for active talker and another for active listener, for example. Each oni statement cancels any
previous oni statement for the same select code. If both of these conditions are set as inter-
rupting conditions, the service routine must determine which condition caused the interrupt by
using the rds function, and then test the appropriate talk/listen bits in the status byte returned.

For example, here is part of an interrupt method used when the calculator controls a subsys-
tem of data measurement devices, and is also controlled by another device on the bus. Line
10 sets up a service routine and enables interrupt from the bus for any of three
conditions: active talker, active listener, or active controller. When the calculator is not on the
bus, it runs a data reduction and plotting program (lines 11 thru 49). When the active controller
interrupts, service routine “BUS"” determines which bus function has been addressed (talker,
listener, or controller) and branches to an appropriate subroutine. The “TALK" subroutine
sends data to the controller. The “LISTEN" subroutine inputs control information for the cal-
culator. The “CONTROL” subroutine programs and takes data from the measurement devices
on the bus; then the pass control (pct) statement returns active control to the other controller
(address 26).

10: oni 7,"BUS";eir 7,112
[
[]

[J
50: "BUS":rds(7)+A
51: if bit(4,A)=1:9sb "TALK"
52: if bit(5,A)=1;gsb “"LISTEN"
53: if bit(6,A)=1;gsb "CONTROL"
54: iret
55: "TALK":wrt 726 ,A[1];ret
56: "LISTEN":red 726,AS;eee;ret
57: "CONTROL": eee;pct 726;ret
58: end

Interrupt Control

Abortive Interrupts

The oni statement described earlier in this chapter allows for an optional abort byte parameter.
Normally, interrupts using the end-of-line (EOL) branching scheme described earlier are
sufficient, and interrupts are serviced in a reasonable amount of time. Some extraordinary
circumstances, however, may require that a critical interrupt (e.g., a warning from a device of
a critical or dangerous situation that must be corrected immediately) must be serviced in as
short a time as possible. For these rare situations, the abort byte can be used.

NOTE
Abortive Interrupts should be used with extreme care.

If an interrupt has been declared abortive, this is detected as soon as the interrupt is received
by the calculator and an immediate branch to the service routine is performed. The currently
executing line of the main program is aborted, any other pending interrupts are cancelled, and
an immediate branch to the service routine is performed, unless a record or load operation is
being performed on the tape cartridge. The record or load operation is completed before an
interrupt branch takes place. (Interrupts are not recognized during cartridge operations.) As
far as the calculator is concerned, an abortive interrupt is nearly the same as pressing
followed by executing Yol

A ", where “label” is the location of the interrupt
service routine specified in the oni statement. This is a drastic action for extreme cases only,
since variables that were being modified when the action occurred may be lost. Also, all
pending gosubs and for/next loops are lost. The only meaningful action after an abortive
interrupt is to perform any I/O operations necessary to quickly correct or halt the critical
situation, followed by loading an entirely new program to bring the system back to an opera-
tional state.

The abort byte in the oni statement specifies a binary value of which only the four least-
significant bits are used for the 98032A Interface. Bits 2 and 3 however, should not be used
since they are preset on the interface card. This byte is logically ANDed with the lower four bits
of the status byte to determine whether the interrupt is to be abortive. Thus, if any of the bits set
in the abort byte are also set in the status byte at the time the interrupt occurs, the interrupt is
to be abortive.

The 98032A status byte is described in the General /O Programming Manual; only the four
least-significant bits are described here:

61

62

[nterrupt Control

bit 8 7 6 5 4 3 2 1 [/ (LSB)
! I l !
Invert Invert
Not Used Input Output Extended
[l [l Data Data StTtus

e Bits 0 and 1 — Indicate the state of optional device status-input lines (see the 98032A Installation
and Service Manual for details).

e Bits 2 and 3 — Indicate states of logic levels preset on the 98032A Interface. Each of these bits is
logical 1 when the corresponding jumper wire on the 98032A is installed to invert data.

98032A Abort Byte
=, and the

interrupt is enabled: # % i i, an abortive interrupt will occur to the service routine labelled
“overflow” when bit 1 (binary 2) of the status byte is logical 1. But, if this oni statement is

For example, if this oni statement is in effect:

used: "= I the abortive interrupt occurs when either status bit 0

or 1 or both are logical 1.

The abort byte for the 98034A HP-IB Interface uses only the two least-significant bits. So, the
range of a meaningful abort byte is from 1 thru 3. The 98034A abort byte is shown next.

bit 7 6 5 4 3 p) 1 2 (LSB)
| I I | | Require Clear
Not Used Service Message
I l l I l Message (DCL)

e Bit 0: Execute autostart routine when a Clear message (DCL) is received.

e Bit 1. Abortive interrupt when a Require Service message is received.

98034A HP-IB Interface Abort Byte

If bit 1 is set, a Require Service message on the bus will cause an abortive interrupt. If bit O is
set, the Clear message from the controller on the bus will initiate the autostart routine (see
Chapter 3). Thus, when the calculator is acting as a peripheral on an HP-IB the program may
either perform its own definition of the Clear message via a normal programmable interrupt, or
it may use that message to cause power-on auto-restart by setting the abort byte. Remember
that the 98034A Card is set to interrupt (normal or autostart) on the Clear message by setting
bit 1 of the interrupt enable byte in the eir statement.

Normal EOL interrupts are serviced only when the program is running. Abortive interrupts and
autostart on the Clear message are serviced anytime except during, or immediately after,

Interrupt Control

program editing (before run is executed). If an abortive interrupt is encountered while a
program is being edited, pressing may be required to return control to the keyboard. In
all cases, abortive interrupts should be used with extreme care!

Interface Control Bits

The eir statement and the General [/O write control (wtc) statement both output to control
register (R5) of an interface card. The differences in their actions is described next.

The write contro!l statement provides a means of modifying bit 0, 1, and 5 of the control byte for
the 98032A Interface. The format of this control byte is shown below.

bit 7 6 5 4 3 2 1 g (LsB)
Interrupt | DMA Reset Auto N/A N/A CTL CTLY
errup Handshake

98032 Interface Control Bits

Only bits 0, 1, and 5 are settable with the wtc statement (bits 2 and 3 are not used by the
98032A). Any of these bits (0 thru 7) may be set or cleared, however, by using the appropriate
interrupt enable byte in the eir statement. When no byte is specified, bit 7 is automatically set
to enable interrupt whenever the peripheral flag line is true. Bits 4 and 6 should not be set via
an eir statement since, if they are set at the wrong time, they can disrupt normal Extended 1/0O
operations.

You may wish to modify the settings of bits 0 thru 3 of the control byte. If these bits are set via
the wtc statement, they remain set as specified until the next automatic write to the control
register by the Extended 1/0O ROM to service an interrupt. If these bits are set via an eir
statement, however, the setting is saved and the state of bits 0 thru 3 is preserved whenever
an output to the control register is required to service interrupts.

For example, executing this statement (in the octal mode): i enables the inter-
face at select code 5 for interrupt and sets control bits 0 and 1. When the device interrupts, the
calculator automyatically clears bit 7 to disable interrupt until the service routine is reached.
The state of bits 0 thru 3 will be remembered and preserved. Also, # i i~ @i: i could be used
to set the two control bits without enabling interrupt. A later transfer (tfr) statement’ would
automatically enable (and disable when complete) interrupts while maintaining the setting of
the four control bits. If these bits had been set via a wtc, however, their settings would not be

maintained.

'The transfer statement is used only with an I/O Buffer, as explained in Chapter 6.

63

64

Interrupt Control

Interrupt Lockouts

During certain critical operations within the calculator, all programmable and automatic inter-
rupts may be disabled for short time periods. Usually, these lockout periods are only a few
microseconds. An exception to this is during tape drive operations. While a find file (fdf)
operation is in progress, for example, the DMA channel is in use and is not available for
transter operations. This simply means that a transfer (tfr) statement that is attempting to set
up a DMA transfer will wait for the find file operation to be completed before being granted
access to the DMA channel. Similarily, a fdf statement must wait for a tfr to be completed
before it can use the DMA channel.

While a tape data transfer is in progress (e.g., load program, record program) the entire
interrupt mechanism is turned off. So any devices attempting to interrupt during this time will
not be logged in until the tape drive operation is completed. So you should exercise care in
writing a program in which critical interrupts and tape drive operations are interleaved. Inter-
rupts are also locked out for the duration of a Fast Read/Write data transfer (see Chapter 6) in
order to provide the data transfer rate required. The tfr statement sets up the transfer opera-

tion, but the device determines when the transfer begins.

Normal interrupt operation is resumed after each of these interrupt lockout operations is
finished.

Variables with Interrupt Service Routines

The programmer should remember when writing interrupt service routines that all variables in
the 9825A are “global” variables (except p-numbers, see Advanced Programming Manual).
This means that they are recognized and modifiable in all segments of the program. So care
should be taken to ensure that an interrupt service rouine (which can be called at any pointin
the program) does not inadvertently modify program variables used by either the main prog-
ram or a lower-level service routine.

Also, program modes should be carefully watched. If, for example, a line in the program were
of the form:

parity would be cancelled (par 0) before the calculator could branch to a service routine. If the
par O statement were on the next line of the program, however, a service routine could
interrupt while parity type 3 is still set, which could generate unexpected results within the
service routine.

interrupt Control 65

When interrupts are being used, care should be exercised to prevent modes such as par,
conv, ctbl, or moct from being active when they are not needed. Similarly, executing format
statements from within service routines shouid be done with care, since they may override
tormats previously set in the main program.

66 Interrupt Control

Chapter 6
Buffered 1/O

Introduction

For the majority of I1/0 operations, the speed of the calculator and the speed of a peripheral are
reasonably matched, so the General I/O read and write statements will easily accomplish the
data transfer. Very slow and very fast peripherals, however, create speed mismatches which
can usually be overcome by using buffered /0.

The Buffered I/O Scheme

The buffered I/O scheme enables the calcutator to automatically transfer data to or from
external devices using various modes and data formats. Automatic interrupt control is enabled
with each transfer operation.

The buffer (buf) statement allocates and names an area of read/write memory as an |/O data
buffer. It also specifies whether the buffer is to use a 16-bit binary (word) or 8-bit ASCII (byte)
format. The type of data transfer to be performed is also specified. Once the buffer is allo-
cated, Generat I/O read- and write-type operations are used to exchange data between the
buffer and calculator variables, white the transfer (tfr) statement is used to exchange data
between the buffer and the external device. In effect, the buffer becomes the peripheral
device for read and write operations. The next figure shows this [/O buffer scheme.

Calculator
Variables
(fully-formatted data)

I/0 Buffer External
(word or byte format) Device

The I/O Buffer Scheme

68 Buffered IO

Automatic Interrupt

As described in Chapter 5, programmable interrupts allow you to perform any sequence of
operations to service a peripheral interrupt. |f the task to be performed is simple data transfer
between the calculator and a peripheral, however, the Extended 1/0O ROM provides an automa-
tic mechanism for handling interrupts with an /O buffer. This automatic interrupt is set up
whenever a transfer statement is executed, and takes priority over programmable interrupts.
For high speed data transfers, as explained later, the automatic interrupt even disables
keyboard interrupts while the transfer is in progress.

Buffer Types

The buffer statement specifies which of these buffer types is to be set up: interrupt (type O or
1), fast read/write (type 2 or 3), or DMA (direct memory access, type 4). The even numbers
indicate word (16 bit) format, while the odd numbers indicate byte (8 bit) format. The buffer
type specified should match the speed and data format of the external device.

Some devices are extremely slow (such as a 110-baud teleprinter) or totally time-random (like
an operator controlled digitizer). With General I/0 ROM operations, the calculator simply waits
on these devices to complete each 1/0 operation. If the time spent waiting is significant, and if

the program could be performing other calculations while it is waiting for these devices, the

interrupt buffer can be used to send or receive each item of data under interrupt while the
calculator is performing other useful work.

On the other end of the speed spectrum are very fast devices (such as digital voltmeters and
fast analog-to-digital converters) which deliver data at a rate faster than can be read using the
read statement. Either a fast read/write or DMA buffer can be used to simply gather the data as
fast as possible without spending the time to convert the data to the calculator’'s internal
format (i.e., formatting, converting to floating-point representation, etc.). This work can all be
done later, after the data has been input.

The following table summarizes the uses for each buffer type. Notice that /O operations with
medium speed devices (such as a 9866A/B or 987 1A Printer, or most HP-IB modules) are not
listed in the table, since General I/O read- and write-type operations provide an optimum data
transfer rate for most cases. In applications where considerable time is spent on the data
transfer, however, use of either the interrupt or DMA buffer may save execution time.

Buffered /O 69

I/O Buffer Applications

Example Application Bufter Type

Slow Devices:

e 9863A Tape Reader Interrupt

e 9869A Card Reader Interrupt

e 9884A Tape Punch Interrupt
Random-time Devices:

e 9864A Digitizer Interrupt
High-Speed Devices:

e 9883A Tape Reader Fast Read/Write or DMA2

o HP-IB data input Fast Read/Write!

e Burst Read from DVM Fast Read/Write or DMA2

Synchronous DMA

'The DMA buffer cannot be used with HP-1B; use a fast read/write buffer for the fastest transfer rate.

2For byte transfers, the fast read/write buffer offers the most effecient memory usage.

Use a fast read/write buffer when tape drive (or disk) operations are to be done during data
transfer, since a DMA buffer, tape drive and disk require use of the same DMA channel.

The Interrupt Buffer

When a transfer statement using an interrupt buffer is executed, it automatically enables the
device to interrupt each time it is ready to output or input another word or byte of data. Then
the calculator goes on executing the program statements and lines following the transfer
statement. Each time the peripheral is ready, it generates an interrupt, transfers the next word
or byte of data, and goes busy again. In the meantime, program execution continues normally,
interrupting only long enough to transfer the next data character. This operation continues
until the last data character has been transferred, at which time the calculator completes the
transfer and disables the peripheral from further interrupts. Note that the entire transfer opera-
tion is automatically handled by the calculator and no interrupt service routine is required in
the program. Also, each new data request by the peripheral is serviced when received and not
at the end of the current line of the user program. End of line (EOL) branching is used only with
programmable interrupts, as explained in Chapter 5.

The Fast Read/Write Buffer

Data transfer with a fast read/write buffer is similar to using an interrupt buffer, except that
once the data transfer has begun, all interrupts are disabled until the last data item is transfer-
red. None of the main program is executed for the duration of this data exchange. When the
transfer is complete, interrupts for other select codes are re-enabled, and the main program
continues execution from where it was interrupted. A fast read/write transfer begins when the
device interrupts, and continues in a fast [/O exchange until completed.

70 Buffered /O

The DMA Buffer

Using a DMA buffer can achieve even faster data transfer rates through the use of direct
memory access. In this mode, data is exchanged between the buffer and the peripheral
directly by the calculator processor and independent of the ROM software routines. The DMA
transfer occurs on a ‘‘cycle stealing” basis, without any disruption of normal program flow.
Only the 98032A Interface is capable of running in the DMA mode. For the HP-IB, the Fast
Read/Write buffer scheme affords the fastest transfer rate.

All of these transfer operations are completely automatic. All you need do, for say an output
operation, is set up the buffer area (buf statement), fill it with data (wrt or wtb statement), and
initiate the transfer to the peripheral (ifr statement). The automatic interrupt service and buffer
management is taken care of by the calculator.

Buffer Underflow and Overflow

The /O buffer may be written into and read from using any sequence of read, write, and
transfer (tfr) operations, provided that the buffer operation does not cause underflow or over-
flow (i.e., attempting to read from an empty buffer or write to a full buffer). If a buffer is only
partially filled and then emptied, more data may be written into the buffer without erasing the
information left in the buffer from the previous write operation. The data is not repacked within
the buffer area, however, and any unused space is left in the low end of the buffer. Thus, buffer
overflow error E5 may occur even when the buffer contains fewer characters than the size
originally specified. When the buffer is emptied (the last character has been output) the buffer
may be filled completely again. So partial reads should be done with care. See page 75 for an
explanation of buffer poiners.

The Buffer Statement

Syntax:

¢ “name " [: buffer size or string variable : buffer type]

The buffer statement is similar to the dimension (dim) statement in that it allocates and names
an area of read/write memory. As with the dim statement, once a buffer has been allocated it
cannot be modified (i.e., the name, size, and type cannot be changed) or de-allocated. The
buffer can be cleared, however, by executing the syntax:

"~ “name "

The purpose of the buffer for output operations is to prepare and hold data to be transferred to
a peripheral by one of the automatic transfer operations described in this chapter. For input
operations, it provides a means of buffering data received from a peripheral at its own rate,
and reading this data into calculator variables when the program is ready to receive them.

Buffered /O 71

The buffer name can be any string of characters in quotes or a string variable name. The name
is then used in place of the select code parameter in /O operations with the buffer. If a string
variable name is used, string operations can be performed on the string buffer (with the String
Variables ROM).

The buffer size specifies how large an area of memory is to be allocated. The size is specified
in either words or bytes, depending upon the buffer type specified. In addition to the specified
size, each buffer uses an additional 16 bytes of read/write memory as working storage (over-
head). Also string variables can be assigned as buffers, as described later.

The buffer type is a number from 0 thru 4 which specifies one of these types:

I/O Buffer Types

Type Buffer Type Data Format
0 Interrupt buffer words
1 Interrupt buffer bytes
2 Fast read/write buffer words
3 Fast read/write butfer bytes
4 DMA buffer words

The buffer type specifies whether the buffer is to hold bytes (8-bit characters) or words (16-bit
binary data). It also specifies the mode of operation for transfer of data to or from a peripheral
device. These buffer types were described earlier.

Once the buffer has been established, General I/0 read- and write-type operations are used to
exchange data between the buffer and the calculator's internal variables. This is done by
simply using the buffer name in place of the select code parameter in read- and write-type
statements and functions. The same data that would normally be sent to the peripheral (for
write operations) is sent to the specified buffer instead. Within this buffer, the data exists as a
simple byte or word sequence, and the General I/0 formatting capability may be used to write
data to the buffer. Similarly, the byte or word data sequence can be read from the buffer into
internal variables, under format control if desired. To specify a format statement in read- and
write-type operations, the “name” parameter has the following form:

" name - format no.

Since buffer names and device names (see “The Device Statement’ in Chapter 3) may be
used in place of the select code parameter in read- and write-type operations; a buffer and a
device cannot be given the same name. If a buffer statement is executed and the specified
name has already been used as either a device name or another buffer name, error E2 will
result.

72 Buffered I/O

The Transfer Statement

Syntax:

¢ source : destination [= character count [: last character]]

As mentioned in the previous section, General I/O operations are used to put datainto a buffer
from calculator variables, or take data from the buffer and put it into calculator variables. The
transfer statement is used to exchange data between the buffer and a peripheral device. If the
source is a buffer, the destination must be a select code or device name, and vice versa.

Data Output

To transfer data from the buffer to the peripheral, the source parameter is the name of the
buffer and the destination parameter is the select code or device name of the peripheral to
receive the data. The mode of transfer is determined by the buffer type.

The character-count parameter can be used to terminate the output transfer when the
specified number of bytes or words are output. When this parameter is not given, the transfer
is terminated after the buffer is emptied. The last-character parameter is ignored during an
output transfer.

For example, this program sequence sets up a 300-character interrupt buffer for holding sets
of variables to be printed on a teleprinter. Lines 6 thru 20 calculate each set of variables and
then write them into the buffer. The transfer statement sets up the automatic output routine
between the buffer and the printer on select code 3. After enabling the printer to interrupt
when it is ready for each successive character, program execution resumes with the next

statement.
5: buf "out",300,!
6: for I=! to 100
[
[

°
20: wtb "out",A,B,C

2l: next I
22: tfr "out",3
23: end

Notice that the tfr statement is executed only once to set up the automatic transfer operation.
In this sequence, the transfer operation is in effect until either the buffer is emptied (underflow)
or overfilled via the write statement (overflow). Error E5 indicates underflow or overfiow. Since
the buffer is large enough to hold many sets of variables, overflow may not occur if the printer
is fast enoiah to keep up with program execution. If the printer is too fast, the buffer will empty
and the transfer will have to be re-initialized after new data is written into the buffer.

Buffered 1/O

To avoid error E5 the program can be written to detect the current buffer size, and branch to
wait until the buffer is emptied before doing the next write statement (avoid overflow) or to
re-execute the tfr statement if the buffer has been emptied already (avoid underflow). See
“Buffer Status” later in this chapter for details.

Data Input

For transfer operations into an 1/O buffer, the source is specified as a select code or a device
name and the destination is specified as a buffer name. Upon execution of the transfer
statement, data is taken from the peripheral and placed in the buffer according to the butfer
type specified. When the transfer is complete, the data is then taken from the buffer using
General 1/O read operations, with the buffer name in place of the select code, and using
formatting if desired.

During the transfer from the peripheral to the buffer, the calculator must have some way of
knowing when the operation is complete, that is, when the last word or byte has been re-
ceived. You can specify this cutoff condition in the transfer statement through the optional
character-count and last-character parameters. The character count is the number of words or
bytes to be read in order to complete the transfer operation. If this value is larger than the
space available in the buffer, the input transfer is terminated when the buffer is filled.

The last-character parameter is used by byte-type buffers only to terminate when the specified
character is input. For example, when decimal 10 (or octal 12) is specified, the input transfer
will terminate after an ASCII line feed has been input. If a last character is given, the number of
characters must also be specified, although it may be given as zero to indicate that only the
terminating character or filling the buffer is to act as the cutoff condition. For example, in this
sequence:

mdec;buf "hold",750,3
tfr 3,"hold",500,10

—
s ae

data is transferred from the device on select code 3 to the buffer “hold"”, until either 500
characters are read or an ASCI! line feed is seen.

73

74 Buffered /O

|/O Buffer Status

Since data transfers using a buffer are done automatically while the main program is running,
a method is needed for the program to detect when the buffer transfer is finished. There are
two methods available for doing this, one uses the read status (rds) function and the other
uses a programmable interrupt service routine.

The program can check current buffer status by executing this read status function:

Syntax:

= i puffer name

The function returns —1 whenever a transfer statement is active with the buffer. When the
buffer is not busy, the number of words or bytes currently available for output from the buffer is
returned as its status. Thus, a buffer that has finished a transfer to a device will show a status
of zero and a buffer that has finished a transfer from a device will show a status equal to the
character-count parameter (plus any data that was left in the buffer from previous operations).

The second method of detecting the completion of a transfer operation makes use of the
programmable interrupt scheme. When a transfer operation has just been completed, and an
“oni” location has been previously set up for the same select code, a normal end-of-line
service request is logged in. The program then branches to the service routine according to
the programmable interrupt scheme exptained in Chapter 5.

For example, this sequence specifies that 50 characters (bytes) should be transferred from
the device on select code 2, and placed in the buffer called “data”. When the transfer is
complete, an interrupt is logged in to branch to the service routine labelled “done”. Notice that
an enable interrupt (eir) statement is not needed (or should not be used!) to enable an
interrupt from the same select code; it's done automatically by the transfer operation.

0: oni 2,"done"
l: buf "data",50,!
2: tfr 2,"data",50

NOTE
If an eir and a tfr statement are in effect for the same select
code, the service routine will probably be executed before
the transfer operation.

Buffered ¥O 75

As another example, suppose that we have a calculator-digitizer-printer system and wish to
digitize, compute, and print data as fast as possible. The digitizer is connected via a 98032A
Interface set to select code 3. Data points are randomly input, since the operator must manu-
ally move the digitizer cursor from point to point.

By using the following method, the calculator is free to compute and print data (lines 8 thru 24)
while the operator digitizes each new data point. The transfer statement automatically inputs
one data point (a 15-character sequence) and then logs in an interrupt causing the calculator
to branch to service routine "read”. The service routine then empties the current data from the
buffer, counts data points, and returns control to the main program. If the main program
sequence is finished before the current transfer operation is complete, the calculator displays

LELCELCL R Dy % and waits (executes line 25 continually) until the buffer has
been filled and emptied.

Remember that buffer status is —1 when a transfer is active, and 0 when the buffer is empty.

ni 3,"read"
uf "digitize",15,1
fr 3,"digitize"

[

25: dsp "Digitize Next Point";jmp rds("digitize")=0
26: gto 7

27: "read":red "digitize" ,X,Y

28: I+!l-+I;iret

29: end

~Nowm
OO0

Buffer Pointers

Each I/O buffer has two internal pointers which indicate the last word or byte currently input
and output. The following diagrams show the position of these pointers after various opera-
tions using a 20-byte output buffer. A 1 indicates an input pointer and at indicates an output
pointer. The read status function <% " " I was executed after each operation to deter-
mine the current buffer status.

1" (buffer status = 0)

2. Write five characters into buffer:

ABCDE
1 | (buffer status = 5)

76 Buffered /O

10.

Transfer three characters out:

Note that ABC still remains in the buffer.

Write more characters in:

Attempt to write too many more charac-
ters into buffer: 11 characters

Transfer remainder of buffer out:

Now the buffer can be filled with new
data: (A = aspace).

Attempt to write in one byte:

Gives error E5 no room to store it.

Remove the last byte:

The buffer can now be refilled.

ABCDE
1 1 (buffer status = 2)

ABCDE12345CRA (D)

1 I
(buffer status = 9)

ES]

(buffer status remains unchanged)

BcDE12345CH D

1t (bufter status = 0)

AAAAAAA3.14159265360
1 (buffer status = 20) !

{ AAAAAAA3.14159265360
"

(buffer status = 1)

= !

(buffer status unchanged)

AAAAAAA3.14159265360
1t (buffer status = 0)

Notice in each step, that buffer status indicates the number of bytes available for output (the
number of bytes between pointers) and not necessarily the total number of bytes in the buffer.
As shown by steps 5and 9, the buffer cannot be refilled after being only partially emptied —
the buffer must be emptied completely before it can be filled again. Also remember that data
which has been output from the buffer can not be output again, even though it is still in the

buffer.

When unwanted data remains in the buffer, as after step 8, it can be removed by using the
read byte function. If an unknown number of words or bytes is left in the buffer, a sequence
such as this could be used to empty the buffer into a “bit bucket:

Buffered 'O 77

String Variables as Buffers

The size parameter in the buffer statement may be replaced by the name of simple string
variable (String ROM). Substrings and strings of a string array are not allowed. This permits
the string variable to serve also as an I/0 buffer.

For example, these program lines dimension a 100-character string variable and then assign
the string as an interrupt type buffer called "“fer”:

When a string is specified as a buffer, 16 characters are assigned as working storage (over-
head). So a string dimensioned at 100 characters will allow a buffer size of only 84 bytes (42
words). If a 100-byte buffer is required, the string should be dimensioned at 116 characters.
Remember that non-string buffers automatically allocate the extra area, so the size specified
is the size of the buffer. For word-type buffers, odd buffer sizes are rounded to the next higher
even number.

Using string variables as buffers offers additional features. For example, the buffer may be
saved on the tape cartridge or a disk for processing at a later time. This allows one segment of
a program to be a data acquisition phase and simply fill a buffer from a device, record the
buffer, reset the buffer to empty, and continue gathering data. In a later phase the buffers may
be loaded from the tape or disk and processed. A second advantage of string buffers is that
the string-manipulation functions may be used to “preview” the form of the data received
before reading it into calculator variables. Or data may be "pre-conditioned” to suit a particu-
lar format or data structure. Be aware, however, that these String ROM operations are entirely
independent of the normal red/wrt/tfr operations.

As an example, suppose that 10 characters (bytes) are transferred into a buffer which uses the

area for A$. Then the statement =~ =i 7+ is executed. Now executing = = ~ 1 (to
determine the length of the string) will return 3. But the buffer size will still be considered as 10
bytes; of course they are not the same 10 bytes transferred from the peripheral since the buffer
was modified from the keyboard.

Inverted Data

The 98032A Interface has two jumper wires which may be set to specify inverted (positive true)
logic levels for input and/or output data. The card is normally set to handle negative-true logic.
During normal read and write operations, the state of these jumpers is checked by the cal-

78 Buffered IO

culator and the data is inverted, if necessary, before writing and after reading. This is also
done for data transfers using an interrupt buffer. The two fast-access buffer transfers (fast
read/write and DMA), however, do not check these inversion jumpers to maintain maximum
transfer rates. So the program must compensate for inverted data when fast read/write or DMA
buffers are used with an interface set for inverted logic. The fact that inverted data is received
in these modes of transfer should also be considered when specitying the last-character
parameter of an input transfer statement.

Currently, the only HP calculator peripheral that uses inverted logic levels is the 9864A Di-
gitizer. Since this is a slow (time random) device, only the interrupt buffer should be used for
transfer operations; this also avoids the change for inverted data.

Buffered 1/O

Buffered 1/O Example

The following program uses a fast read/write buffer to enter and print measurements from a
5328A Frequency Counter on the HP-IB.

0: dim F$[20,17],GS[356] :mdec

l: wet 710,"Pr4G2siT"

2: " Type 3":buf "CBuf",G$,3

3: tfr 710,"CBuf", 340

4: rds("CBuf")+B;if B=-1;jmp O

5: fxd O;prt "#Bytes=",B;spc ;prt "CBuff=",G$;spc ;prt “"Buffer="
6: for J=1 to 20

7: conv 69,10l;red "CBuf",FS$S[J];prt F$[J]

8: next J

9: spc 2

10: "Refmt & Prt":prt "Frequency=";for K=1 to 20
ll: fmt 1,£6.2," MHz";wrt 16.1,val(FS$[K])/leé6
12: next K

13: spc 2;end

*19908

0. Dimensions string array F$ to hold 20 frequency readings each 17 characters
long, and string G$ to hold 340 characters of raw data plus 16 extra characters
required for housekeeping purposes.

1: Programs 5328A Frequency Counter to take multiple measurements and output at
end of each measurement.

2,3: Sets 9825A for Fast Read/Write (Type 3) buffer. A total of 340 characters are to be
accepted.

4: Tests status; while buffer is being filled, the status is “—1" indicating “busy’’; upon
completion, it returns the final character count.

5. Prints final character count and raw data. Each reading is 17 character spaces
wide including blanks as fillers.

Note that “—" is carriage return and “|" is line feed. Such raw data printouts are
useful for debug purposes.

6,8: Since each frequency reading is terminated by the line feed delimiter, a conve-
nient way to separate the raw data string into individual readings is to read it into a

string array. At the same time, the exponent prefix is converted to lower-case “e".
The string array is printed to illustrate the operation.

10,13: The val function transforms the strings of ASCII representations into numeric val-
ues so they can be scaled (divided by 108) and printed.

80 Buffered IO

Printout:

Demonstration Programs

Buffered 1/0 allows more efficient use of the 9825A Calculator as shown in the following
programs. The time between samples was increased by use of the 5328A Frequency Count-
er’'s sample rate control in order to show that it is possible to do useful work interleaved with
data taking where time between samples permits.

The Test Case was run with the sample rate control set fully counter-clockwise to have the
counter take readings with the minimum spacing between each one. So little time was left that
use of a Type 1 “Interrupt” Buffer was of no avail.

For the two data runs, the time between readings was increased an arbitrary amount by
setting the 5328A sample rate control to 1 o'clock. In program line 1, note the inclusion of the
code “S7”, which permits manual setting of this control.

Buffered I/O 81

Program 1 was run without interleaving any computations. Note that lines 5 and 6 test status in
a tight loop from which the program exits when the buffer is full.

Program 2 was run with interleaved computations. Note that program line 6 terminates with
“jmp —1" to update the index and perform the computation before again testing status to se¢

whether the buffer is full yet.

The results show that more than 1000 computations can be made without taking but 13
milliseconds longer than in the case where the 9825A does no useful work between input

samples.

Buffered 1/0 is a singificant contribution to efficient utilization of system resources where the
measurement situation is such that samples are spaced in time and there is other useful work

the system

can perform while the data buffer is being filled.

Test Program — Minimum Time Between Samples:

—_——_— e o~V WwhN—O

12
13:
14:
15:

*15126

dim F${20,17]},G$[356];mdec;0+>Y

wrt 710,"PF4G3S17T";red 710,A

wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc
" Type 1":buf "CBuf",GS$,lI

wrt 716 ,"R";tfr 710,"CBuf", 340
Y+1+Y;Y*1In(Y)+2

if rds("CBuf")=-1;jmp -1

red 716,D
fxd O;prt "Time,ms=",D-C;spc ;prt "Work=",Y;spc
for J=1 to 20

conv 69,101;red "CBuf",F$[J]

next J

"Refmt & Prt":prt "Frequency=";for K=l tc 20

fmt 1,£10.3," MHz";wrt 16.1,val(F$[K])/le6
next K

spc 2;end

82 Buffered I/O

Program 1 — No Interleaved Computations:

WO U W — O

15
*31]

dim ©$[120,17]),GS$[356] ;muec; 0»Y
wet 710,"PF4G3S17T";red 710,A
wet 716,"C01E3PR";red 716,C;dsp "Cal=",C;spc
" Type 1":buf "CsBuf",GS,lI
wet 716,"R"; tfr 710,"CBuf", 340
0~+Y

if rds("Chuf")=-1;jmp -1

red 71lo,D

fxd O;prt "Time,ms=",D-C;spc ;prt "Work=",Y;spc
for J=1 tc 20

conv 69,101l;red "CBuUf",FS{J}

next J

"Refmt & Prt":prt "tfrequency=";for K=1 tc 20
fmt 1,£10.3," MHzZ";wrt lo.1,val(FS$[{K])/leb
next K

spc 2;end
854

Program 2 — Interleaved Computations:

15:
*15

dim F$[20,17],GS$[356] ;mdec;0+>Y

wrt 710,"PF4G3S17T";red 710,A

wet 716,"001E3PR";red 716,C;dsp "Cal=",C;spc

" Type |":buf "CBuf",GS$,1

wet 716,"R";tfr 710,"CBuf", 340

Y+1+Y;Y*1n(Y)+%

if rds("CBuf")=-1;jmp -1

red 7l6,D

fxd O;prt "Time,ms=",D-C;spc ;prt "wWork=",Y;spc

for J=1 to 20

conv 69,101;red "CBuf",FS[J]
next J
"Refmt & Prt":prt "rrequency=";for K=1 to 20

fmt 1,£10.3," MHz";wrt 16.1,val (FS[K])/leb
next K

spc 2;end
126

Buffered I/O 83

Printouts:

Test Program Program 1 Program 2

84 Buffered I/O

Appendices

The HP Interface Bus

This appendix offers a brief overview of the HP-IB hardware and control scheme. You need not
read this section, since complete control of the bus is available by using the bus messages
described in Chapter 4. If a manual for another device on the bus does not describe operation
via the bus messages already described, however, this information will help you determine
which messages are needed to control that device.

Device A < Data Bus
(8 Lines)
Able to talk, (\
. . listen, and
HP-IB Lines and Operations control F
(e.g..
The HP Interface Bus transfers data and com- calculator)
mands between the components of an in-
strumentation system on 16 signal lines. The Device 8 [Dﬁfﬂiﬁf
interface functions for each system component hiole 10 talk N Control
are performed within the component so only (eg. D
passive cabling is needed to connect the sys- multimeter)
tem. The cables connect all instruments, con- General
. < Interface
trollers, and other components of the system in Device C Management
parallel to the signal lines. Only able to >
listen
(e.g. signal
generator)
The eight Data /O lines (DIO1 thru DIO8) are
reserved for the transfer of data and other
messages in a byte-serial, bit-parallel manner. Device D
Data and message transfer is asynchronous, only avle to
coordinated by the three handshake lines: (e.g.. counter)
Data Valid (DAV),Not Ready For Data (NRFD), L -}oo.s
DAV
and Not Data Accepted (NDAC). The other five NRFD
, P () . ———— NDAC
lines are for management of bus activity. See IFC
— ATN
the figure on the right. ————SRQ
REN
EOQI

HP- IB Signal Lines

85

86 Appendices

Devices connected to the bus may be talkers, listeners, or controllers. The controller dictates
the role of each of the other devices by setting the ATN (attention) line true and sending talk or
listen addresses on the data lines. Addresses are set into each device at the time of system
configuration either by switches built into the device or by jumpers on a PC board. While the
ATN line is true, all devices must listen to the data lines. When the ATN line is false, only
devices that have been addressed will actively send or receive data. All others ignore the data
lines.

Several listeners can be active simultaneously but only one talker can be active at a time.
Whenever a talk address is put on the data lines (while ATN is true), all other talkers will be
automatically unaddressed.

Information is transmitted on the data lines under sequential control of the three handshake
lines (DAV, NRFD and NDAC). No step in the sequence can be initiated until the previous step
is completed. Information transfer can proceed as fast as devices can respond, but no faster
than allowed by the slowest device presently addressed as active. This permits several de-
vices to receive the same message byte concurrently.

The ATN line is one of the five bus management linas. When ATN ig true, addressas and
universal commands are transmitted on only seven of the data lines using the ASCII code.
When ATN is false, any code of 8 bits or less understood by both talker and listener(s) may be
used.

The IFC (interface clear) line places the interface system in a known quiescent state via the
Abort message.

The REN (remote enable) line is used with the Remote, Local, and Clear Lockout/Set Local
messages to select either [ocal or remote control of each device.

Any active device can set the SRQ (service request) line true via the Require Service mes-
sage. This indicates to the controller that some device on the bus wants attention, say a
counter that has just completed a time-interval measurement and wants to transmit the read-
ing to a printer.

The EOI (end oridentify) line is used by a device to indicate the end of a multiple-byte transfer
sequence. When a controller sets both the ATN and EOI lines true, each device capable of a
parallel poll indicates its current status on the DIO line assigned to it.

Appendices 87

In the interest of cost-effectiveness, it is not necessary for every device to be capable of

responding to all the lines. Each can be designed to respond only to those lines that are
pertinent to its function on the bus.

The operation of the interface is generally controlled by one device equipped to act as
controller. The interface uses a group of commands to direct the other instruments on the bus
in carrying out their functions of talking and listening.

The controller has two ways of sending interface messages. Multi-line messages, which can-
not exist concurrently with other multi-line messages, are sent over the eight datalines and the
three handshake lines. Uni-line messages are transferred over the five individual lines of the
management bus.

The commands serve several different purposes:

e Addresses, or talk and listen commands, select the instruments that will transmit and
accept data. They are all multi-line messages.

e Universal commands cause every instrument equipped to do so to perform a specific
interface operation. They include multi-line messages and three uni-line commands: in-
terface clear (IFC), remote enable (REN), and attention (ATN).

e Addressed commands are similar to universal commands, except that they affect only
those devices that are addressed and are all multi-line commands. An instrument re-
sponds to an addressed command, however, only after an address has already told it to
be talker or listener.

e Secondary commands are multi-line messages that are always used in series with an
address, universal command, or addressed command (also referred to as primary

commands) to form a longer version of each. Thus they extend the code space when
necessary.

To address an instrument, the controller uses seven of the eight data-bus lines. This aliows
instruments using the ASCII 7-bit code to act as controllers. As shown in the table, five bits are
available for addresses, so a total of 31 addresses are available in one byte. If all secondary
commands are used to extend this into a two-byte addressing capability, 961 addresses
become available (31 addresses in the second byte for each of the 31 in the first byte).

88 Appendices

Code Form

Command and Address Codes

Meaning

X 0 0 As
As

>
(@]
—

>
(@]
-

X 10 As

>
-
-

X 11

As

Universal Commands
Listen Addresses

As Az Az Aq
Aa Az Az A«
except

1 1 1 1
As Az Az Ay
except

1 1 1 1
As Az Az Aq
except

1 1 1 1 Ignored

Unlisten Command
Talk Addresses

Untalk Command
Secondary Commands

Code used when attention (ATN) is true (low).

X = don’t care

Interface Functions

Interface functions provide the physical capability to communicate via HP-1B. These functions
are defined in the IEEE Standard 488-1975. This standard, which is the designer's guide to the
bus, defines each interface function in terms of state diagrams that express all possible
interactions.

Bus capability is grouped under 10 interface functions, for example:

troller, Remote/Local. The following table lists the functions.

HP-IB Interface Functions

Mnemonic Interface Function Name

SH Source Handshake
AH Acceptor Handshake

T Talker (or TE = Extended Talker)*

L Listener (or LE = Extended Listener)*
SR Service Request

RL Remote Local

PP Parallel Poll
DC Device Clear

DT Device Trigger

C Any Controller
Cy A specific Controller (for example: C,,Cg...)
Cs The System Controller

*Extended talkers and listeners use a two-byte address. Otherwise, they are the same as Talker and Listener.

Talker, Listener, Con-

Appendices

Since interface functions are the physical agency through which bus messages are im-

plemented, each device must implement one or more functions to enable it to send or receive

a given bus message.

The following table lists the functions required to implement each bus message. Each device's
operating manual lists the functions implemented by that device. Some devices, such as the
98034A Interface, list the functions implemented directly on the device.

Functions Used By Each Bus Message

Bus Message

Functions Required
sender function — receiver function(s)
(support functions)

Data

Trigger

Clear

Remote

Local

Local Lockout
Clear Lockout/Set Local
Require Service
Status Byte
Status Bit

Pass Control
Abort

T—L* (SH, AH)
C—DT* (L, SH, AH)
C—DC* (L, SH, AH)
C g —RL* (SH, AH)
C—RL* (L, SH, AH)
C—RL* (SH, AH)
Cg—RL*

SR*—C

T—L* (SH, AH)
PP*—(C

Ca—Cp (T, SH, AH)
Cg—TLC

*Since more than one device can receive (or send) this message simultaneously, each
device must have the function indicated by an *

89

90 Appendices

Extended |/O Status Conditions

The following table shows status conditions for various Extended 1/Q operations and modes.
Notice that the Erase, Erase All/Power on, and Run columns from Appendix D of the 9825A
Operating and Programming Manual are combined into cne coclumn here. R = restored to
power-on state; X = unchanged.

Calculator Operation

Power On
Erase
Erase All | RESET
Extended I/O Operation or Mode Run

Conversion and parity tables
Octal mode (reset to decimal)
1/0 buffer area

Service name list

Equate name list

Continue Continue
(after edit) (after stop)

Buffer select code for tfr
(nterrupt parameters
Error recovery routine
Timeout routine

LT U DO —UXJDIVDIDD
< D 0 OO < X X DX
W T M OO < X X XX
o K B T X X XX

ASCII
Char.

EQUIVALENT FORMS
Binary Octal Dec

ASCII Character Codes

ASCH
Char.

EQUIVALENT FORMS
Binary Octal Dec

ASCH
Char.

EQUIVALENT FORMS
Binary Octal Dec

ASCII
Char.

EQUIVALENT FORMS
Binary Octal Dec

NULL

SOH

STX

ETX

EQT

ENQ

ACK

BELL

8s

HT

LF

Vrae

FF

CR

SO

ST

DLE

DC1

DC.

DC;

DCa

NAK

SYNC

ETB

CAN

EM

suB

ESC

FS

GS

RS

us

00000000 000 0

00000001 001 1

00000010 002 2

00000011 003 3

00000100 004 4

00000101 005 5

00000110 006 6

00000111 007 7

00001000 010 8

00001001 011 9

00001010 012 10

00001011 013 1

00001100 014 12

00001101 015 13

00001110 016 14

00001111 017 15

00010000 020 16

00010001

021 17

00010010 022 18

00010011 023 19

00010100 024 20

00010101 025 21

00010110 026 22

00010111 027 23

00011000

030 24

00011001 031 25

00011010 032 26

00011011 033 27

00011100 034 28

00011101 035 29

00011110 036 30

00011111 037 31

space

00100000 040 32

00100001 041 33

00100010 042 34

00100011 043 35

00100100 044 36

00100101 045 37

00100110 046 38

00100111 047 39

00101000 050 40

00101001 051 41

00101010 052 42

00101011 053 43

00101100 054 44

00101101 055 45

00101110 056 46

00101111 057 47

00110000 060 48

00110001 061 49

00110010 062 50

00110011 063 51

00110100 064 52

00110101 065 53

00110110 066 54

00110111 067 55

00111000 070 56

00111001 071 57

00111010 072 58

00111011 073 59

00111100 074 60

00111101 075 61

00111110 076 62

00111111 077 63

01000000 100 84

01000001 101 65

01000010 102 66

01000011 103 67

01000100 104 68

01000101 105 69

01000110 106 70

01000111 107 71

01001000 110 72

01001001 111 73

01001010

112 74

01001011 113 75

01001100 114 76

01001101 115 77

01001110 116 78

01001111 117 79

01010000 120 80

01010001 121 81

01010010 122 82

01010011 123 83

01010100 124 84

01010101 125 85

01010110 126 86

01010111 127 87

01011000 130 88

01011001 131 89

01011010 132 90

01011011 133 N

01011100 134 92

01011101 135 93

01011110 136 94

01011111 137 95

DEL

01100000 140 96

01100001 141 97

01100010 142 98

01100011 143 99

01100100 144 100

01100101 145 101

01100110 146 102

01100111 147 108

01101000 150 104

01101001 151 105

01101010 152 106

01101011 153 107

01101100 154 108

01101101 155 109

01101110 156 110

01101111 157 111

01110000 160 112

01110001 161 113

01110010 162 114

01110011 163 115

01110100 164 116

01110101 165 17

01110110 166 118

01110111 167 19

01111000 170 120

01111001 171 121

01111010 172 122

01111011 173 123

01111100 174 124

01111101 175 125

01111110 176 126

01111111 177 127

Appendices N

92 Appendices

Buffered I/O Benchmarks

The table below summarizes results of 8 benchmark programs run to measure relative speeds
of three methods of transferring data into the 9825A from measuring instruments on the
HP-IB: Fast READ/Write (Type 1), Interrupt Buffer (Type 3), and ordinary reads using the red

statement.
Buffered /O Benchmark Times
Average Time/Reading in ms
Frequency Type 1 Type 3 Standard Read | Standard Read
Counter “Interrupt” | “Fast Read/Write” | (for/nextloop) [Dump into String
5345A 3.79 ms 1.75ms 4.07 ms 2.75ms
5328A 5.65ms 3.00 ms 5.80 ms 4.40 ms

Results show the fast read/write capability to be effective in reducing the time required per
reading. This could be significant where data runs are long or where data points must be
taken as close together as possible.

The following programs were used to generate the table above.

1. 9825A/5345A Counter with buffer type 1:

: dim £$[28,17),G$[353] ;mdec

: wrt 710,"I2E8:<G<Il";red 710,A

: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc
: " Type 1":buf "CBuf",G$,1

: wrt 716,"R";tfr 710,"CBuf",337

: if rds("CBuf")=-1;jmp 0

: red 716,D

: £fxd O;prt "lime,ms=",D;fxd 2;prt "Avg Time/rdg,ms=", (D-C)/28;spc
: for u=1 to 28

: conv 69,101;red "CBuf",F$[J)

10: next J

l11: "Refmt & Prt":prt "Frequency=";for K=1 to 28
12: fmt !,£10.3," MHz";wrt 16.1,val(FS[(K])/le6
13: next K

14: spc 2;end

*11541

WO~ EWN=-—O

Appendices

2. 9825A/5345A Counter with buffer type 3:

— PO OOV HWN —O
e . s .

—
—
.

12:
13:
14:

0:

: dim F${28,17],G$[353] ;mdec
: wrt 710,"I2E8:<G<I1";red 710,A
: wrt 716,"001E3PR";red 716,C;dsp “Cal=",C;spc

" Type 3":buf "CBuf",GS,3

: wrt 716,"R"; tfr 710,"CBuf", 337

if rds("CBuf")=-1;jmp 0
red 716,D

: £xd O;prt "Time,ms=",D;fxd 2;prt "Avg Time/rdqg,ms=", (D-C)/28;spc

for J=1 to 28
conv 69,101;red "CBuf",F$[J]

next J .

"Refmt & Prt":prt "Frequency=";for K=l to 28

fmt 1,£10.3," MHz";wrt 16.1,val(FS$[K])/le6
next K

spc 2;end

*10557

3. 9825A/5345A Counter with read and for...next loop:

0: dim F$(28,17];mdec

l: wrt 710,"I2EB:<G<Il";red 710,A

2: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc
3: conv 69,10l;wct 71l6,"R"

4: for J=1 to 28;red 710,F$[J];next J

5: red 716,D

6: prt "Time,ms=",D;prt "Avg Time/rdg,ms=", {D-C) /28; spc
7: "Refmt & Prt":prt "Frequency="

8: for K=l to 28

9: fmt 1,£10.3," MHz";wrt 16.1,val (F$[K])/leb
10: next K

11

: spc 2;end

*21645

4. 9825A/5345A Counter with read into a string:

—_——— e e = O XN DN —O
. .

DI W N e O ve 0o o0
. e

*
o
oo o0 o
o
o

: dim G$[353]),A(100]) ;mdec
: wrt 710,"I2EB8:<G<I1";red 710,A
: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc

" Type=Do-lt-Yourself":

: wrt 716,"R";conv 69,101;£fmt 2,c337,2z;red 710.2,GS$

red 716,D

: prt "G$=",G$;spc

fxd O;prt "Time,ms=",D;fxd 2;prt "Avg Time/rdg,ms=", (D-C)/28;spc
1+P;prt "Freguency”
for J=1 to 28

: val(GS[P])+A[J]
: pos(GS[P+1),char(10))+P+1+P

fmt 1,£10.3," MHz";A(J]/le6+A[J];wrt 16.1,A[J]
next J

spc 2;conv

end

93

94 Appendices

5. 9825A/5328A Counter with buffer type 1:

0: dim F$(20,17},G$[356} ;mdec

l: wet 710,"PF4G3SI1T";red 710,A

2: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc
3: " Type 1":buf "CBuf",G$,1

4: wrt 716,"R";tfr 710,"Csuf", 340

5: if rds("CBuf")=-1;jmp O

6: red 716,D

7: £xd O;prt “Time,ms=",D;fxd 2;prt "Avg Time/rdg,ms=",(D-C}/20;spc
8: for J=1 to 20

9: conv 69,101;red "CBuf",FS$(J]

10: next J

l11: "Refmt & Prt":prt "Frequency=";for K=l to 20
12: £mt 1,£10.3," MHz";wrt l6.1,val(F$[(K])/leéb
13: next K

l4: spc 2;end

*21964

6. 9825A/5328A Counter with buffer type 3:

dim F$[20,17},G$[356] ;mdec

0:
I+ wrt 710,"PF4G3SIT";red 710,A
2: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc
3: " Type 3":buf "CBuf",G$,3
4: wrt 716,"R";tfr 710,"CBuf",340
5: if rds("CBuf")=-1;jmp 0
6: red 716,D

7: £xd O;prt "Time,ms=",D;fxd 2;prt "Avg Time/rdg,ms=",(D-C)/20;spc
8: for J=1 to 20

9: conv 69,101;red "CBuf",FS$(J]

10: next J

ll: "Refmt & Prt":prt "Frequency=";for K=1 to 20

12: fmt 1,£10.3," MHz"jwrt 16.1,val(F$[K])/le6

13: next K
14: spc 2;end
*20980

7. 9825A/5328A Counter with read and for...next loop:

: dim F$[20,17] ;mdec

: wrt 710,"PF4G3SIT";red 710,A

¢ wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc

: conv 69,101l;wrt 716,"R"

for J=1 to 20;red 710,F$[J];next J

red 716,D

: prt "Time,ms=",D;prt "Avg Time/rdg,ms=", (D-C)/20;spcC
"Refmt & Prt":prt "Frequency="
for K=1 to 20

: fmt 1,£10.3," MHzZ";wrt 16.1,val(FS[K])/leéb

0: next K

l: spc 2;end

30767

*—— O OOV WN—~O
e e oo oo .

Appendices 95

8. 9825A/5328A Counter with read into a string:

: dim G$[340],A[100] ;mdec

: wrt 710,"PF4G3SI1T";red 710,A

: wrt 716,"001E3PR";red 716,C;dsp "Cal=",C;spc

" Type=Do-It-Yourself":

wrt 716,"R";conv 69,101;fmt 2,c340,z;red 710.2,G$
red 716,D

: prt "G$=",G$;spc

: £fxd O;prt "Time,ms=",D;£fxd 2;prt "Avg Time/rdg,ms=",(D-C)/20;spc
l+P;prt "Frequency"

for J=1 to 20

10: val(GS[pP])+A[J]

ll: pos(GS[P+1],char(10))+P+1+p

12: fmt 1,£10.3," MHz";A[J]/le6+A[J];wrt 16.1,A[J]
13: next J

14: spc 2;conv

15: end

*13109

WO WN—O
. e s se 00 o0

96 Aprendices

Notes

Appendices

Extended 1/0O Syntax Summary
Syntax Conventions

LET ORI 1.0 = Characters printed in dot matrix must appear as shown.
[1] — ltems within brackets are optional.
Expression — A constant like 16.4, a variable like X or B[8] or r3 or A$, or an
expression like 814 or 6<A+B.
— Dots indicate that successive parameters, separated by commas,

are allowed.

Select Code Format — cc[dd[ee]][- f]
cc = interface select code.
dd = optional HP-IB address code (must be two digits).
ee = optional HP-IB secondary address (must be two digits).
.f = format number, for read (red) and write (wrt) only.

Binary Statements and Functions

The mode octal statement places the calculator in a mode in which all binary-type parameters
of the statements and functions of the I/O ROMs are taken to be octal values. See the table on
page 6.

The mode decimal statement returns the calculator to the decimal mode, which is automati-
cally set when the calculator is reset or turned on. See page 6.

expression

The decimal to octal function converts a decimal number in the 16-bit binary range to its octal
equivalent value. See page 7.

Lo Lexpression !

The octal to decimal function converts an octal value in the 16-bit binary range to its decimal
equivalent. See page 7.

< lexpression A ¢ expression g ;

The binary AND function combines two 16-bit values in a binary AND operation and returns the
result. See page 7.

97

98 Appendices

-eXPression 4, ¢ expression g

The inclusive OR function combines two 16-bit values in an inclusive OR operation and returns
the result. See page 8.

.expression , « expression g -

The exclusive OR function combines two 16-bit values in an exclusive OR operation and
returns the result. See page 7.

.expression

The complement function returns the 1’s complement of a 16-bit binary value. See page 8.

‘expression : +or - no. of places :
The rotate function performs an n-bit rotation of a 16-bit binary quantity to the left (negative
no.) or to the right (positive no.) and returns the result. See page 8.

‘expression = or ~ no. of places
The shift function performs an n-bit shift on a 16-bit binary quantity to the left (negative no.) or

1o e roht (nosive no,) and ratums the result. See page 9

Lo lexpression A : expression B !
The add function performs addition on two 16-bit binary quantities, in octal arithmetic, if the
octal mode is set. See page 10.

-bit position : expression :
. ‘'mask s expression !
The bit function tests a given 16-bit binary value for a specific bit or for a specified bit pattern
(mask) and returns a 1 (true) or 0 (false). See page 10.

HP-IB Statements

© ‘namej select coder [namez : select codez...]
The device statement associates names with interface cards and devices, for use in place of

the select code parameter. Use of device names also allows addressing multiple listeners on
the HP-IB. See page 17.

.~ select code : address characters " [: data characters]
‘device name(s) ~ or select code [: 'data characters "]

The command statement allows direct addressing of the HP-IB interface, using the bus pro-
tocol employed by the HP 9820A, 9821A, and 9830A/B Calculators. See page 35.

Appendices

54 'namer ' datastrings [: “namez " : data stringa...]

The equate statement allows equating names with HP-1B data sequences for use with the cmd
statement. See page 37.

%+ select code [device address]

The trigger statement sends a Group Execute Trigger (GET). See page 20.

. 1 v select code [device address]

The clear statement sends a Universal Device Clear (DCL) or an addressed Selective Device
Clear (SDC). See page 21.

i select code [device address]

The remote statement sends the Remote (REN) message. See page 22.

Lo} select code

The local statement sends either a Local (GTL) message or a Clear Lockout/Set Local (REN)
message. See pages 23 and 24.

i 1o select code

The local lockout statement sends the Local Lockout (LLO) message. See page 23.
ot select code with device address
The pass control statement passes active control to a specified device on the given HP-IB.

See page 30.

.1 i select code
The clear interface statement sends the Abort (IFC) message. See page 31.

i iselect code with device address :

The read status function with an HP-IB device address (e.g., '« 7111 +5) conducts a
serial poll and returns the Status Byte message. See pages 26 and 38.

= iselect code [= variable[: variableg[: variables]]]: -variableas

Returns up to four status bytes from the 98034A Interface card. See page 38.

iselect code :
The parallel poll function conducts a parallel poll on the specified HP-IB and returns the
current Status Bit message as a single byte. See page 29.

99

100 Appendices

w3 o select code with device address = status byte

The poll configure statement sends the Parallel Poll Configure (PPC) command and a poll
configure byte to a selected device on the HP-IB. See page 30.

v |12 select code [device address)

The poll unconfigure statement sends the universal Parallel Poll Unconfigure (PPU) or the
secondary Parallel Poll Disable {PPD) command. See page 30.

=« v Select code [» status byte]
The Require Service statement allows the calculator (which is not currently the active control-
ler) to request service from the active controller. See page 25.

The Timeout Statement
7% e time in milliseconds

Specifies a maximum time limit for any external peripheral device to respond before issuing

The On Error Statement

s Ulabel
Aliows the program to specify alternative action whenever an error is detected. The following
three read-only variables are defined when an error occurs. For more details, see page 42.

Indicates whether a mainframe error (0) or an add-on ROM error caused the branch to the
error recovery label. An ASCIl decimal-equivalent value indicates the letter of the add-on ROM
(e.g., 69 = “E” for Extended /O ROM).

Stores the error number,

Stores the program line number in which the error occurred.

The Conversion Table Statement

= - [string variable name]
Establishes a string variable as the full conversion table for automatic conversion between

ASCII and another “foreign” code. Ctbi without a parameter cancels the previous conversion
table. See page 44.

Appendices

The Parity Statement

oo oparity type
Establishes the parity type to be set for output data, or to be checked on input data. See page
47.

Interface Control Operations
i &1: select code

This write interface statement specifies the interface select code for successive wti and rdi
operations.

oo register no. : expression

Allows direct output to the interface data registers. See page 49.

‘register no. i
The read interface function allows direct input from the interface data registers. See page 50.

iselect code :

The 1/O flag function returns a 1 or 0, indicating the state of the specified interface flag line.
See page 50.

1o iselect code
The 1/O status function returns a 1 or 0, indicating the state of the specified interface status
line. See page 50.

Interrupt Control Statements

w0 select code = “label © or string variable [: abort byte]
The on interrupt statement specifies a location within a program to which control is to be
transferred whenever an interrupt is generated by a specified external device. See page 55.

o1+ select code [interrupt enable byte]
The enable interrupt statement enables an external device to generate an interrupt on the
occurance of certain specified conditions. See page 56.

The interrupt return statement terminates an interrupt service routine, and returns control to
the line of the program that would have been executed if the interrupt had not occurred. See
page 57.

101

102 Appendices

Buffered |/O Statements

‘name [: buffer size or string variable buffer type]

The buffer statement reserves a segment of read/write memory to be used in an automatic
data transfer. The buffer type determines the mode of data transfer to be performed:

Buffer Type Description
0 Interrupt Buffer, 16-bit words
1 [nterrupt Buffer, 8-bit bytes
2 Fast Read/Write, 16-bit words
3 Fast Read/Write, 8-bit bytes
4 DMA buffer, 16-bit words
The buffer is cleared (emptied) by executing the syntax: :::¥ “name . See page 70.

¢ source : destination [: character count [= last character]]

The transfer statement automatically transfers data between an /0 buffer and a peripheral
device. The buffer type determines the mode of transfer. The optional last-character parame-

ter is used for input transfers only. See page 72.

Appendices 103

Extended I/O ROM Error Messages

* Extended I/O operation executed when a General /0 ROM is not installed.

* HP-IB Error under interrupt: When an HP-IB interrupts with status clear and
the ERR bit in the status byte is set, select code 0 is logged in. At the end-of-
line service routine, this error is issued.

"L Wrong Number of Parameters:
* Bit manipulation functions do not have 2 parameters.

* The on err statement does not have a label.

* The oni statement has less than 2 parameters.

* The polc or rgs statement has less than 2 parameters.

* The tfr statement has less than 2 parameters.

* The cmd statement with bus address has no second parameters.
* The equ or dev statement has an odd number of parameters.

* New buffer allocation with less than 3 parameters.

« . Improper Buffer, Device or Equate Table Usage:
* Attempt to add a name in a buffer device or equate table list when that name
already exists.

* Buffer, device, or equate name is a null string.

* Attempt to declare multiple listeners with one of the entries not addressing a
98034A Card, or not all on the same HP-IB.

* Read status of multiple listeners.
* Multiple listeners name list ends in a comma.
* Attempt to read to, or write from, a busy buffer.

* Entry in buffer, device, or equate table not found.

Wrong Parameter Type:
* Parameter of ctbl statement is not a string variable.

* Numeric parameter found when string parameter expected.
* String parameter found when numeric parameter expected.
* Mask parameter in bit function has more than 16 characters.

* Null string found for required string parameter.

104 Appendices

Timeout Error: Specified time ran out without response from peripheral.

Buffer Overflow or Underflow:
* Attempt to read from an empty buffer or write to a full buffer.

* Attempt to transfer to or from an empty buffer.

Parameter Overflow:
» Decimal parameter notin range of from —32768 thru 32767 with flag 14 clear.

« Octal parameter not in range of from 0 thru 177777 with flag 14 clear.
» Octal representation contains an 8 or a 9.

« Extended bus address not in range of from 0 thru 31 decimal.

» Buffer type not in the range of from O thru 4.

* Negative parameter for buffer size specification.

* Allocating a string as a buffer: After taking 16 characters for working storage,
no room left in the string for buffer area.

v Abort byte In eir Statement, interrupt enable DYIe in eir, or character parame-
ter in tfr statement is more than 8 Dits; I.e., not in range of from 0 thru 253

decimal or from 0 thru 377 octal.

Parity Failure: Parity bit of character read does not match specified parity type
1,2, 0r 3.

Improper Interrupt Procedure:

* Attempt to execute an iret statement that is not in a running program, or when
no interrupt service routine is active.

* A new program was loaded after an interrupt occured and before the end-of-
line service branch, and the service routine was overlayed.

* A new program was loaded from an interrupt service routine and the inter-
cepted line (destination of the iret statement) was overlayed.

* Attempt to transfer a DMA (type 4) buffer with a 98034A HP-IB Interface.

* Attempt to address a select code or a buffer that has not completed the
transfer operation. Attempt to read or write with a busy buffer or select code.

[llegal HP-IB Operation:

* Attempt to address the HP-IB while calculator is not active controller.

* lllegal HP-IB command sequence.

* Attempt to request service on an HP-IB when calculator is active controlier.

Appendices 105

The Extended I/0 ROM adds these meanings to General I/O error messages G4 and G9:

Improper Select Code:

* Select code parameter of an eir or oni statement is not in range of from 2 thru
15.

* Parameter of an iof or ios statement is not in range of from 0 thru 15.
* Attempt to declare a device name for select code O or 1.

* Transfer statement source and destination parameters specify two buffers or
two peripherals, rather than one buffer and one peripheral.

* HP-IB control statement used with non-HPIB select code or buffer.

* HP-IB control statement select code specifies bus when only addressed de-
vice allowed or addressed device when only bus allowed.

Improper Hardware Configuration: HP-IB bus functions addressed to non-HP-
IB interface card or empty siot.

General I/O ROM Error Messages
Incorrect format numbers:
* Format number in format statement not in range of 0=n<=9.

* Referenced format number not executed.

- Referenced format statement has an error:

* Incorrect format spec.

* Numeric overflow in format statement.

23 Incorrect I/O Parameters:

* Parameter not number or string.

* Negative parameter with ¥ = numeric spec.

* Numeric parameter with . edit spec.

* Binary parameter not in range of —32768=n=<32767.

* More than one parameter for read binary or read status function.

* Missing parameter or a non-numeric parameter for write control statement.

" i:% Incorrect select code:

* Select code is non-numeric or greater than 4 digits.
* Select code is greater than 16 for read status.

* Select code is not in range from 0 thru 16.

* Select code 1 allowed only for read status.

HP-IB device address code not in range from 0 thru 31.

Read from select code 0 not allowed.

" i Incorrect read parameter:
* Constant in read list.
* String not filled by read operation.

* Numeric parameter references <. format spec.

s noorectparameter i converson statement

More than 20 parameters.

0Odd number of parameters.
* Non-numeric parameter.

* Parameter not in range O=n=<127.

i+ Unacceptable input data:

» More than one decimal point or “E” read.
* 511 characters read without a LF.

» “E” with no leading digit.

» More than 158 numeric characters read.

;= Peripheral device down:

* Incorrect status bits — device not ready or power is off.

. cancelled operation.

Appendices 107

7 Interface hardware problem:

* Improper HP-IB operation.

* Empty I/O slot.

* Select code does not match interface card (e.g., wrt 711 when a 98032A is set
1o 7, or wrt 6 when 98034A is set to 6).

* Write Control addressed to a 98034A HP-IB Card.

Appendices

HEWLETT %PACKARD

SALES & SERVICE OFFICES
AFRICA, ASIA, AUSTRALIA

AMERICAN SAMOA
Calculators Only

Oceanic Syslems Inc.
P.0. Box 7

Pagu Pago Bagwm Road

Tel: 533-5 13

Cable: OCEANIC-Pago Pago

ANGOLA

Telectra

Empresa Técnica de
quipamentos
Eldctricos, S.A.R.L

R. Barbosa Rodrigues, 42-PQT °
Canu Posval 6487

Cable: TELECTRA Luanda

AUSTRAL,

Hewlett-| Packard Australia

31-41 Josenn Street
Blackburn, Victoria 3130

P.0. Box 36

Doncester East, Victoria 3109
Tel: 89-6351

Telex: 31-024

Cable: HEWPARD Melbourne

He\vlmLP;clard Australia
. Ud.
31 Bridge Street

bl

mble

New South Wales, 2073
Tel: 449-6566

Telex: 21561

Cable: HEWPARD Sydney

Hewlent-Packard Australia
P!E Lid.

153 Greenhill Road

P.'Iuld. S.

Toor 65238 ADEL
Cable: HEWPARD ADELAIDE

Hewlett-Packard Australia

Nmnmuﬂ hway
Nodiands, WA, 5003
ot 6.5485

Telex: 83859 PERTH
Cable; HEWPARD PERTH
Hewlett-Packard Australia
. L.
121 ollonuong S(reet
Fys

Ie{ 95 3733
Telex: 62650 Can
Cable: HEWPARD CANBERRA

Hewlett Packavd Australia
5th oor ¢

Teachers Union Bmldmg
495-499 Bounda

Spri

Tel: 29-1544
Telex: 42133 BRISBANE

Hill, 4 00uunsland

GUAM

Medical/Pocket Calculalms Oniy
Guam Medical Supl
JaB Ease Bulldmu
96911
Tel: 646-4313

Cable: EARMED Guam

HONG KONG

Scnlmsdl & Co.(Hong Kong) Ltd

Connallghl Cenlu

‘uom 210
Tlmunl

E‘onnauam Road, Central
Tal: zgng 5

HX
Cabla SCHMIOTCO Hung Kong

Blua Slar Ltd.
Kasturi Buildings
Jamshedii Tata Rd.
00 020

Cable: BLUEFROST
Blua Shr Ltd.

410/2 Vir Savarkar Marg
Prabhadevi

Cabla: FROSTBLUE
Blue Star Ltd

Band Box House
Prabmdevl

Td 4”7

Cable BLUESTAR

Blue Star Ltd.
14/40 Civil Lines

{::ex: b}
Gabe BLUESTAR
Blue Star Ltd.

7 Hare Street

P.0. Box 506
Celcutta 700 001

T8l 23:0131

Telex: 7655

Cable: BLUESTAR

Blue Star le

Blue Star H

34 Mahatma Gandm Rd.
Lajpatnagar
New Delhl 110 024
Tel: 623276

Telex: 2463

Cable: BLUESTAR

Blue Star Ltd.

Blue Star House
1|IHA Manllam Road

T;‘?SSB

Telex: 430
Cabie: BLUESTAR

Blue Star Ltd.

Meeakshi Mandiran
/1678 Manalma Gandhi Rd.
Cochin Kerala
Tel: 32069 32161 32282
Telex: 046-514

Cable: BLUESTAR

Biue Star Ltd.

1-1-11711

Saropm Oevi Road

Secunderabad 500 003
l: 70126, 70127

Cabl:: BLUEFROST

Tetex: 459

Blue Star Ltd

23/24 Second Line Beach
Madras 600 001

Tel: 23954

Telex

Cibll BLUESTAR

Blue Star Ltd

Nathraj Mansions

2nd Floor Bls(upur

.Inmlhmur 1001
Tel: 7383

Cable: BLUESTAR

Telex: 240

INDONESIA

BERCA Indonesia P.T
0. Box

lsl Floor JL, Cikini Raya 61

karta
Tel 56038, 40369, 49886
42895

Telex:

Cable: BERCACON
BERCA Indonesia P.T.
63 JL. Raya Gubeng
Surabays

Tel: 44309

ISRAEL

Electronics & Engineering Div.
of Motorola Israel Ltd.

16, Kremenetski Street

P.0. Box 25016

Tel-Aviy

Tel: 03-389 73

T, o9

Cable: BASTEL Tol A

JAPAN
Yokogawa-Hewlet-Packard Ltd.
Onashi Building

1-59-1 Yoyogi
Shibuya-ku, Tokyo
Tel: 03-370-2281/92

Telex: 232-2024YHP

Cable: YHPMARKET TOK 23-724
Yokogawa-Hewlett-Packard Ltd.
Nissei Ibaraki Building X
2- Kasuga 2-chrome, Ibaraki-shi
Osaka,567

Tel: (0726) 23-1641

Telex: 5332-385 YHP 0SAKA
Yokogawa-Hewlett-Packard Ltd.
Nakamo Building

24 Kami Sasapma -cho
Nakamura-ku, -’m

Tel: (052) 571-51

Yokogawa-Hewlett-Packard Ltd.
Tanigawa Building
2-24-1 Tsuruya-choo
Kanagawa-ku
Yokohama, 221
Tel: 045-312-1252
Telex: 382-3204 YHP YOK
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Building
105, 1-chrome, San-no-maru
Mito. Ibaragi 310
Tel:: 0292-25-7470
Yokogawa-Hewilett-Packard Ltd.
lnoul Building

1348-3, Asam cho, 1-chome
Atsugi, Kanagawa 243
Tel: 0462-24-0452

KENYA

Technical Engineering Services
(E.A)Ld.,

P.0. Box 18311

Nairobl

Tel: 557726/556762

Cable: PROTON

Medical Only

international Aeradlo(E A)Ltd..
.0. Box 19012

Nalmbl Anpon

Tal: 336055/56
Telex: 22201/22301
Cable: INTAERIO Nairobi

KOREA
AmKancan Trading Company
rea
€.P.0. Box 1103
Dae Kyuno Bidg.. 8th Floor
107 Sejong-Ro,
Chongro-Ku, Seoul
Tel: (4 lines) 73-8924-7
Telex: K-28338
Cable: AMTRACD Seoul
MALAYSIA
Teknik Mutu Sdn. Bhd.
2 Lorong 13164

Suton 1

Petaling Jaya, s.lna
Tel: Kuala Lumpur-54994 or 54916
Telex: MA 37605

Protet Enomeennu

P.0. Box 1917

Lot 259, Satok Road
Kuching, Sarawak

Tel: 20262

Cable: PROTEL ENG
IOIARIOUE

A.N. Goncalves, Lta.
162, 1° Apt. 14 Av. D. Luis
Caixa Postai 107
Lourenco Marques
Tel: 27091, 27114
Telex: 6-203 Negon Mo
Cable: NEGON

NEW ZEALAND

Hewlett-Packard (N.Z.} Ltd.

4-12 Cruickshank Street

Kilbirie, Wellington 3

Mailing Address: Hewlett-Packard
{N.Z.) Ltd.

P.0. Box 9443

Courtney Place

Wellington

Tel: 877-198

Telex: NZ 3839

Cable: HEWPACK Wetiington

Hewlett-Packard (N.2.) Ltd.

Pakuranga Professional Centre

267 Pakuranga Highway

Box 51092

Telex: NZ 3839

Cable: HEWPACK Auckland
Analytical/Medical Only
Medical Supplies N.2. Lid.
Scientific Division

79 Cartton Gore Rd., Newmarket
P.0. Box 1234
Auckiand

Tel: 75-289

Telex: 2958 MEQISUP
Cable: OENTAL Auckland
Analyuul/malcal Only
redlcal Supglles N.Z. Lid.

L7161 Tory st
I smss

Cabll: OENTAL. Wellington

Analytical/Medical Only

Medlcal Suppllas N.Z L.
0. Box 30!

239 Sunmora Road
Chdslh:hu'ch

Cable: DENTAL, Christchurch
Analytical/Medical Only
Medical Supplies N.7. Ltd.

308 Great Kig Stee
] Box i

Dunedi
Tel: 88- 81
Cable: OENTAL, Dunedm

NIGERIA
The Electronics
Instrumentations Ltd
N68/770 Oyo Road
Oluseun House
5402

tbadan

Tel: 61577

Telex: 31231 TEIL Nigeria
Cable: THETEIL Ibadan

The Electronics Instrumenta-

tions Ltd.
144 Agege Motor Road, Mushin
P.0. Box 6645

Legos
Cable: THETEIL Lagos

PAKISTAN

Mushko & Company, Ltd.

Cosman Chambers

Abdullan Haroon Road
achl-3

Tel 51 |027 §12927

Cabl: COOPERATOR Karachi
Mushko & Company, Lid.
388, Satellite Town
Rewalpind|

Tel: 41924
Cable: FEMUS Rawaipindi

PHILIPPINES

The Online Advanced Systems
Corporation

Filcapital Bldg.

11th Fluor Ayala Ave

Malati, Rizal

Tel: 86 40-81. ext. 223,263

Telex: 3274 ONLINE

RHODESIA

Field Technical Sales

45 Kelvin Road North
Box 3458

Hsbur
Tel: 7052?1 {5 lines)
Telex: RH 4122

SINGAPORE
Hewlett-| Packard Singapore

(Pte.) Lt
Bik. 2, 6th Floor Jalan
Buiit Mer;
Redhill Induslrlal Estate
Alexandra P.0. Box 58,

lpon 3
Tal 633022
Telex: HPSG RS 21486
Cable: HEWPACK, Singapore

SOUTH AFRICA
Hewlett- Packard South Africa

(Pty.), L
Private Bag Wendywood
Sandton, Transvaal 2144

HewetPackard House
Daohne Street Wendwood

Transvaal 2

Tel 802- 104016

Telex: SA43-

Cable: HEWPACK JOHANNESBURG

Hewlett- Packard South Africa

P. (S ox 120

Howard Place, Cape Province, 7450
Pine Park Center, Forest Drive,
Pinelands, Cape Province, 7405
Tel: 53-7955 thu 9

Telex: 57-0006

Hewlett- Packard South Africa

o &

Overport, Durban 4067
641 Ridge Road, Durban

Durban, 4001

Tel: 88-7478,88-1080,88-2520
Telex: 6-7954

Cable: HEWPACK

TAIWAN

Hewlett- Packard Far East Ltd.,
Tawan Branch

39 Chung Shiao West Road
Sec. 1, 7th Floor

Talpei

pei
Tel: 389160,1,2,3
Telex: 21824 HEWPACK
Cable: HEWPACK TAIPE(
Hewlett-Packard Far East Ltd
Taiwan Branch
66 2, Cnunu Cheng 3rd. Road

Tei (07) 2“'2318 Kaohsiung
Analytical Only

San Kwang Inslvumems Co.. L.,
No. 20, yung Sut Road
Taipel, 100

Tel: 37150714 (4 lines)

Telex: 22894 SANKWANG
Cable: SANKWANG TAIPE|
TANZANIA

Medical Onlr

International Aeradio (E.A.). Ltd
P.0. Box 861

Daresasiaam
Tel: 21251 Ext. 265
Telex: 41030

THAILAND

UNIMESA Co., Ltd.
Elcom Research Building
Banq]ak Sukumvit Ave.

TEI?JZJN 930338
Cable: UNIMESA Bangkok

UGANDA

Medical Onl!

In(arnaliunarAaradiu(E A, L.,
ox 2577

Kampala

Tel: 54368

Cable: INTAERIO Kampala

ZAMBIA

R.J. Tilbury (Zambia) Ltd.

P.0. Box 2762

Luseka

&l
Cable: ARJAYTEE, Lusaka

OTHER AREAS NOT LISTED, CONTACT:

Hewiett-Packard Irtercontinertal
3200 Hilview Ave.

Paio Ao, Catiforia 94304
Tel ("5&093-1&1

Cable: HEWPACK Palo Ao
Telex: 034-8300, 034-8433

CANADA

ALBERTA

Hewlett-Packard {Canada) Ltd.
11748 Kingsway Ave.
Edmonton T5G 0X5

Tel: (403} 452-3670

TWX: 610-831-2431 EDTH

Hewlett-Packard (Canada) Ltd.
915 42 Avanue SE Suite 102

BRITISH COLUMBIA
Hewlett-Packard éCanada) Ltd.
87 E. Cordova treet

Yancou
Tel: 1604 254 05 1
TWX: 610-922-5059 VCR

ITOBA
He\vleﬂ Packard (Canada) Ltd
51

Tel: (Zgl

TWX; 610-671-3531

NOVA SCOTA
Hewlett-Packard (Canada) Ltd.
800 Windmill Road

26
Tel: (902) 469-7820
TWX: 610-271-4482 HFX

ONTARIO

Hewlett-Packard (Canada) Ltd.
1785 Woudward Dr

Ottawa K2 0|

Tel: (613) 225- 6530
TWX: 610-562-8988

Hewlett-Packard (Canada) Ltd.
6877 Gureway Drive

QUEBEC

Hewlett- Packard (Canada) Ltd.
275 Hymus Blvd

Polmc| Clalrc H9R 167

422 3022
TLX: 05-821521 HPCL

Hewlett-Packard (Canada) Ltd
2376 Galvam Slreet

Ste-F ox

Tel: (418) 688-1 87‘0

TWX: 6I0-571-5525

Tei: I?"!D 257 '572 mx“zs-égé éﬁg FOR CANADIAN AREAS NOT LISTED:
T B-8Rre Contact Hewlett-Packard (Canada)

Ltd. in Mississauga.
CENTRAL AND SOUTH AMERICA
ARGENTINA Hewlett-Packard do Brasil COLOMBIA Calculators Only MEXICO PARAGUAY URUGUAY

ge:lm»l’aclurd Argentina

Av. Leandro N. Alem 822 - 122
1001Buenos Aires

Tel: 32-4461/62/63/64

Telex: Public Booth

BOLIVIA

Stambuk & Mark (Bolivia) Ltda.
Av Manscal Santa Cruz 1342
La Py

TH 40626 53163 52421
3560014
Cable BUKMAR

BRAZL
Hewiett-Packard do Brasil
I.E.C. Ltda.

Rua Frei Caneca,
1140/52 Bela Vista
01307-S40 Paulo-SP
Tet: 268-71-11, 287-61-20,
287-61-93
Telex: 394-112-3602 HPBR-BR
Cable: HEWPACK Sio Paulo
Hewlett-Packard do Brasil
1.E.C. Lida
Rua Pndre Cnaqas 2
90000-Porto Alegre-AS
Tel: (0512) 22-2 . 22-5621
Cable: HEWPACK potto Alegre

J.E.C. Ltda.

Rua Smueua Campos 53, &
andar-Copacabana

0000-Rio de Janeiro-GB
Tel: 257- 60<94 D0 (021
E:iax 39)-, 212 I905 HEWP-BR

Rio de .Ianeum
CHILE
Calcagni
Alameda
Casilla 2118
Santlsgo, 1

Melcalle Lida
807

Tel: 398613

Telex: 3520001 CALMET
Cabte: CALMET Santiago
Medical Only

General Macmnary Co.. Ltda
Para?uay 494

Casn a 13910

7.. avvl'a 3

Cable: GEMCO Santiago

Instrumentacidn

Computadoras y Equipos

He\vlen Packard Mexicana,
SA

(k & Kier S.A. Efectrdnicos

g:‘vﬂ‘r‘ag h:"u:b-afs & Ker $. Box 2695 Torras Mahd No. 21, 11° Piso
Apartado Aéreg 6287 990 Toledo (y Cordero) Col. del valle
Bogotd, I D-E Mexico 12, D.F
Tel: 69-88-77 Tel: {905) 54-42-32
Cable: AARIS Bogotd Ielex: 02-2_113 Sagita Ed Telex: 017-74-507
Telex: 044-400 Cable: Sagita-Ouito gwl%m%ackard Mexicana,

OSTA RICA EL SALVADOR A deCV.
gensm t 5 ! YIS pes2 A-ve 2 No 2184

A 1 lectronico de el Salvador onterr

ﬂgﬂfjg"" yenidas y 3 Bulevav de los Heroes 11-48 Tel: 48-71 32 45 71-84
San José San Saivador Telex: 036-843
Tel: 21-86-13 Tel 252757 NICARAGUA
Cable: GALGUR San Jose GUATEMALA Roberig Terdn G
ECUADOR IPESA Apartado Postal 689
Medical Only Avenida La Reforma 3-48. Edificio Terdn

AF. Viscaino Compafila Ltda
Av. Rio Amazonas No. 239
P.0. Box 2925

ulto
Tel: 242-150,247-033/034
Cable: Astor Quito

'ona

Gustemala City

Tel: 63627, 64786
Telex: 4192 Tetetro Gu

Managus
Tel: 25114, 23412,23454
Cable: ROTERAN Managua

PANAMA

Electrdnico Balboa, S.A

P.0. Box 4929

Calle Samuel Lewis

Culdad de Panams

Tel: 54-2700

Telex: 3431103 Curunda,
Canal Z

nal Zone
Cable: ELECTRON Panama

2.J. Melamed S R.L.
Dlvrsmn Aparamsy Equipos

Mi
DMSldn Aparalos y Equipos
Cientiticos y de Investigacidn
P.0. Box 676
Chile-482, Editicio Victoria
Asuncion
Tel: 4-5069, 4-6272
Cable: RAMEL

PERU

Compatia Elemu Medlca S.A
Los Flamencos 14

San Isidro Casilla voao
Lima 1

Tel: 41-3703

Cable: ELMED Lima

PUERTO RICO
Hewlett-Packard Inter-Americas
Puerto Rico Branch Otfice

P.0. Box 2908
65th Int. Station
San J

uan 00929
Ealle 272, Urh Country Club
arolina 01
Tel: (809) 762 7355/7455/7655
Telex: HPIC-PR 3450514

Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877

Casilla de Correo 370
Ionlwl

Tel: 40-31

Cable: RADIUM Montevideo

VENEZ
gewlen-?ackam de Venezuela
A
Apartado 50933, Caracas 105
Edificio Seqre
Tercera Transversal
Los Rulces Norte

racas 107
Tet: 35-01-07, 35-00-84,

Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packard
Inter-Americas

3200 Hillview Ave.

Palo Alto, calllornla 94304
Tel (41 5)

1250
Cahle HEWPACK Palo Alto
Telex: 034-8300, 034-6493

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges.m b.H.
Handelskai 52

box 7
A-1205 Vienna
Tef: (0222) 35 16 21 t0 27
cable: HEWPAK Vienng
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
SAMYV
Avenue de Col-ven, 1,
gGmenkraaglun)

-1170 Brussels
Tel: (02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23 494 paloben bru

CYPRUS
K;prom
Grnuonos & Xenopoulos Ad.

Olll
Te‘ 4562
Cable: KYPHONICS PANOEHIS
Telex: 301

CZECNOSLOVAKIA
Vyvojova a Provozni Zakladna
ngkum%cn Ustava v Bechovicich
CSSR-25097

Bechovice u Prahy

Tel: 89 93 41
Telex: 121333

DDA

Entwicklungslabor der TU Oresden

Fnrschungsmsmm Meinsberg
Waldheim/Meinsberg

Tel: 37 667

Telex: 518741

DENMARK

Hewilett-packard A/S
Dalave 2

Hewlett-Packard France
Agence Régionale
Péricentre de la Cépidre
Chemin de la Cépu!e 20
F-31300 Toulouse-Le Mirail
Tel:(61) 40 11 12
Cable: HEWPACK 51957
Telex: 510957

Hewlet!-Packard France
Agence Reégionale
Aéropont principal de
Marseille-Marignane
F-13721Marignane
Tel: (91) 89 12 36
Cable: HEWPACK MARGN
Telex: 4107
Hewlett- P:clurd France
Agence Régionale
Avenue de Rochester

Bdne ostal

35014 Ronnn Cédex

able JEWPACK 74912
Telex: 7409
Hewlett- Pack:m France
Agence Régionale
74, Alée de la Roberisau
F-67000 Strasbourt
Tel: {88) 35 23 2012
Telex: 89014
Cable: HEWPACK STRBG
Hewlett-Packard France
Agence Régionale

Centre Vauban

201, rue Cnlben
Entrée A
F-53000 Ll"c
Tel: (20) 51 44 14
Telex: 820744

GERMAN FEDERAL

REPUBLIC

Hewlett-Packard GmbH
Frani

K-34
Tel: {02) 81 66 40
Cable: HEWPACK AS
Telex: 166 40 hpas

Hewlett-Packard A/S

szervl%

DK-860(Sikaborg
Tel: (06) 82 71 66
Telex: 166 40 hpas
Cable: HEWPACK AS

FINLAND
Hewlett-Packard OY
Nankanousunne 5

P.0. Box 6
SF- 002" Hdllnkl K
Tel: 6
Cable HEWPACKDY Helsinki
Telex: 12-1563

FRANCE
Hewlett-Packard France
QOuartier de Courfaboeuf
Boite Postale No. &

Tel: (1) 907 78 25
Cable: HEWPACK Orsay
Telex: 600048
Hewlett-Packard France
“Le Saquin”
Chemin des Mouilles
Boite Postale No. 12
F-69130 Ecully
Tel: (78) 33 81 25,
Cable: HEWPACK Eculy
Telex: 310617

turt
Bernerstrasse 117

Tel: (0611) 50 04-1
Cable HEWPACKSA Fvankiun
Telex: 04 13249 hy
Hewlett-Packard GmbH
Technisches Buero Boblingen
Herrenbergerstrasse 110

- Gbﬂn?-n, Wiirttemberg
Tel: (07031 6
Cable: HEPAK Bobhngen
Telex: 07265739 bl
Hewlett-Packard GmbH
Technisches 8uero Disseldorf
Emanuel-Leutze-Str 1 (Seestern)
0-4000 Dusseldort

Tel: {0211) 59 71-1

Telex: 085/86 533 hpdd d
Hewlett-Packard GmbH
Technisches Buero Hamburg
Wendensmsse 23

Tel (040 24 13 33

Cable: HEWPACKSA Hamburg

Telex: 21 63 032 hphh d

Hewlett-Packard GmbH

Technisches Buero Hannover

Mellendorter Strasse 3

0-3000 Hannover-Kleetetd
e (0511) 55 60 46

Telex: 092 3259

Hewlett-Packard GmbH
Technisches Buero Nuremberg
Neum er Slr

-
Tel. (09”) 56 30 B?/B5
Telex: 0623 860

Hewlett-Packard GmbH
Technisches Buero Minchen
Unterhachinger Strasse 28
ISAR Center

0-8012 Ottobrunn

Tel: (089) 601 30 6177

Cable: HEWPACKSA Munchen
Telex: 0524985

Hewlett-Packard GmbH
Technisches Buero Berlin
Keith Slr:sse 2-4

-1000 Berlin

30
Tel: (030) 24 %0 B6
Telex: 18 3405 hpbin d

GREECE

Kostas Karayannis

18, Ermou Street
GR-Athens 126

Tel: 3237731

Cable: RAKAR Athens
Telex: 21 59 62 riar gr
Ana%yucal Onty
"INTECO™

G. Papathanassiou & Co.

Tel: 522 1915
Cable: INTEKNIKA Athens
Telex: 21 5329 INTE GR
Medical Only
Technomed He‘las Ltg
52,Skoufa Street

R - Athens 135
Tel: 626 972,663 930 614 959
Cable: ETALAK Athen:
Telex: 21-4693 ETAL GR

HUNGARY
MTA
Muszerigyi és Méréstechnikai

Szolgalata
Lenin K. 67

Telex: 22 51 14

ICELAND

Medical Only
Elding TuamgTCompany Inc.
Halnamvnll fyggvatotu
1S-Re
Tel: 1 56
Cable: ELDING Reykjavik

IRAN
Hewilett-Packard Iran Lid
Mir-Emad Avenue
14th Street No 13
P 0. Box 41/2419
R-Tehran
Tel 85 10 82/86
Telex: 21 25 74 Khrm ir
IRELAND
Hewlen~Packam Ltd
King Street Lane
GB-Winnersh, Wokmgham
Berks, RG11 5AR
Tel (0734) 784774
Telex: 847178/848179

Hevtlm Packard Hatiana S.p.A
Casella postale 3645
1-20100 Milano
Tet: (2) 6251 (10 lines)
Cable: HEWPACKIT Mitano
Tetex: 32046
Hewlett-Packard Italiana S.p.A.
Via Pietro Maronceli 40
(an? Via Visentin)

35100 Padova
Tef: (49) 66 48 88
Telex: 41612 Hewpacki

Medicat only

Hewlett-Packard Italiana S p.A
Via d'Aghiardi, 7

1-56100 Pisa

Tel: (050} 2 32 04

Telex: 32046 via Milano
Hewlett-Packard Italiana S.p.A.
Via G Arm n 10

1-00143

Tel: (06) 54 69]

Telex: 61514

Cable: HEWPACKIT Roma

Hewlett-Packard Naliana S.p A.

Via San Quintino, 46

1-10121 Torino

Tel: {011) 52 82 64/54 84 68

Telex: 32046 via Milano

Medical/Calculators Only

Hewlett-Packard Italiana S.p.A

Vla Pnncipe Nlcnla 43 G/C
1-95126 Cata

Tel:(095) 37 05 04

Hewdett-Packard Italiana S.p.A

Via Amzer;‘ao Vespucei. 9

1-80142 Napol

Tel: (081)3377 11

Hewlett-Packard Italiana S.p.A

Via E. Masi, 9/8

1-40137 Bologna

Tel: (051) 30 78 87

KUWAIT
Al-Khaldiya Trading &

Contracting Co.
P 0. Box 830

Cable: VISCOUNT

LUXEMBURG
Hewlett-Packard Benelux
ANV,

Avenue du Cot-ven, 1.
{Groenkraaglaan)

8-1170 Brussels

Tel: {02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23 494

MOROCCO

Gerep -

190, Blvd. 8rahim Roudani
Casabianca

Tel: 25-16-76/25-90-99
Cable: Gereg—Casa

Telex: 2373

NETHERLANDS
Hewlett-Packard Benelux N.V.
Van Heuven Goedhartiaan 121
P.0. Box 667

NL- Amsteiveen 1134

Tet: (020) 47 20 21

Cable: PALOBEN Amsterdam
Telex: 13 216 hepa nl

NORW,

Hewlett- Packarﬂ Norge A/S
Nesveien 1.

Box 149

N-1344 Haslum

Tel: (02) 53 83 60

Telex: 16621 hpnas n

POLAND

Biurg Informacii Technicznej
Hewlett-Packard

U1 Stawki 2 6P

Telex: 81 24 53 hepa pl

UNIPAN

Zaklad Doswiadczalny

Budowy Aparatury Naukowe)

V1. Krajowej Rady
Narodowe) 51/55

Teiex: 81 46 48
Zakl:ay N:pmn:ze Sprzetu

Pl:c KDmuny P:ryslue, 6
90-007
Tel 334 41, 337-83

PORTUGAL
Telectra-Empresa Técnica de
Equipamentos Eléctricos S.a.r.|
Aua Rodri o aa Fonseca 103
P 0 Box

Lisbon |
Tﬂ {19) 68
Cable: TELECTRA Lisbon
Telex: 12598
Medical only
Mundinter
Inmcamblo Mundial de Comércio

: AA ae A uuav 138

P' Lisbon

Tel: (19) 53 21 31717

Cable: INTERCAMBIO Lisbon

RUMANIA
Hewlett-| Packard Repruenlann
BON. Bal

Buchares

Tel ISBOZJ/|3BBG5

Telex: 10440

LIRU.C.

Intreprinderea Pentru
Intretinerea

Si Repararea Utilajelor de Calcul

B-dul prof. Dimitrie Pompei 6

Bucmvso‘!l Sectorul 2

Tel: 1
Telex: 01183716

SAUDI ARABIA

Modern Electronic Establishment

King Abdul Aziz str.(Head oftice)

P.0. Box 1228

Jeddsh

Tel: 31173-332201

Cable: ELECTRA

P.0. Box 2728 (Service center)
edh

Telr 62596-66232

Cable: RAQUFCO

SPAIN

Hewlett-Packard Espaftola, S A.
.Ierez No 3

E-Madi
Tel:(1) 456 26 00 (10 lines)
Telex: 23515 hpe

Hewien-Paclarﬂ Espafola, S A
Mulanesaﬂo 3

E-Barcel,
Tel: (3) 203 6200 (5 tines)
Telex: 52603 hpbe e
Hewlett-Packard Espafiola, S.A
Ay Ramdn y Cajal. 1-9°
EEdmcno Sevilla 1)

-Seville 8
Tel: 64 44 54/58
Hewlett-Packard Esnannla SA
Edlhuo Alma | 7
E-
Tel 23 33 06/23 8206

Calculators Only
Hewlett-Packard Espaftola S.A

Eran Via Fernando El Catdlico. 67
-Vi

alencia-§
Tel: 326 67 28/326 85 55

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvagen 3

a
§-161 20 !romml 20
Tel: (08

C:ble MEASUREMENTS

0im
Tecex: 10721
Hewlett-Packard Sverige AB
Fratalisgatan 3¢

$-421 32 Vlnrl Frolunda
Tel: (031) 49 09 50

Telex: 10721 Via Bromma Oftice

SWITZERLAND
Hewlett-Packard {Schweiz) AG
Zircherstrasse

P.0. Box 307
CH-8952 Schileren-Zurich

Telex, 53933 hpag ¢h
Hewlett-Packard gchwm) AG
9, Chemin Louis-Pictet
CH-1214 Vernier-Genevs
Tel (0222 414350

Cable: HEWPACKAG Geneva
Telex: 27 333 hpag ch

SYRIA

Medical/calculator only
Sawah & Co

Place Azmé

B.P. 2308
SYR-Dameacus

Tel: 16367, 19697, 14268
Cable: SAWAH, Damascus

TURKEY

Teiekom Engineering Bureau

P.0. Box 437

Beyodlu

TR- llhrhul

Tel: 49 40 4

_(riable TELEMATIDN Istanbul
el

Medu:al nnly

Muhendlshk Kollekm Sirketi
Adakale Sokak
Te‘ 175622

Analytical only
Yilmaz Ozy
Mii Mudaln Cad No. 16/6

25
Telex 42576 Ozek tr

Appendices

UNITED KINGOOM
Hewlett-Packard Ltd
ng Street Lane

B-Wi Monn Wokmgnam
Bevks RG11 5
Tel: (0734) 78 47 74
Cable. Hewpie London
Telex847178/79

Hewlett-Packard Ltd.
“'The Graftons™

Stamford New Road
GB-Atrincham

Cheshire WA14 1DQ

Tel: (061) 9289021

Cable: Hewpie Manchester
Telex: 668068

Hewlen Packard Ltd
Lygon Court
Oudiey Road

-Halesowen. Worcs
Tel: (021) 550 7053
Telex: (021) 550 7273

Hewlett-Packard Ltd.
Wedge House

799. London Road
GB-Thornton Heath
Surrey CR4 BXL

Tel: (01) 6840105
Telex: 946825

lem Packard Ltd
‘0 Makro

Soum Service Wholesale Centre

Wear Industrial Estate

Washington

GB-New Town. County Qurham

Tel: Washington 464001 ext. 57/58

USSR

Hewlett-Packard Representative
Office USSR

Pokrovsky Boulevard 4/17. KV 12
Tel: 294-2024

Telex: 7825 neip:k su
YUGOSLA'
Iskra~slandardmnlcn Packard
Mlklosmeva 36N

Td 31?8 7 /32 16 74

Telex: 31300

MEDITERRANEAN AND
MIDDLE EAST COUNTRI

ES
NOT SHOWN PLEASE CONTACT:

Hewlett-Packard S.A
Mediterranean and Middle
East Operations

35, Kolokotroni Street
Platia Kefallariou
GR-Kifissia-Athens, G

Tel 8060337/359/429

SOCIALIgT COUNTRIES

CONTACT:
Hewlett- Packard Ges.m. b H
£.0. Box

A-1205 Vbnnl Austria
Tel: {0222) 35 16 21 10 27

FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S.A.

7. rue du Bois-du-Lan

P.0. Box
CH-1217 Meyrin 2 - Geneva

Switzerland
Tel: (022} 41 54 00

UNITED STATES

ALABAMA

8290 Wmtesburg or.,
P.0. Box 4207
Mum-vm- 35802
Tel: (205) 881-4591

Medical Only

228 W. Valley Ave.,
Room 220

Birmi
Tel: (20!

ham 35209
) 942-2081

ARIZONA
2336 € Magnolla St
Phoenix 85034

Tel: (602) 244-1361
2424 East Aragon Rd.
Tucson 85706

Tet: (602) 294-3148

"ARKANSAS
Medlcal Semce Onty
P.0. B

Brady Slanon

Littie Rock 72205
Tet:)501) 664-8773

CALIFORNIA

1430 East Dr:n elnmpe Ave
Fullerton 92631

Tel (7!4) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604

Tel: (213) 877-1282

TWX: 910-499-217¢

6305 Arizona Prace

Iu 90045

TWX: 910 325 6147

‘Los

Tel (213) 776-7500

3003 Scott Boulevard
Sants Clars 95050
Tel: (408) 249-7000

TWX: 910-338-0518

'Rldgocrcn

Tel: (714) 446-6165
2220 Watt Ave.
Sacramento 95825
Tel: (916) 482-1463
9606 Aero Drive

P.0. Box 23333
San Diego 92123
Tel: {714) 279-3200

COLORADO

5600 South Ulsxev Parkny
Englewood

Tel: (303) 771 3‘55

CONNECTICUT

12 Lunar Drive

New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029
FLORIDA

P.0. Box 24210

2806 W. Oakland Park Bivd.
Ft. Lauderdale 33307
Tel: {305) 731-2020
“Jacksonvilia
Medical Service only
Tel: (904) 725-6333
P.0. Box 13910

6177 L:ke Ellenor Or.
Orland,

Tel l305) 959 2900
P.D. 80x 12826
Pensacola 32575

Tel: (904) 434-3081

GEORGIA

P.0. Box 105005
Atants 30348

Tel: (404) 955-1500
TWX:810-766-4890
Medical Service Dnly
“Augusta 30903
Tel: {404) 736-0592
HAWANI

2875 So. King Street

Honolulu 96814
Tel: (808) 955-4455

ILLINOIS

5500 Howard Street

Skokle 60076

Tel: (312) 677-0400

TWX: 910-223-3613

Effective Nov.1. 1976

35201 Tollview Dr.
Rolling Meadows 60008

Te) 1312 255-9800

TWX: 910-687-2260

INDIANA

7301 North Shadeland Ave.
Indlanapolls46250

Tel (3172;42-1000

TWX: 810-260-1796

IOWA

1902 Broadway

lowa City 5224

Tel: (319) 338-9466
Night: (319) 338-9467

KENTUCKY
Medical Only
Atkinson Square
3901 Atkinson Or.,
Suite 207
Louisyllie 40218
Tel: (502) 456-1573

LOUISIANA

P.0. Box 840

3239 Wiliiams Boulevard
Kenner 70062

Tel: {504) 721-6201

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: {301) 944-5400
TWX: 710-862-9157
2 Choke Cherry Road
Rockvlille & 50
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartweil Ave.
LnlnYmn 02173
Te): (617) 861-8960
TWX: 710-326-6904

MICHIGAN
23855 Research Drive
Fnrml Ion HIIII 48024

Tek: (31
TWX: 81 242 2900

MINNESOTA
2400 N_ Prior Ave.
Roseville 55113
Tel: (612) 636-0700
TWX: 810-563-3734

L] SSlSSlPPl
“Jackso,

Medical Semce onlay
Tel: (601) 932 936

MISSOURI

ML Coloraao Ave,
Kansas City 64137

Tel: (816) 763-8000

TwX: 910-771-2087

148 Weldon Parkway
Maryland Holrhn 63043
Te! |314& 567-1455
TWX: 910-764-0830

NEBRASKA
Medical Dnl;

7171 Mercy Road
Sul(e IIO

68106
Tel |4DZ| 392-0948

NEW JERSEY
W. 120 Century Rd.
Parsmus 07652
Tel: (201) 265-5000
TWX: 710-990-4951

NEW MEXICO

P.0. Box 11634
Station E

11300 Lomas Bivd., N.E
Albuquarque 87123
Tel: (505) 292-1330
TWX: 910-989-1185
156 Wyatt Drive

Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

6 Automation Lane
Compuler Park
Alb, .n(

Tel: (518) 453 1550
TWX: 710-441-8270

201 South Avenue

Po
Telu&u 4
TWX: 51 249 0012
39 Saginaw Orive
Rochester 14523
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Mooy Road
Syrecusa 13211

Tel: {315) 454-2486
TWX: 710-541-0482

1 Crossways Park West

woodburz
Ter: (516) 921-0300
TWX: 710-990-4951

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
OHIO

16500 Sprague Road
Cleveland 44130

Tel: (216) 243-7300
TWX: 810-423-9431
330 Progress Rd.
Dayton 45449

Tel: (513) 859-8202
TWX: 810-474-2818
1041 Kingsmiil Parkway
Columbus 43229

Tel: (614) 436-1041

OKLAHOMA
P.0. Box 32008

Okiahoma City 73132
Tel: (405) 721-0200

OREGON

17890 SW Lower Boones
Ferry Road

Tuaiatin 97082

Tel: (503) 620-3350

PENNSYLVANIA

111 Zeta Orive

Pittaburgh 15238

Tel: (412} 782-0400

TWX: 710-795-3124

1021 8th Avenue

King of Prussia Industrial Park
of Prusale 19406

Tel: {215) 265-7000

TWX: 510-660-2670

SOUTH CAROLINA

6941-0 N. Trenholm Road

Columbia 29260

Tel: (803) 782-6493

TENNESSEE
“Knoxv

Medical Semces only
Tel: {615) 523-5022
“Nashylile

Medical Service only
Tel: (615) 244-5448

TEXAS

P.0. Box 1270

201 E. Arapaho Rd
Richardson 75080
Tel: (214) 231-6101
P.0. Box 27409
6300 Westpark Orive
Suite 100

Houston 77027
Tel: (713) 781-6000
205 Billy Mitchell Road
San Antonlo 78226
Tet. (512) 434-824)

2!60 South 3270 West Street
Seft Lake City 84119
Tel: (801) 487-0715

VIRGINIA

Medical Onl

P.0. Box 12778

No. 7 Koger Exec. Center
Suite 212

Norfolk 23502

Tel:(804) 497-1026/7
P.D.Box 9854

2014 Hungary Spnngs Road

Richmond 232
Tel (604] 285-! 3431

WASHINGTON
Bellefield Oﬂnce Pk.
1203-114th Ave. S.E.
Bellevus 96004
Tel: (206) 454-3971
TWX: 910-443-2446

“WEST VIRGINIA

Medical/Analytical Only
harleston

Tel: (304) 345-1640

WISCONSIN

9004 West Lincoln Ave.
West Allla 53227

Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED:
Contact the regional office

nearest you: Atlanta, Georgia.

North Hollwooﬂ Calitornia

Hllinois. Their cormplete
addresses are listed above

“Service Only

7176

aryland.. .Rolling Meadows,

109

110 Subject Index

Subject Index

Abortbytel 55,61

Abort message (cli) 14,30,31
Abortive interrupts 61
Add .. 10
Address, HP-IB 16,17,35
codes ... 88
non-active controller 17
AND(band) 7
ASClitable 91
Automatic interrupt ... L 68
Autostart ... 41
Benchmarks, buffered /O 92
Binary AND (band) 7
Binary representation 5
Bitfunction 10
Bitbucket 76
Brackets, square 2
Buffer
DMA 68,70
fastreadfwrite 68,69
interrupt 68,69
overflow, 70
pointers i 75
status ... 74
stringvariable 77
types 68
underflow 70
Buffer statement (buf) 70
Buffered /O 67
benchmarks 92
Byte (8bits) 71
Clear interface (cli — abort) 30,31
Clear lockout/set local message 14,24
Clearmessage (clr) 14,21
Code conversion 44,48
Command codes (HP-1B) 88
Command (cmd) 19,20,35
Complement i, 5
Complement (cmp) 5.8

Controller 13,17,31,87Conversion table
(Cthl) . 44

Data, inverted 77
Datamessage 14
sending 19
receivingcoooo... 20
Data transfer
output ... 72
input ... 73
Decimal mode (mdec) 5,6
Decimaltooctal (dto) 7
Deviceaddress 16
Device (dev)................ooiii. .. 17
Direct memory access (DMA) 64,68,70
Dotmatrix 2
Drivers, 1O ..o o1

Enable Interrupt (eir) 53,56,63
Equate (equ) 37
Errorline(erl) ..., 42
Error number (ern) ... L. 42
Error Recovery42 Errors 103

buffer underflow or overflow (E5) ... 70

MESSAGES .o ivi v 103
outofrange (E6) 5
parity (E7) 47
timelimit (E4) 42
unnecessary parameters 2
Exclusive OR(eor) 7
Extended Address 16
Extended I/0O
description 1
modes................ ... 90
status conditions 90
Extended read status (rds) 38
Findfile (fdf) 64
Flags14&15 5
Format (fmt) 18,71
General I/O error messages 105
Global variables 64

Subject Index

HP-IB 13,85
interface functions 88
interrupt 58
Nes i 85
MESSATES ..ot 13
operations 15
sample application 32

[

Inclusive OR (for) 8

Inspection 2

Installation............................. 2

Interface registers 49

Interrupt
abortive L 61
application........................ 57
automatic 68
end-of-line (EOL) 54
HP-IB 58
fockouts L 64
programmable 53
vectored (EOL) 54

Interrupt enable (eir) 54,56

[nterrupt return (iret) 54,57

/O
drivers ... 51
buffered 67

VO flag (iof) 50

/O status (ios) 50

List oo 18,19

Listenaddress 16,35

Listener, 18

Live Keyboard53,55 Local lockout message

Moy ..o 14,23

Local message(lcl) 14,23

Logical operators (and, or, xor, not) 5

Subject Index

Modes
Extended VO 90
Octal/Decimal 6
Multiple listeners 18
Non-active controller 30,31
Non-active controller address 17
Octal mode (moct) 6
Octal to decimal (otd) 7
Onerror(onerr) 42
Oninterrupt (oni) 54,55
OR
exclusive (eor) 7
inclusive (ior) 8
Overflow, buffer 70
Parity (par) 47
Pass control message (pct) 14,30
Poll (pol) ... 20,29
Poll configure (polc) 30
Poll unconfigure (polu) 30
Polling, 24
parallel, 24,29
serial 24,26
Rangeofintegers 5
Read binary (rdb) 20
Read interface (rdi) 50
Read-only variables 42
Read(red) 20
Read status (rds) 20,38
buffer 74
serialpolling 26

Read/writememory 1

111

Subject Index

Remote message (rem) 14,22
Require service message {rqs) ... 14,24,25
Requirements 3
Rom (read-only variable) 42
Rotate(rot), 8
Sales and Service Offices 108
Selectcodesl 16,17
Serial polling 24,26
Service Requests 24,26
Shift(shf) 9
Speed of peripherals 67,69
Status bitmessage 14

receiving (parallel polling) 29

sending ... 28
Status bytemessage 14

receiving (serial polling) 26

sending ... 26
Status bytes L 38

Status conditions L

90
ﬁ[ﬂﬂg‘(ﬂflﬁm@wﬁ@[ﬁ ||||||||||||||u|77

T)]

Timeout (time) 42
Transfer parameters 16
Transfer {tfr) 19,20,31,72
Trigger message (trg) 14,20
Truthtables 7.8
Types of buffers 68

Underflow of buffer 70

Unlisten command 16,36
Variables 42,64
Vectored Interrupt..................... 54

Word (16-bits) ... SR A

Write Control 63
Write interface (wti) 49

