HEWLETT@ PACKARD 21 OO

computer

'S SES UEE EEN REE BED
|

s ® E EEE ® B B ER B
s e EEEE B m EE B

dos microprogramming software

e { EWLETT W
DOS

MICROPROGRAMMING
SOFTWARE

o

for
Hewlett-Packard Model 2100 Computer

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA US.A
Printed: May 1973

02100-90146

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

BCS/DOS Applicability of the HP 2100 Computer Microprogramming
Software Manual.

Manual Section Applies to

1 Both the BCS and DOS versions.

However, the DOS version allows the use of
absolute octal control store addresses as
jump targets whereas the BCS version does
not (this affects the discussion of the Skip
field in the “Microinstruction Format” part
of section 1),

2 The BCS version only. Section 2 for the
DOS version is contained in this document.

3 Both the BCS and DOS versions.

4 Both the BCS and DOS versions.

5 The BCS version only, Section 5 for the
DOS version is contained in this document.

6 Both the BCS and DOS versions.

7 Both the BCS and DOS versions.

8 Both the BCS and DOS versions.

] The BCS version only. Section 9 for the

DOS version is contained in this document,

10 The BCS version only. There is no DOS
version of the Programmable ROM Writer.

PREFACE

This manual presents the Disc Operating System (DOS) version of the
HP Microassembler, the HP Micro Debug Editor, and the HP Writable
Control Store (WCS) Input/Qutput Utility Routine. The Basic Control
System (BCS) versions of these programs are described in the HP 2100
Computer Microprogramming Software manual (02100-90133).

The DOS and BCS versions of the HP Microassembler are very similar to
one another. Many of the sections of the above-mentioned manual also
apply to the DOS version. The applicability of the various manual
sections is summarized in the table on the facing page.

For a DOS environment, the descriptions of the HP Micro Debug Editor
and the WCS Input/Qutput Utility Routine in this manual should be
used instead of the corresponding descriptions in the HP 2100 Com-
puter Microprogramming Software manual.

There is no DOS version of the HP Programmable ROM Writer program.
Mask tapes generated by the HP DOS Micro Debug Editor can be used
as input to the BCS version of the HP Programmable ROM Writer
program.

CONTENTS

2 GENERAL DESCRIPTION OF THE HP
DOS MICROASSEMBLER

................. 2-1
The Assembly Process 2-1
Program Location Counter 2-2
Symbolic Addressing 2-3
Asterisk (*) asan Address 24
Assembly Options 24
AssemblerOutput 2-5
Symbol Table Listing 2-5
Source Microprogram Listing 2-6
Operating Instructions 2-11
5 ASSEMBLER CONTROL STATEMENTS 5-1
9 HPDOSMICRODEBUGEDITOR 9-1
HP DOS Micro Debug Editor Commands 9-2
Inlput Commands 9-2
EditCommands 94
Output Commands 9-7
Termination Command 9-10
DebugCommands« . vt v v v v v v v v v o 9-10
The Initialization Program 9-14
Operating Instructions 9-15
Initiating a Micro Debug Editor Run 9-15
Debugging a Small Microprogram 9-16
Debugging a Large Single-Module Microprogram 9-17
Debugging a Multi-Module Microprogram 9-20
Punching Mask Tapes 9.21
LoadingaWCSModule 9.92
11 HP DOSWCS INPUT/OUTPUT UTILITY ROUTINE . . . 11-1
Calling Sequencest i, 111
Core Memory toWCSModule 111
WCS Moduleto Core Memory 11-3

ILLUSTRATIONS

2-1. Object Code Mustration 2-6
2-2. Object Microprogram Tape Format 27
2-3. Symbol Table Listing 2-8
2-4. Source Microprogram Listing (first page) 2-9
2-5. Source Microprogram Listing (last page) 2-10
11-1. WCS Word Core Memory Format 11-2
TABLES

2-1. Symbol Table Listing Format 2-5
9-1. HP DOS Micro Debug Editor Commands 9-3
9-2. [Initialization Program 9-15

GENERAL DESCRIPTION OF THE HP DOS MICROASSEMBLER

The Disc Operating System (DOS) version of the HP Microassembler
translates symbolic source language microinstructions into a machine
language object microprogram. Source input can be read from a disc
file, punched cards, or punched tape; the object program can be stored
in a disc file or punched on tape in a format acceptable to the HP DOS
Micro Debug Editor. The source language provides:

® Alphanumeric mnemonics for each micro-order.
® Symbolic addressing capability.

® A set of assembler control statements for controlling the
assembly process.

The HP DOS Microassembler is designed to run in a minimum DOS
environment,

THE ASSEMBLY PROCESS

The assembling of a source microprogram into an object microprogram
is a two-pass operation. A pass is defined as one processing cycle of the
source input,

In the first pass, the Microassembler reads the entire source micro-
program and creates a symbol table (discussed later in this section)
based upon the statement labels that are used and any $EXTERNALS
assembler control statements that are present. In addition, it checks the
validity of all assembler control statements, checks for duplicate labels,
and (if necessary) generates appropriate error messages.

21

In the second pass, the Microassembler reads the entire source micro-
program again and, using the symbol table, resolves all references to
symbolic addresses. In addition it checks for more errors and, if
necessary, generates appropriate error messages. It is during Pass 2 that
the object microprogram is created, the assembly listing is printed, and
the object microprogram is stored on disc or punched on tape.

There are two types of error messages: warning and fatel, Warning
messages are merely informational, drawing the microprogrammer’s
attention to questionable, but not always illegal, microprogramming
usage. Fatal error messages, on the other hand, draw the micro-
programmer’s attention to errors which must be remedied in order for a
correct assembly to be achieved. In either case, the assembly process
continues after the error message has been printed. In the case of fatal
error messages, the microprogrammer must correct the error after the
assembly is complete and then reassemble the source microprogram, All
warning and fatal error messages are presented in section 8, “Error
Messages”’, of the HP 2100 Computer Microprogramming Software
manual (02100-90133).

The assembly listing contains a copy of the symbol table, a copy of the
source language microprogram, plus any error messages. To facilitate
debugging, each error message immediately precedes the offending
source statement. The assembly listing is discussed in greater detail later
in this section,

PROGRAM LOCATION COUNTER

The Microassembler maintains a counter, called the program location
counter, that is used for assigning absolute control store addresses to
successive microinstructions. By using an assembler control statement
($0ORIGIN), the microprogrammer may reset this counter to any
desired value. $ORIGIN statements may appear anywhere within the
source language microprogram. If no $ORIGIN statements are used, the
program location counter is originally set to 4005 and is incremented
by one for each successive microinstruction.

22

SYMBOLIC ADDRESSING

Each source language microinstruction may include an alphanumeric
statement label, The statement label, if present, is the microinstruc-
tion’s symbolic address. Symbolic addresses may be used as jump
addresses in JMP, JSB, and CJMP microinstructions.

Note: While the microprogrammer may use symbolic
addresses as jump addresses in JMP, JSB, and
CIJMP microinstructions, he may not use a sym-
bolic address * a constant as a jump address.

During Pass 1 the Microassembler compiles a table, called the symbol
table, containing all statement labels used in the microprogram. With
each symbol, the Microassembler also records the absolute control store
address assigned to the associated microinstruction. In addition, the
symbol table contains all external symbols that are declared in
SEXTERNALS assembler control statements.

Whenever it encounters a symbol as the jump address in a jump
microinstruction, the Microassembler consults the symbol table and
replaces the symbolic jump address with the appropriate absolute
control store address.

There are three rules pertaining to the use of symbolic addresses
(violation of any constitutes a fatal error):

1) Two microinstructions may not have the same statement label.

2) A microinstruction may not have a statement label identical to
a declared external symbol.

3) Symbols used as jump addresses must be defined somewhere in
the microprogram,

A symbol is defined if it is used as a statement label or if it appears in
an $EXTERNALS assembler control statement.

2.3

ASTERISK (%) AS AN ADDRESS

The microprogrammer may use an asterisk expression as a jump address
in JMP, JSB, or CJMP microinstructions, When used in this manner, the
asterisk means “the address of the present microinstruction”. Thus, the
microinstruction:

— — JMP — *+10

causes control to pass to the tenth microinstruction following the JMP
*+10 microinstruction. Similarly, the microinstruction:

— — IMP — %6

causes control to pass to the sixth microinstruction preceding the JMP
*-6 microinstruction.

ASSEMBLY OPTIONS

Through the use of assembler control statements, the microprogrammer
can do the following (the statement mnemonic is shown in
parentheses):

® Define external symbolic addresses (SEXTERNALS).

® Prevent binary output, i.e., the object microcode, from being
sent to the DOS punch device (SNOPUNCH).

® Prevent the assembly listing from being sent to the DOS list
device (SNOLIST).

® Reset the program location counter (SORIGIN).
® Suppress the printing of all warning messages ($SUPPRESS).

The assembler control statements are described in section 5 of this
manual.

.2-4

ASSEMBLER OUTPUT

The Microassembler produces a printed assembly listing and an object
microprogram, The object microprogram may either be stored in a disc
file or punched on tape. When punched on tape, the object micro-
program is punched as shown in figure 2-2. In either case, the object
microprogram is in a format acceptable to the HP DOS Micro Debug
Editor.

The assembly listing is in two parts: a symbol table listing and a source
microprogram listing (error messages, if present, are interspersed among
the source statements). Figure 2-3 shows a symbol table listing while
figures 2-4 and 2-5 show the first and last pages, respectively, of a
source microprogram listing, All three figures are extracted from the
same assembly listing.

SYMBOL TABLE LISTING

The symbols are listed in the order in which they were defined in the
source microprogram. In the listing, an external symbol is easily identi-
fiable by the “X” immediately following the associated absolute
control store address. Specifically, the format of each line in the
symbol table listing is as shown in table 2-1,

Table 2-1. Symbol Table Listing Format

Print Positions Contents
—
1-5 Symbol
9-14 Absolute Control Store Address
15 X (if external symbot)
blank {if internal statement label)

25

SOURCE MICROPROGRAM LISTING
Every source statement in the microprogram is assigned a decimal line

number, These line numbers appear in print positions 1 through 3 of
each line of the listing,

Assembler control statements and comments statements are printed,
starting in print position 4, exactly as they appear in the source input,

For microinstruction statements, however, two additional fields are
displayed:

® the absolute control store address assigned to the micro-
instruction

® the machine language object code for the microinstruction
The control store address appears in print positions 6 through 9. The
octal representation of the machine language object microcode appears
in print positions 11 through 20,

The object microcode is interpreted as follows:

® the leftmost three octal digits represent bits 23 through 16 of
the machine language microinstruction

® The rightmost six octal digits represent bits 15 through 0 of the
machine language microinstruction.

This is best illustrated by an example. The object code 375 017533
represents the bit pattern shown in figure 2-1.

Bit 23|22 21|20(19 1811716

1
it {15} 14[13]12 11]10] 9 8|76 5[a3 210
o] oo AERE 101 ERE 011

Figure 2-1. Object Code Ilustration

2.6

1 Tipe Rucord ORIGIN
L]) :
5 Fias
" Debug Mads
8 Bit Address
Bits 23- 16 '
il Microinstriction
Bits 15- 8
Bits7-0

Microinstruction

- Blank Word

 Checksum {Arithmetic)

Notes:

The record length, tape record origin, debug mode flag,
blank word, and checksum each consist of one computer
word (two tape characters).

Each microinstruction consists of two computer words (four
tape characters).

A tape record may contain a maximum of 27 micro-
instructions,

Whenever a new origin is declared (via an $ORIGIN assem-
bler control statement), a new tape record is begun.

The tape record length can be from 7 to 59 computer words.

Figure 2-2. Object Microprogram Tape Format

SYMBOL TABLE

Low 001¢00
LO¥1 001004
THLY o0lo20
JENTR 001021
LENTP 001023
STO¥ 001025
STCH 001034
PUTCO 001037
PLEFT (01043
PUTC5 001051
PUTX 001056
PUTX2 001057
PRIGH 001060
TAS 001064
TASX 001070
TAS1 001072
TASE 001113
LDCH 001115
BETCO ¢O01117
GOONE 001127
TaL 001132
RELX 001136
TALO 001144
TALL 001145
SCAN 001163
SCANL 001166
SCANU 001167
SCEND 001203
SCANI 001205
MOVE 001207
HOv0 001216
MOVEL 001235
MOV¥4 001254
MOVED 001255
MOVET 001256
MOVA 001257
MOV¥W 001270
HOVW] 001277
MR1 001303
MTAS 001306
MTAL 001314
MERK 001320
SETP 001322
SETPL 001325
ENTH 001335
+ENTL 001356
+ENTC 001363
JENTX 001366
GETAL 001370
GETAL 001372
GETAX 001374

Figure 2-3. Symbol Table Listing

The source language microinstruction is then printed, starting in print
position 25, exactly as it appears in the source input. Note that if a
teleprinter or an 80-column line printer is used as the DOS list device,
the source statements are truncated after character positions 48 and 56,
respectively, of the source statement.

28

000180RIGIN=1000
00023SUPPRESS
LOW = LOAD WORD FROM A& THREADED HUFFER

0003

0004 1000
0005 100)
0606 1002
0007 1003
0008 1004
0009 1005
00l0%®

oo0ll®

0g12*®

0013 1006
00la 1007
001% 1010
0016 1011
0017 lol12
001B 1013
0019 1014
0920 1015
0021 1016
0022 1017
0023«

0024 1020
0025 1021
0026 1022
8027 1023
0028 1024

anile

375 017932 LDw J5B TaL
077 172057 B8 I0R sS4 R
361 170757 sS4 I0R ™ Rw
345 177377 T IGrR A
374 114375 LDwl P INnC P
070 136407 CcR ADL B 2
PRIMARY JMP TABLE
355 037420 ADR MR TaLt
375 037607 JMP MOVE
375 037563 JME SCAN
375 037400 FLLS Luw
355 037515 ADR MR LbCr
377 037413 NP 2425n
377 037414 JMP TeZ96
377 037415 JMP 9256
377 037al6 JME “+256
377 037417 JMP e+296
SECONDARY UMP TABLE
375 037722 THL1 Jme SETP
370 055002 JENTk CR SUB 0 2
375 037735 LT ENTR
370 955004 LENTP CH Sl W “
375 037735 JKE ENTR
STOw - STORE WORD INTO A THREAUED HUFFER

00322 Uw AND SYOw - ARE [HE

SAME AS LUCH ANU STCH tx

TR abLR
Ss i= wORD ADW,
GET wORD

EOP INC RETURN AUR
HOME sYTE ADDR

SETUP FOR (ENTR

SETUP FOR LENTR

cPT

0033+ THE DATA 1S A WORD AND L SH OF pBYTE Avu,. 1S LUST

0034°

0035 1025 035 012464 STOW A JSB 53 Tas CK ADDR.

0036 1026 077 172047 B T10R S4 »l ThZ S4& = wOPL ApUwWE
0037 1027 160 060712 F Sa DEC ™ Cw NMPY STOw: wORD

0038 1030 377 177776 Tow UNC IF ILLEGALs SKIF
0039 1031 063 171236 B $3 Iokr T ECYN UNC INC aDUW IF 0K
0040 1032 130 056402 Q cr Sub K e RESET 8 IF bau
Q0al 1033 375 p3T740s JImP Lowl wETURN

0042®

00432STCH - STORE CHARACTER

0044

0045® LbA LATA

0046* LDR BYTE ADDR

004Te MACRD STCH

0048% DEF EBPF

00s9% ~RETURN 1= NO COFE LEFT! Asb UNCHANGED

0050 ~RETURN 2= OK H := Hels & UNCHANGED

onsle

LDET-Ad IR = 105154 => THRELADED BUFFERS

0053% 105157 => LINEAR BUFFER

0054%

0095 1034 3ITS 017464 STChH JSh Tas CHK THREADEU ADUK
00596 1035 077 177407 Ter K55 ThZ OUT OF CORE?
Figure 2-4. Source Microprogram Listing (First Page)

The final line

of the source microprogram listing tells the program
length and the total number of messages in the listing. Note that the
length is specified in octal and it refers to the number of control store
locations that the object microprogram will require (maximum
allowable = 4004 per control store module).

29

0393 1352 362 155377 LX) NOR @ OR ALLOWED IS!
0394 1353 361 176777 S4 Tox H Crn FOW ZLRO

0395 11354 367 172777 St TR 83

0396 1355 035 034363 A T ENTC

0397

0398 1356 375 Q17770 .ENTL JSE LETA0D S1i=NEXT PakM

0399 1357 160 060712 F Sa Otc M Cw NHPY STORE NEXT PARM
0400 (360 375 037766 PLid SENTX (MEM VIOLATION?
0401 1361 367 171377 Sl low T

0402 1362 360 116777 S4 INC 4 INC DUT PTRSTO TEM
0403 1363 374 114377 LENTC P Inc P INC IN PTR

0404 1364 136 115367 Q INC w THZ O0OONE?

0405 1365 075 032356 B JMP O Se SENTL NOSKESET OUTPTRy 6O
0406 1366 365 174375 LENTX s2 10r » EOP EXITs RESTORE P
0407 1367 363 177377 LX) lok A

0408

q409® GETAD

06410 1370 375 170757 GETAD P IOK M i GET ADUR

0411 1371 377 177477 10w CNTR COUNT THE INOIKECTS
0412 1372 345 173763 OGETAL T 1ok sl NEG INOIRECT?

0413 1373 377 087777 RSH NO» EXIT

0414 1376 367 170750 GETAX Sl T W L1l CTRI YES, KEAD AGAIN
0415 1375 375 037772 JHP GETAL

0416 1376 345 163777 ¥ sov Sl TOO MANY INDIKWECTS
0417 1377 377 057777 RSB RETURN ANO SET OVFL
Galnr END

G4l19%ENO

@ N0 ERRORS®®

Figure 2-5. Source Microprogram Listing (Last Page)

Warning and fatal error messages immediately precede the offending
source statement. The messages are in the following form:

ERROR xx
WARNING xx IN LINE yy
ERROR xx IN LINE yy
where xx is the message number (see section 8 of the HP 2100

Computer Microprogramming Software manual, 02100-90133) and yy
is the number of the erroneous line in the source microprogram listing.

OPERATING INSTRUCTIONS

The HP DOS Microassembler is loaded like any other DOS program by
using the :PROG directive. The format of the :PROG directive and the
meaning of the various parameters is as follows:

:PROG MICRO,Pl ,P')_ ,P3 ,P4

where P; = the logical unit number of the source input device
P, = the logical unit number of the DOS list device
P; = the logical unit number of the DOS punch device
P, = the maximum number of lines per page for the source

microprogram listing

All four parameters are optional and positional. A parameter is omitted
by entering the bounding commas in two successive character positions.

The default values for the “P” parameters are as follows:

P, = 5
P, = 6
P, = 4
P, = 56

2-1

ASSEMBLER CONTROL STATEMENTS

The DOS version of the HP Microassembler has a different set of
assembler control statements than the BCS version. For the DOS
version, this section should be used instead of section 5 of the HP 2100
Computer Microprogramming Software manual (02100-90133).

The eight statements described in this section control the assembly
process. Each assembler control statement must begin in character
position 1 and (except as shown for the SEXTERNALS statement)
should not contain embedded blanks.

With the exception of $ORIGIN and $END, all assembler control
statements should appear ahead of the first executable micro-
instruction.

There may be more than one $ORIGIN statement. They may be placed
anywhere in the source microprogram.

The $END statement must be the final statement in the source micro-
program,

If an erroneous assembler control statement is detected, the Micro-
assembler prints ERROR 0002 and the erroneous statement on the
DOS list device and then proceeds with the assembly process (except
for being printed, the erroneous statement is ignored). If necessary, the
programmer should correct the erroneous statement at the completion
of the assembly and then reassemble the microprogram.

The assembler control statements are as follows:

- Computey
- ilsSeum

$DEBUG

This statement is included merely to make the object microcode
compatible with the BCS version of the HP Micro Debug Editor. Refer
to the HP 2100 Computer Microprogramming Software handbook for

51

the various implications of $DEBUG., If the object code is to be
debugged using the DOS version of the editor, the $DEBUG statement
serves no purpose.

$END

This statement signals the end of the source microprogram,

$EXTERNALS=name, Yaddress; , . . . ,name, Baddress,

¥ is a space, name, through neme, are symbols, and eddress; through
address,, are one to four digit octal control store addresses. If any of
the addresses consist of fewer than four digits, the Microassembler
automatically interprets them as being right-justified with zero-padding
to the left. This statement assigns symbolic addresses to control store
addresses which are external to the microprogram being assembled.
Each symbol in the list, along with the associated octal address, is
entered into the symbol table. Once defined in this manner, external
symbols may be used as jump addresses in JMP, JSB, and CJMP
microinstructions.

$FILE=filename

This statement specifies the name of the disc file into which the obiect
microcode is to be written. The disc file must previously have been
created using a :STORE B, filename directive.

$NOLIST

This statement prevents listing output from being sent to the DOS list
device (the printing of warning and fatal error messages is not affected).

5-2

$NOPUNCH

This statement prevents binary output from being sent to the DOS
punch device.

$ORIGIN=xxxx

xxxx is a one to four digit octal control store address. If the address
consists of fewer than four digits, the Microassembler automatically
interprets it as being right-justified with zero-padding to the left. This
statement sets the program location counter in the Microassembler to
the specified value, If the source microprogram contains more than one
$ORIGIN statement, the specified control store addresses must occur in
ascending order.

$SUPPRESS

This statement suppresses the printing of warning messages (the
printing of fatal error messages is not affected).

5-3

HP DOS MICRO DEBUG EDITOR

The HP DOS Micro Debug Editor is a program that makes it possible
for the microprogrammer to load object microcode into a Writable
Control Store (WCS) module, debug WCS-resident microcode through
the use of breakpoints, and generate a set of six mask paper tapes that
can be used for “burning” a set of programmable ROM chips. The
editor is designed to operate in a minimum DOS environment.

Specifically, the microprogrammer can do any of the following:

® Read an object microprogram from either a disc file or an
object tape into a core memory buffer,

® Set a breakpoint in the core memory buffer.

® Move object microcode from the core memory buffer to a WCS
module.

® Execute WCS-resident microcode.
® Alter the contents of any or all of the machine registers.

® Move object microcode from a WCS module to the core
memory buffer.

® Display the contents of any WCS word in the core memory
buffer on the system console device.

® Alter any WCS word in the core memory buffer.

® Move the contents of the core memory buffer to a dise file or
punch it on tape.

9-1

To debug a microprogram using the Micro Debug Editor, the micro-
programmer must previously have loaded an assembly language
initialization program, named TEST. The initialization program is
described as a separate topic later in this section. Briefly, however, it is
used at the start of debug execution to pass parameters and control to
the microprogram that is being debugged.

HP DOS MICRO DEBUG EDITOR
COMMANDS

When the editor is executed, it prints COMMAND? on the system
console device. The microprogrammer responds by entering one of the
input, edit, output, or debug commands described later in this section.
After the editor has performed the specified operation, it again prints
COMMAND? on the system console device, and so forth. To terminate
a Micro Debug Editor run, the microprogrammer enters FINISH in
response to the COMMAND? message.

There are thirteen Micro Debug Editor commands. They are shown in
table 9-1. In all cases except MOVE, the first character of the command
name is sufficient to identify the command to the editor (for example,
to terminate a Micro Debug Editor run, the microprogrammer may
enter F, FI, FIN, FINI, FINIS, or FINISH). The command name MOVE
may not be abbreviated.

INPUT COMMANDS
The input commands are:

LOAD[x]
READ x

LOAD{ x] Load core buffer from device.

9-2

Table 9-1. HP DOS Micro Debug Editor Commands

Input The brackets indicate
Commands: LOADI,x] that the parameter
itted.
READ x may be omitte

Edit
Commands: SHOW,xxxx[,yyyy]

MODIFY xxxx [,yyyy]

Output
Commands: DUMP [,x]
WRITE,x
PREPARE(,x]
VERIFY [x]

Termination
Command: FINISH

Debug
Commands: BREAK,yyyy

CHANGE [,mnemonic]
EXECUTE(,0 or yyyyl
MOVE,xxxx

x is the logical unit number of the system mass storage device (x=2) or
of a punched tape reader. This command reads the object microcode
from the specified device into the core memory buffer. If the system
mass storage device is specified, the editor prints the message ENTER
FILENAME on the system console device. The microprogrammer
responds by entering the name of the disc file which contains the object
microcode to be debugged (this name is the one supplied at assembly
time using the $FILE assembler control statement).

9-3

If x is omitted, it is assumed to be 5.

READx Load core buffer from WCS,

x is the logical unit number of a WCS module. This command reads the
contents of the specified WCS module into the core mémory buffer.

EDIT COMMANDS
The edit commands are:

SHOW xxxx[yyyy]
MODIFY xxxx[,yyyy]

SHOW xxxx[,yyyy] Display core buffer location(s).

xxxx and yyyy are octal control store addresses (0-1777). xxxx is the
address of the first WCS word to be displayed and yyyy is the address
of the final WCS word to be displayed. If omitted, yyyy is assumed to
be the same as xxxx. If the microprogrammer enters fewer than four
digits for xxxx or yyyy, the value entered is automatically interpreted
as being right-justified with zero-padding to the left. Note that the
editor uses only the rightmost eight bits of xxxx and yyyy (0-3775).

The SHOW command displays the specified buffer-resident WCS words
on the system console device in the following format:

adaa mmm nnnnnn

where aaaa is the control store address (0-1777) of the WCS word being
displayed, mmm is the octal representation of bits 23-16 of the WCS
word, and nnnnnn is the octal representation of bits 15-0 of the WCS
word.

94

MODIFY xxxx[,yyyy] Alter core buffer location(s).

xxxx and yyyy are octal control store addresses (0-1777). xxxx is the
address of the first WCS word to be modified and yyyy is the address of
the final WCS word to be modified. If omitted, yyyy is assumed to be
the same as xxxx, If the microprogrammer enters fewer than four digits
for xxxx or yyyy, the value entered is automatically interpreted as
being right-justified with zero-padding to the left. Note that the editor
uses only the rightmost eight bits of xxxx and yyyy (0-3773).

The MODIFY command allows the microprogrammer to alter the
specified buffer-resident WCS words.

In response to the MODIFY command, the editor prints the following
on the system console device:

aaaa mmm nnnnnn< =

where aaaa is the control store address (0-1777) of the WCS word to be
altered, mmm is the octal representation of bits 23-16 of the WCS
word, and nnnnnn is the octal representation of bits 15-0 of the WCS
word.

The microprogrammer then enters:
mmm,nnnnnn

where mmm is the octal representation of the desired state of bits
23-16 of the WCS word and nnnnnn is the octal representation of the
desired state of bits 15-0 of the WCS word. If the microprogrammer
enters fewer than three digits for mmm, or fewer than six digits for
nnnnnn, the value entered is automatically interpreted as being right-
justified with zero-padding to the left, If it is desired to leave mmm or
nnnnnn unchanged, the microprogrammer enters an asterisk instead of
the respective octal number,

9-5

Examples:

* 123456 means that bits 23-16 of the WCS word are not to
be modified and bits 15-0 are to be set to the
value 1234565.

123.* means that bits 23-16 of the WCS word are to be
set to the value 1235 and bits 15-0 are not to be
modified.

6,123 is equivalent to entering 006,000123.

If the microprogrammer specifies that a series of WCS words are to be
modified, the editor responds by printing asgaa mmm nnnnnn< = for
the next WCS word in the series, and so forth. If the microprogrammer
does not wish to modify a particular WCS word in the series, he enters

’’
Instead of entering the value as described above, the microprogrammer

may enter the octal equivalent for the individual fields of the WCS
word. The format of this type of entry is as follows:

Fd;-d,-d3-ds-ds-dg
where d; through ds are the octal equivalents for the R-bus, S-bus,
Function, Store, Special, and Skip fields. For example, to modify a
WCS word so that it contains the microinstruction:
F S1 DEC M CW NMPV
the microprogrammer would enter the following character string:

F3-13-6-1-14-12

After the last specified WCS word has been modified, the editor prints
COMMAND? on the system console device.

9-6

Note that the MODIFY command and the associated entries modify the
buffer-resident WCS words (not the actual WCS module locations). To
update the WCS module to the revised state, the microprogrammer
must move the contents of the core memory buffer to the WCS module
(using either the WRITE or EXECUTE command).

OUTPUT COMMANDS

The output commands are:
DUMP[x]
PREPARE[,x]
VERIFY[x]

WRITE x

DUMP[x] Dump core buffer to device.

x is the logical unit number of the system mass storage device (x=2) or
of a tape punch. This command sends the contents of the core memory
buffer to the specified device. If the system mass storage device is
specified, the editor prints the message ENTER FILENAME on the
system console device. The microprogrammer responds by entering the
name of an existing disc binary data file (previously created using a
:STORE B, filename directive). If x is the logical unit number of a tape
punch, the object microcode is punched in the same format as an object
tape produced by the HP Microassembler.

If x is omitted, it is assumed to be 4.

PREPARE[x] Punch mask tapes.

x is the logical unit number of a tape punch. This command punches a
set of six mask tapes on the specified device from the contents of the

9-7

core memory buffer. Before punching each tape, the editor asks the
microprogrammer to enter the tape’s I.D. header information. The
microprogrammer may then enter up to three lines of information (any
characters). For tapes two through six, the microprogrammer is given
the option of duplicating the I.D. lines used on the previous tape. A
mask tape contains the same four bits of every WCS word. The first
tape punched contains bits 23 through 20 of all WCS words, the second
contains bits 19 through 16, the third contains bits 15 through 12, the
fourth contains bits 11 through 8, the fifth contains bits 7 through 4,
and the sixth contains bits 3 through 0.

If x is omitted, it is assumed to be 4.

VERIFY[x] Verify mask tapes.

x is the logical unit number of a tape reader device. This command
reads a mask tape through the specified device and compares the
contents of the tape against the contents of the core memory buffer, In
response to the VERIFY command, the editor asks the micro-
programmer to identify which of the six tapes is to be verified. The
microprogrammer responds by entering one of the following tape I.D.
numbers:

1.D. Number Tape
2320 ldentifies the mask tape which contains bits 23

through 20 of all WCS words.

1916 Identifies the mask tape which contains bits 19
through 16 of all WCS words.

1512 Identifies the mask tape which contains bits 15
through 12 of all WCS words.

1108 Identifies the mask tape which contains bits 11
through 8 of all WCS words.

9-8

0704 Identifies the mask tape which contains bits 7
through 4 of all WCS words.

0300 Identifies the mask tape which contains bits 3
through 0 of all WCS words.

If no errors are detected during the verify process, the editor prints
COMMAND? on the system console device and the microprogrammer
proceeds with the next command. If errors are detected, the editor
prints

Computer "

Museum .

BAD MASK TAPE
DO YOU WANT TO REPUNCH THIS TAPE?

The microprogrammer responds by entering Y or N. If he enters N, the
editor prints COMMAND? and the microprogrammer proceeds with the
next command. If he enters Y, the editor prints ENTER PUNCH
LOGICAL UNIT # and the microprogrammer enters the logical unit
number of the tape punch. The editor then asks the microprogrammer
to enter up to three lines of alphanumeric tape I.D. information (any
characters), repunches the tape, and prints COMMAND? on the system
console device.

The mask tapes may be verified in any order. To verify an entire set of
tapes, the microprogrammer must enter the VERIFY command a total
of six times (assuming that none of the tapes has to be repunched and
reverified).

WRITE x Dump core buffer to WCS.
x is the logical unit number of a WCS module.

The WRITE command copies the contents of the core memory buffer
into the specified WCS module.

99

TERMINATION COMMAND

The termination command is:

FINISH

FINISH Terminate Micro Debug Editor run,

This command terminates the current Micro Debug Editor run.

DEBUG COMMANDS

The debug commands are:
BREAK xxxx
CHANGE[,mnemonic]
EXECUTEL,0 or ,xxxx]

MOVE xxxx

BREAK xxxx Set breakpoint in core buffer.

xxxx is an octal control store address (0-1777g). If the micro-
programmer enters fewer than four digits for xxxx, the value entered is
automatically interpreted as being right-justified with zero-padding to
the left. Note that the editor uses only the rightmost eight bits of xxxx

(0-37175).

The BREAK command sets a breakpoint at the specified location in the
core memory buffer, When the breakpoint is encountered during debug
execution, execution halts, the contents of the machine registers (A, B,
Q, F, 51, S2 S3, S4) and {flip-flops (Flag, Overflow, Extend) are
displayed on the system console device, and the breakpoint is removed

from the core memory buffer.

9-10

Breakpoints should be set only where JMP microinstructions are
allowed. For example, a breakpoint should not be set immediately
following a microinstruction that contains either an EOP or RPT
micro-order. However, this responsibility is left entirely up to the
microprogrammer.

Since the editor’s load/dump routine uses core memory location 0 for
temporary storage, the microprogrammer should be aware that every
time a breakpoint is executed the contents of that location are
destroyed. Also, since the load/dump routine occupies control store
locations 272g through 3775, the microprogrammer cannot set a break-
point above control store location 2715 unless the load/dump routine is
first moved through the use of the MOVE command. The Micro Debug
Editor does not allow the microprogrammer to set a breakpoint within

the bounds of the load/dump routine no matter where the routine
resides.

The load/dump routine executes an EOP micro-order. Among other
things, the EOP clears the JSB flip-flop. Consequently, if the break-
point occurred within a subroutine, execution must not be resarted
within the subroutine because the RSB at the end of the subroutine will
not function as expected. After such a breakpoint, the micro-
programmer should restart execution either from the beginning
(EXECUTE,0) or from some location (EXECUTE xxxx) which would
not allow the subroutine’s RSB to be executed.

CHANGE[,mnemonic] Alter register(s).

mnemonic is one of the following mnemonics:

A (A-register)

B (B-register)
Q (Q-register)
F (F-register)
P (P-register)

S1 (Scratch Pad Register 1)

S2 (Scratch Pad Register 2)
S3 (Scratch Pad Register 3)
S4 (Scratch Pad Register 4)
O (Overflow flip-flop)
E (Extend flip-flop)
FLAG (Flag flip-flop)

The CHANGE command is used for altering the contents of any or all
of the machine registers and flip-flops.

If the microprogrammer includes a mnemonic in the CHANGE com-
mand, the editor responds by printing

mnemonic xxxxxx< =

on the system console device, where xxxxxx is the octal representation
of the current contents of the register or flip-flop, The micro-
programmer then enters an octal number representing the desired
contents of the register or flip-flop.

If the microprogrammer enters a CHANGE command with no
mnemonic, the editor assumes that he wishes to alter the contents of all
the machine registers and flip-flops. In this case, the above conver-
sational process is performed for each register and flip-flop, If the
microprogrammer does not wish to alter the contents of a particular
register or flip-flop, he enters an asterisk (*) instead of the octal
number.

EXECUTE({,0 or ,xxxx] Dump core buffer to WCS and execute.

xxxx is an octal control store address (0-1777). If the micro-
programmer enters fewer than four digits for xxxx, the value entered is
automatically interpreted as being right-justified with zero-padding to
the left. Note that the editor uses only the rightmost eight bits of xxxx
(0-377g).

9-12

The EXECUTE command causes the contents of the core memory
buffer to be written into a WCS module and then executes the WCS-
resident microcode. If the microprogrammer has previously used a
WRITE command, the EXECUTE command automatically uses the
same WCS module referenced by the WRITE command. If the micro-
programmer has not previously used a WRITE command, the editor
responds to the EXECUTE command by asking for the logical unit
number of the WCS module,

EXECUTE,0 causes the WCS-resident microcode to be executed from
the beginning by way of the initialization program. The first time the
EXECUTE command is used during a Micro Debug Editor run, only the
form EXECUTE,0 is accepted by the editor. Once the EXECUTE,0
has been used, all three forms of the command are acceptable.

EXECUTE causes the WCS-resident microcode to be executed from the
point where it was last interrupted by a breakpoint.

EXECUTE,xxxx causes the WCS-resident microcode to be executed
starting at the specified control store address.

MOVE xxxx Relocate load/dump routine within WCS,

xxxx is a one to four digit octal control store address (0-1777). If the
microprogrammer enters fewer than four digits for xxxx, the value
entered is automatically interpreted as being right-justified with zero-
padding to the left. Note that the editor uses only the rightmost eight
bits of xxxx (0-377g). The command mnemonic (MOVE) may not be
abbreviated.

When an EXECUTE command is entered, the contents of the core
memory buffer are copied into the WCS module and the WCS-resident
microcode is then executed. However, the Micro Debug Editor’s load/
dump microprogram is also automatically written into WCS locations
2724 through 3774 after the contents of the core memory buffer have
been copied to the WCS module,

9-13

The MOVE command supplies an address to be used instead of 272;.
Thus, the microprogrammer can control where the load/dump routine
is located in the WCS module. Note that once a MOVE command is
entered, the address supplied is used for the remainder of the Micro
Debug Editor run unless the address is altered by another MOVE
command.

CAUTION

Be very careful when using this command. If the
load/dump routine is accidentally moved so that it
overlays the breakpoint or the primary jump table,
then the routine will be executed as though it were
part of the user’s microcode.

THE INITIALIZATION PROGRAM

In order to debug microcode using the Micro Debug Editor, the micro-
programmer must supply an initialization program. The initialization
program is an assembly language program that performs whatever
functions are necessary to call the microprogram which is being
debugged (namely, preparing the required parameters in core memory
and then executing a 105xxx macro instruction).

The name of the initialization program must be TEST. The program
must have the symbol MACRO as an entry point, where MACRO is the
symbolic address of the 105xxx macro instruction. Table 9-2 shows the
structure of an initialization program.

The only restriction on the microprogram being debugged is that the
first microinstruction must be a JMP to the start of the microprogram
(i.e., the first microinstruction must be a primary jump table entry).

9-14

Table 9-2. Initialization Program

ASMB,R,B,L,T
NAM TEST, 7
ENT TEST, MACRO
TEST NOP
MACRO OCT 105xxx
DEF P1
DEF P2
DEF Px
JMP TEST.I
P1 (constant definition statement)
P2 (constant definition statement)
Px (cénstant definition statement)
END

OPERATING INSTRUCTIONS

INITIATING A MICRO DEBUG EDITOR RUN
Refer to the Disc Operating System manual (02116-91748).

1. If an initialization program is required, assemble it using the HP
DOS Assembler.

2. Using the DOS Relocating Loader, load the HP DOS Micro
Debug Editor and (if required) the initialization program. If an
initialization program is not required, the operator must force

9-15

the loading of the editor even though there are two undefined
external symbols (TEST and MACRO) by entering :GO,1 in
response to the message UNDEFINED EXTS,

If requested to do so by the :PROG,LOADR directive, the
loader prints a list of entry point addresses for each program
and a load map.

After the loader prints the message LOADING COMPLETE on
the system console device, enter the DOS directive
:PROG,MDE. The editor responds by printing COMMAND? on
the system console device,

DEBUGGING A SMALL MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is smaller than 2723 locations. The appropriate Micro Debug
Editor command mnemonic is shown in parentheses whenever the
associated command is used.

1

2.

9-16

Assemble the microprogram using the HP DOS Microassembler.

Load the HP DOS Micro Debug Editor and the initialization
program,

Read the Microassembler output into core memory (LOAD).
Set a breakpoint (BREAK),

Enter EXECUTE,Q. This loads the contents of the core memory
buffer into the WCS module (the editor will ask for the
module’s logical unit number) and then causes the initialization
program to be executed. The initialization program, in turn,
passes conirol to the microprogram. When the breakpoint is
encountered, execution halts, the breakpoint is removed from
the core memory buffer, and the contents of the machine
registers and flip-flops are displayed on the system console
device.

6. Enter any Micro Debug Editor commands,

Usually at this point the microprogrammer performs conver-
sational editing (SHOW, MODIFY) and/or alters the contents of
any or all of the machine registers and flip-flops (CHANGE).
However, this is also the logical point at which one would
terminate the entire Micro Debug Editor run (FINISH).

7. Set another breakpoint (BREAK).

8. Restart execution (EXECUTE or EXECUTEQO or
EXECUTE xxxx).

¢ EXECUTE restarts execution from the point where it
was interrupted.

¢ EXECUTE,0 restarts execution from the beginning by
way of the initialization program.

¢ EXECUTExxxxx restarts execution at the specified
control store address.

9. When the breakpoint is encountered, repeat steps 6 through 8,
above.

DEBUGGING A LARGE SINGLE-MODULE MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is larger than 2724 locations but still fits into one WCS
module. The appropriate Micro Debug Editor command mnemonic is
shown in parentheses whenever the associated command is used.

1. Assemble the microprogram using the HP DOS Micro-
assembler.

2. Load the HP DOS Micro Debug Editor and the initialization
program.

9-17

9-18

Read the Microassembler output into core memory (LOAD),
Debug the lower half of the microprogram as described in
steps 4 through 9.

Set a breakpoint (BREAK).

Enter EXECUTE,0. This loads the contents of the core
memory buffer into the WCS module (the editor will ask for
the module’s logical unit number) and then causes the initiali-
zation program to be executed. The initialization program, in
tum, passes control to the microprogram. When the break-
point is encountered, execution halts, the breakpoint is
removed from the core memory buffer, and the contents of
the machine registers and flip-flops are displayed on the
system console device.

Enter any Micro Debug Editor commands.

Usually at this point the microprogrammer performs conver-
sational editing (SHOW, MODIFY) and/or alters the contents
of any or all of the machine registers and flip-flops
(CHANGE). However, this is also the logical point at which
the microprogrammer would initiate the debugging of the
upper half of the microprogram (step 10).

Set another breakpoint (BREAK).

Restart execution (EXECUTE or EXECUTEO or

EXECUTE,xxxx),

® EXECUTE restarts execution from the point where
it was interrupted.

o EXECUTE, restarts execution from the beginning
by way of the initialization program.

® EXECUTE,xxxx restarts execution at the specified
control store address.

10.

11,

12.

13.

14.

15.

16.

When the breakpoint is encountered, repeat steps6
through 8,

Using the MOVE command, relocate the Micro Debug
Editor’s load/dump routine to the lower half of the WCS
module, Debug the upper half of the microprogram as
described in steps 11 through 16.

Set a breakpoint (BREAK).

Enter EXECUTE xxxx where xxxx is the address of the first
control store location of the upper half of the microprogram.
When the breakpoint is encountered, execution halts, the
breakpoint is removed from the core memory buffer, and the
contents of the machine registers and flip-flops are displayed
on the system console device.

Enter any Micro Debug Editor commands

Usually at this point the microprogrammer performs conver-
sational editing (SHOW, MODIFY) and/or alters the contents
of any or all of the machine registers and flip-flops
(CHANGE). However, this is also the logical point at which
one would terminate the entire Micro Debug Editor run
(FINISH).

Set another breakpoint (BREAK).
Restart execution (EXECUTE or EXECUTE xxxx).

® EXECUTE restarts execution from the point where
it was interrupted.

¢ EXECUTE,xxxx restarts execution at the specified
control store location.
When the breakpoint is encountered, repeat steps 13

through 15,

9-19

DEBUGGING AMULTI-MODULE MICROPROGRAM

These operating instructions apply when the entire microprogram to be
debugged requires more than one WCS module. The appropriate Micro

Debug Editor command mnemonic is shown in parentheses whenever
the associated command is used

9-20

Break the microprogram into two or more segments in such a
way that each segment fits into a WCS module, each is entered
using the same 105xxx macro instruction, and each runs
independently of the others. Assemble the segments separately
using the HP DOS Microassembler.

Load the HP DOS Micro Debug Editor and the initialization
program,

Segment #1

Load and debug segment #1 using either of the previously-
discussed methods of debugging (as appropriate).

The final breakpoint should be set after the last executable
instruction in the segment. When that breakpoint is
encountered, proceed with the debugging of segment #2,

Segments #2 Through x

Load and debug the segment using either of the previously-
discussed methods of debugging (as appropriate).

The final breakpoint should be set after the last executable
instruction in the segment. When that breakpoint is
encountered, proceed with the debugging of the next segment.

PUNCHING MASK TAPES

These operating instructions apply when it is desired to generate a set
of six mask tapes to be used for “burning” a set of programmable ROM
chips. The appropriate Micro Debug Editor command mnemonic is
shown in parentheses whenever the associated command is used.

1. Assemble the microprogram using the HP DOS Microassembler.

2. Load the HP DOS Micro Debug Editor and (if it is desired to
debug the microprogram) the initialization program,

3. Read the Microassembler output into core memory (LOAD).

4. If desired, debug the microprogram as described earlier in this
section. When debugging is complete, do not enter a FINISH
command. Instead, punch the mask tapes by using the PRE-
PARE command.

Computer

Museum

5. Verify each mask tape as follows:

a. Load the mask tape into the tape photoreader.
b. Enter a VERIFY command.

c. If the tape contains no errors, load the next tape into
the tape photoreader and enter another VERIFY
command, and so forth.

If the tape contains errors, the editor prints a message to
that effect on the system console device and allows the
operator to repunch the erroneous tape.

6. After all the mask tapes have been verified, terminate the run
(FINISH).

9-21

LOADING A WCS MODULE

These operating instructions apply when it is desired to transfer object
microcode (in the form of either a disc file or punched tape) to a WCS
module. The appropriate Micro Debug Editor command mnemonic is
shown in parentheses whenever the associated command is used.

1.

2.

9-22

Assemble the microprogram using the HP DOS Microassembler.
Load the HP DOS Micro Debug Editor.
Read the Microassembler output into core memory (LOAD).

Move the object microcode from the core memory buffer to the
WCS module (WRITE).

Terminate the run (FINISH).

HP DOS WCS INPUT/QUTPUT UTILITY ROUTINE

This is a library routine which makes it possible for FORTRAN and
ALGOL programs to move object microcode from core memory to a
Writable Control Store (WCS) module or from a WCS module to a core
memory buffer. The routine is designed to operate in a minimum DOS
environment.

CALLING SEQUENCES

In both FORTRAN and ALGOL there are two calling sequences: one
for moving object microcode from a core memory buffer to a WCS
module and one for moving object microcode from a WCS module to a
core memory buffer.

CORE MEMORY TO WCS MODULE

The FORTRAN calling sequence for moving object microcode from a
core memory buffer to a WCS module is:

CALL WWRIT (module,buffer-name #-of-words)
where

module is the logical unit number of the WCS module.
buffer-name is the array name of the core memory buffer.

#of-words is a decimal number specifying the number of
words to be moved.

If #-of-words is positive, it specifies the number of
WCS words to be moved; if it is negative, it speci-
fies the number of core memory words to be
moved.

Object microcode is stored in core memory such that each WCS word
requires two buffer words (see figure 11-1). Bits 8-15 of the first buffer
word of each pair contains the relative address (000-3773) of the WCS
location to be written into. Bits 0-7 of the same buffer word contain
bits 16-23 of the WCS word. Bits 0-15 of the second buffer word of
each pair contain bits 0-15 of the WCS word. When the object micro-
code is moved from the core memory buffer to the WCS module, only
the specified WCS locations are altered (all other WCS locations are left
unchanged).

Bit 15 8 7 0

WORD #1 | Relative Address Within WCS | Bits 23-16 of WCS Word
WORD #2 Bits 15-0 of WCS Word

Figure 11-1. WCS Word Core Memory Format

The ALGOL calling sequence for moving object microcode from a core
memory buffer to a WCS module is:

PROCEDURE WWRIT (A,B,C);
INTEGER A,C; ARRAY B;

WWRIT (module,buffer-name,#-of-words);

where module, buffer-name, and #of-words are as described for
FORTRAN, above.

WCS MODULE TO CORE MEMORY

The FORTRAN calling sequence for moving object microcode from a
WCS module to a core memory buffer is:

CALL WREAD (module,buffer-name,#of-words,wcs-address)

where

module is the logical unit number of the WCS module.

buffer-name is the array name of the core memory buffer.

#of-words is a decimal number specifying the number of
words to be moved.

If #of-words is positive, it specifies the number of
WCS words to be moved; if it is negative, it speci-
fies the number of core memory words to be read
into,

wcs-address is an octal number specifying the starting WCS
location of the object microcode to be moved.

Object microcode is read into the core memory buffer in the format
described earlier in this section. The WCS word residing at WCS
location wcs-address is read into the first two buffer words, the WCS

word residing at WCS location wcs-address + 1 is read into the next two
buffer words, and so forth.

The ALGOL calling sequence for moving object microcode from a WCS
module to a core memory buffer is:

PROCEDURE WREAD (A,B,C,D);
INTEGER A,C,D; ARRAY B;

WREAD (module,buffer-name,#of-words,wcs-address);

where module, buffer-name, #of-words, and wcs-address are as
described for FORTRAN, above.

INDEX

Addressing, Symbolic 2-3
Assembler Control Statements 5-1
Assembly Options 2-4

Asterisk (*) as an Address 24

BREAK 9-10

CHANGE 9 -11
Commands, HP DOS Micro Debug Editor 9-2
Counter, Program Location 2-2

$DEBUG 5-1
Debugging
— Small Microprograms 9 -16
— Large Single-Module Microprograms 9 -17
— Muiti-Module Microprograms 9 -20
DUMP 9 -7

$END 5-2

Error Messages, HP DOS Microassembler 2-2
EXECUTE 9-12

$SEXTERNALS 5-2

$FILE 5-2

FINISH 9 -10

Format
Object Tape 2 -7
Source Microprogram Listing 2 -6
Symbol Table Listing 2 -5

INDEX(Continued)

Hardware Requirements
HP DOS Microassembler 2-1
HP DOS Micro Debug Editor 9-1

Initialization Program, HP DOS Micro Debug Editor 9-14
I/O Utility Routine, HP DOS WCS 11-1

Listing
Source Microprogram — 2-6
Symbol Table — 2-5

LOAD 9-2

Location Counter 2-2

Mask Tapes, HP DOS Micro Debug Editor
Punching 9-7,9-21
Verifying 9-8,9-21

MODIFY 9-4

MOVE 9-13

$NOLIST 5-2
$NOPUNCH 5-3

Object Tape 2-7
Options, Assembly 24
$ORIGIN 5-3

Pass 1 Description 2-1

Pass 2 Description 2-2
PREPARE 9 -7

Program Location Counter 2-2

INDEX(Continued)

READ 94

Requirements, Hardware and Software
HP DOS Microassembler 2-1
HP DOS Micro Debug Editor 9-1

SHOW 9-4
Software Requirements

HP DOS Microassembler 2-1

HP DOS Micro Debug Editor 9-1
Source Microprogram Listing 2-6
Statements, Assembler Control 5-1
$SUPPRESS 5-3
Symbol Table 2-3
Symbol Table Listing 2-5
Symbolic Addressing 2-3

VERIFY 9-7

Warning Messages, HP DOS Microassembler 2-2
WCS 1/0 Utility Routine, HP DOS 11-1

WCS Loading 9-2, 9-22

WRITE 99

POWERFUL HARDWARE

A proven architecture implemented by a micro-
processor in the heart of the control section.

EXPANDABLE MAINFRAME MEMORY

Lets you choose up to 32K al/l/ in mainframe.

STANDARD FEATURES

2100A and 2100S both include extended arithmetic
instructions, power fail interrupt, memory parity
check, and memory protect (2100S also includes
floating point instructions, two-channel DMA, a
crystal-controlled programmable time base generator,
and a buffered teleprinter communications channel).

FLEXIBLE INPUT/OUTPUT
2100A has 14 internal 1/O channels, externally
expandable to 45; 2100S has 12, expandable to 43.

FULL INTERRUPT SYSTEM
Interrupt priority easily established or changed for all
devices.

COMPREHENSIVE SOFTWARE
Proven software packages for generating and exe-
cuting your programs.

2100 computers

The Hewlett-Packard 2100A and 2100S are general-purpose
digital computers designed for a wide range of small com-
puter applications.

Standard features of the 2100A include extended arith-
metic instructions, power fail interrupt with automatic
restart, memory parity check with interrupt, and memory
protect. Available as options are dual-channel direct
memory access (DMA), floating point hardware, multi-
plexed input/output {(I/O), communications channels
accommodating a variety of 1/Q speeds and devices,
writable control store {WCS) modules, a programmable
ROM writer, and a full line of systems peripherals and 1/O
interfaces.

Standard features of the 2100S include extended arithmetic
instructions, power fail interrupt with automatic restart,
memory parity check with interrupt, memory protect, dual-
channel DMA, floating point hardware, crystal-controlled
programmable time base generator, and a buffered tele-
printer communications channel. Available as options are
multiplexed 1/O, communications channels accommodating
a variety of 1/O speeds and devices, WCS modules, a pro-
grammable ROM writer, and a full line of systems periph-
erals and 1/0O interfaces.

Under DMA control, data can be transferred to or from the
computer memory at rates greater than one miilion sixteen-
bit words per second. The floating point hardware typically
provides a ten-fold speed increase for scientific, compute-
bound algorithms.

A minimum 2100A includes 4,096 words of core memory,
self-contained power supply, and 14 1/O channels. A mini-
mum 2100S includes 16,384 words of core memory, self-
contained power supply, and 12 /O channels. The core
memory size of each may be expanded to 32,768 words, all
in the mainframe. Through the use of an HP 2155A 1/0
Extender Unit, another 31 1/0O channels and power supply
can also be added to each.

The 2100A and 2100S have a comprehensive range of
proven software packages, including assemblers, compilers,
operating systems, and subroutines,

In addition to the above-mentioned capabilities, you can
depend on the HP reputation for high quality and world-
wide customer support. The net result is a cost-effective
computer which meets your data processing needs today
and will continue meeting them as your needs expand.

P;,;f?%lé';f‘fyz,f;?:g::;g%’f???:’“’r;ﬁjé»‘;‘f?:a:'?jg;w,u
A
ol e s
B
[] W
. Gl e
B é:‘;?gf%:;z?;?:g"u,'fsz:gx
] | -
] L N
dee [A
. o
| c:”wx2
f b
] e
feel Toanti o
[L
el L ¢
& ::is:?'u%;ﬁw N
- N
e . %;» ~~*
o [X :
2o joan
o T
| P N
e G
[P e
see b N
wae CEma s
s o -
. e
S |
o . W
[| N
- | s
[co
o e e
[e
e e e
i Gemer
| L
- |
Sl . e
fae Poaa
g :a&zzz;‘,,;‘sgyfgg, e
el Bt el e
e . N
e Chenie
e .

P s
o et
shon L
| Seeid
G -
[e
| s e
E "r»?‘fsi?%}i?f“”i?k b
fen .
e f§%7'~~“~”\;;f:§%£$’r:; o
e .
S el o
b e
b e .
ey f;::isf;@‘;??wsm e
S el
e e

e

Toame @zz;m&wﬁf@m:
hieemd e

02100-90146

,(a:;a:,:: q:s:t:?z:;f’rf:s“”(?

’?v’za';::@ .

@

e

“,i:,,“
.

@
-

i
e
o

e
e

S

-

ey
Ghene
ey
b

L

N

L Be

T
e

St

e e

e

T

fé«%e*'rzas,‘ft;?'@a o ¢
E ::e:M:ég;«;,
N

o

.

S G

i -
. Nl

o

R

e
.

S ,,Vii;‘;s;wt‘fz:: Qawvw

: 7
M,,“’»" e Ne@ e
N e o 8
S N e
e s e
s e
o L
. e e o
v a;;:»,mé';;;,"u;:"’; L ~";’w"«"u

T

e

o

L

=

o E T .

ex@ REC

L A
Caatae s e T
e
e e
.

e

el

ey f”» o
- ';";:gg':g;gg?:;vsg:fsf;):ﬁ,:’"” - 3%9
..

o

S
i
e

s

N N
i ‘”V"xé‘,'f;‘:,éﬁ
,:‘t;;::;a;
e

e
e
s
e

‘,?5‘2;;,,“
oo
o
e

0

,‘ff;,; ,fé

e
2:»:?:@ v

-

i

e

.

Q:ﬁﬂzgﬁfﬁ:;ﬂ;
m@;m:x s
e a
e

o :,,f,,,

o

s
%zﬁ":&s

e
sl
A

&

o
> § .
o

. .
:

