HEWLETT@. PACKARD 21 OO

computer

microprogramming guide

POWERFUL HARDWARE
A proven architecture implemented by a micro-
processor in the heart of the control section.

EXPANDABLE MAINFRAME MEMORY

Lets you choose from 4K to 32K al// in mainframe.

STANDARD FEATURES
Includes extended arithmetic instructions, power fail
interrupt, memory parity check and memory protect.

FLEXIBLE INPUT/OUTPUT

14 internal 1/0 channels, externally expandable to 45.
.)

FULL INTERRUPT SYSTEM
Interrupt priority easily established
or changed for all devices.

COMPREHENSIVE SOFTWARE

Proven software packages for generating
and executing your programs.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

This handbook is a complete guide to micropro-
gramming for the Hewlett-Packard 2100 Computer.
With the information given here, you will be able to
expand the already powerful capability of your 2100
by adding custom-tailored instructions to the existing
set of microprogrammed operations. This capability
of expanding the Central Processor Unit, in addition
to the extraordinary expansion features of the mem-
ory and I/O sections, contributes to the total flexi-
bility and unusual adaptability of the 2100.

Essentially, this handbook is self-contained, Micro-
assembler documentation is, of course, required in
order to format and assemble your microprograms
correctly. Beyond this, however, no other reference
documents will be needed for most micropro-
gramming projects.

It is intended that this handbook should be read in
sequence, from beginning to end, before attempting
to use the information as a reference.

While Hewlett-Packard cannot assume responsibility
for the effectiveness of microprograms written and
implemented according to the recommendations out-
lined herein, further information and assistance can
be obtained by contacting a Hewlett-Packard field
office. Sales and Service offices throughout the world
are listed at the back of this handbook.

CONTENTS

1 THE MICROPROGRAMMED COMPUTER CONCEPT
Comparison of Conventional vs Microprogram Conttol
What a Microprogram Is
The 2100 Approach
Physical Organization
Timing e e e
The Steps to Implement a New Microprogram
Practical Considerations

....................

2 CONTROLLABLE FUNCTIONSINTHE 2100
General Control Functions .,
Control e e e
ArithmeticLogic
Memory i i it it e e
Input/Output
Effects of Microinstruction Fields
R-BusFieldo e...
SBusField
Function Field
StoreField,
Special Field
SkipField

3 ACCESSSCHEME
The MAC Instruction Group
Mapping o i e e e e e e e e e e e e e e

Standard Jump Table
Secondary Entry Points
Non-Standard Jump Tables
Assigning Addresses e e e e
Software Access i e e
Useof Module 0

4 THE 2100 MICROPROGRAMMING LANGUAGE 4-1

Microinstruction Word Format 41
Assembly Format 4-2
Micro-Order Instruction Set 44
RBusField 44
SBusField ieee.. 45
Function Field 4.7
StoreField, 4-11
Special Field eeeeen.. 412
SkipField 4-14
5 MICROPROGRAMMINGMETHODS 5-1
Introduction 0., 5-1
Example Microprogram 5-1
Programming Aids and Restrictions 5-5
APPENDIX

Microprogram Listing for Basic Instruction Set A-l

RN T N

iR whE

ILLUSTRATIONS

Simplified Block Diagrams of Computer Systems 1-2
Microprogrammable Controls 16
Microprogrammed Generation of Controls 18
Elementary Microprogram 19
Control Store Locations 1-12
Four-Module Control Store 1-14
External Control Store 1-15
Timing Considerations 1-18
Microprogram Implementation 1-22
2100 Block Diagram,Part A 2-18
2100 Block Diagram,PartB 2-19
2100 Block Diagram,PartC 2-20
2100 Block Diagram,PartD 2-21
Binary Machine Codes for Extensions 3-2
Primary Entry PointCodes ., 34
Standard Jump Tables 3-7
SecondaryJump Tables 3-10
Microinstruction Formats 41
Sample Assembly Coding 44
TABLES
Primary Entry Point Mapping 35
Assembly Language Access 3-14
Microinstruction Coding 4-3
SWP Microprogram ¢ . v v v v v v v v e b e e 5-2

Storing/Reading LocationsOand1 5-8

SECTION

THE MICROPROGRAMMED COMPUTER CONCEPT HiE

COMPARISON OF CONVENTIONAL
vs MICROPROGRAM CONTROL

Functionally, a computer is comprised of four major sections:

the memory section

the arithmetic logic section
the control section

the input/output section.

ae o

Some textbooks separate input and output so as to form five distinct
sections. However, the section of prime interest in this handbook is the
control section. The advent of a microprogrammable architecture, as
used in the Hewlett-Packard 2100 Computer, represents a departure
from the conventional method of implementing the control function.

Figure 1 compares the basic structure of computer systems using a
conventional control section and one using a microprogrammed control
section. Note that, except for the control section, the two systems are
identical.

However, in the conventional system, although the block picture looks
simpler, the control logic is in fact comparatively more complex. All
control functions are implemented by means of a large number of
specialized logic circuits scattered throughout the entire computer. A
complete set of timing signals, which break the basic machine cycle into
discrete “time periods”’, must also be routed throughout the computer
so that the controls may be generated in a desired sequence. This
implementation permits the basic instruction set to be executed in a
most efficient manner. However, any function beyond the original

1-1

. CONVENTIONAL
_CONTROL

Memory

Control A!llhn:lellc m 5
P i : Logic DMA

Input/
Output

_ MICROPROGRAMMED
_CONTROL

Memory

Control
Store

Arithmetic
Logic

=S input/
: : : N e A Output

Figure 1. Simplified Block Diagrams of Computer Systems

design would be very difficult to incorporate. Even minor changes
might reveal unforeseen consequences, due to logic interdependency,
long after the modification is made. Major changes mean extensive and
costly redesign.

In the microprogrammed system, the control logic is relatively simple,
and it becomes easy for either the original manufacturer or the user to
incorporate new functions (e.g., more machine instructions). The com-
plexity of the microprogrammed system is in the coding of the micro-
programs. But even here, the systematic design of this approach, once
understood, simplifies the process of comprehending and visualizing the
various control functions.

Basically, microprogrammed control consists of two parts: control store
and control decode. The hardware for both is centrally located, rather
than distributed as in the case of conventional control. The control
store may be a read-only memory (ROM), as provided in the 2100 to
implement the basic instruction set, or it may be a writable control
store (typically a semiconductor random-access memory). Stored
within this memory, either permanently or semi-permanently, are the
microprograms which control the operation of the computer. For the
most part, the microprograms are dedicated to the execution of the
machine instructions (one microprogram per machine instruction);
however some microprograms perform other functions, as will be seen
later in this handbook.

The control decode accepts one microinstruction word at a time from
control store. Each such word consists of a number of “micro-orders”
(six in the case of the 2100). Each micro-order is decoded to activate
one or a set of specific control lines to perform a given function. Thus,
in the 2100, up to six control functions may be simultaneously acti-
vated by control decode.

Taken together, control store and control decode are sometimes re-
ferred to as a microprocessor.

Although not shown in figure 1, there is obviously a need for some
means to address the word locations in the control store. Also, the
address will have to be incremented in order to advance through a

13

microprogram, and it will have to be altered for microprogram jumps.
These features will be discussed in section 2.

At this point, however, it can be seen that control signals are generated
from a decoded microinstruction word. It should also be apparent that
most timing requirements are automatically taken care of by the fact
that only one microinstruction word at a time may be executed.

WHAT A MICROPROGRAM IS

As applied in this handbook, a microprogram is a program-structured
sequence of commands which resides in hardware and can be translated
by hardware into hardware controls. This mergence of software (i.e.,
programs) into a hardware medium leads to the generic term ‘“firm-
ware”’; this term is used when speaking of microprograms as a physical
entity.

To illustrate the concept of a microprogram, it is best to look at the
hardware functions that are to be controlled and work backward. First
we’ll extract a portion of the 2100 Computer logic (figure 2), then
show how the logic can be controlled by a microprogram (figure 3), and
finally develop an actual microprogram to perform the intended func-
tion (figure 4).

Note: In order to keep things simple at this level of discus-
sion, the following descriptions are not strictly valid
for the 2100 Computer. Specifically, we will neglect
the complications arising out of the fact that the A-
and B-registers are addressable as memory locations.
The actual corresponding microprogram can be seen
in the listing in the appendix of this handbook; see
ROM addresses 144, 145, and 146.

The intended function in our example is to add the contents of a
memory location to the contents of the A-register —i.e., to execute the
ADA instruction. We will initially assume that the ADA instruction has

14

been fetched from memory; as a result, the operand address is presently
residing in the Scratch Pad 1 register. (Fetching is also done by a
microprogram, although this will not be duscussed here.)

Referring to figure 2, note that nine separate controls are necessary to
exectite the ADA instruction. Also note the logic symbology key at the
bottom of figure 2. The S-bus, shown bold in the figure, is the major
data communication path in the 2100.

The first step in the execution of ADA is to ask memory to fetch the
addressed operand. (The implicit operand is assumed to be present in
the A-register.) First, the operand address in Scratch Pad 1 is to be read
out to the S-bus (1) and stored in the M-register (2); also, memory must
be given a command (3) to read the contents of the addressed location.
After this, there will presumably be a short delay while memory goes
through its cycle. Then, when the operand is in the T-register, the next
step may proceed.

The second step is to bring the operand from memory into the central
processor unit. (The CPU is the unit which contains the control and
arithmetic logic sections.) This step consists of reading the T-register
contents out to the S-bus (4), routing it through the adder with an
“IOR”, and storing from the T-bus into Scratch Pad 2 (5). Once this is
done, the final step may proceed.

The third step is to add the two operands and deposit the result in the
A-register. This is done by reading out the contents of the A-register to
the R-bus (6), which is one input to the adder, reading out the contents
of Scratch Pad 2 to the S-bus (7), which is the other input to the adder,
and issuing an “add” command to the adder (8). The result on the
T-bus is stored into the A-register (9), and the execution is complete.

By analyzing the types of actions that occur in the preceding steps, a
systematic approach can be made. Simply group the actions according
to the type of control required. That is, controls that:

a. read something onto the R-bus
b. read something onto the S-bus
c. cause the adder to do a specific function

1-5

3B . S-Biis

Memory
Location

16 16 "“And" Gates,
inputs :D—— Output Simultaneously

Gated by Control #6.
“And’’ Gate

2177-2A
Figure 2. Microprogrammable Controls

1-6

d. store something into a register
e. cause special functions (e.g., read memory).

Refer now to figure 3. Here, the nine actions (circled numbers from
figure 2) have been grouped in five categories directly corresponding to
the above list. (A sixth essential category, SK for skip, is not used in
this example but is shown in the figure.) Thus, action 6 reads something
onto the R-bus, actions 1, 4, and 7 read something onto the S-bus,
action 8 is an arithmetic (add) function, actions 2, 5, and 9 store
something into a register, and action 3 is a special function.

If each of these actions is decoded from an instruction register, as
shown in figure 3, the instruction register will be divided into six
separate “fields”. Several bits in each field (the average is four) permits
the selection of a specific number of sources, destinations, or functions.
For example, actions 1, 4, and 7 will read (respectively) Scratch Pad 1,
the T-register, and Scratch Pad 2 onto the S-bus. These actions are
encoded, respectively, by the following binary codes in the S field:
1011, 0010, and 1010.

Now it is possible to encode all of the nine actions into an instruction
word format. Since the S-bus and Store fields are each used three
separate times, there will have to be a minimum of three microinstruc-
tion words. It will also be shown shortly that no more than three words
are required. Thus our microprogram will consist of three storable
microinstruction words. These are shown in figure 3 as occupying
locations 0144, 0145, and 0146 of a read-only memory.

Now then, to execute the ADA instruction, assuming that the three
microinstruction words have been correctly coded, it is only necessary
to read three words, in succession, into the ROM Instruction Register.
This is done by supplying the starting address of 0144 (which is derived
from the ADA instruction code) to the ROM Address Register, and
then permitting the system clock (which has a period of 196 nano-
seconds) to increment the ROM Address Register three times. As each
word is read into the ROM Instruction Register, it is immediately
decoded and control signals go out to enable the appropriate gates and
functions, After this (on the third clock), the ROM Address Register is

1-7

 BOM Instructioh Register
SJ FN l ST l SP

® s —» sBus (® AReg —» RBus

(@ sBus —» MReg @ spz2 —» sBus
@ RW ~—» Memory ADD —» Adder
® TvRey —» sBus (® TBus —» AReg

® 18us —» sP2

2177-3A
Figure 3. Microprogrammed Generation of Controls

normally forced to address 0000 (the starting address of the fetch phase
microprogram), rather than proceeding to 0147.

Figure 4 defines some of the terms relating to a microprogram, and
shows the written microprogram resulting from the example described

1-8

CR-Bus. §-Bus Function Stors ‘Special Skip
MICROINSTRUCTION
WORD FORMAT [= S | PN J_ sT | sp | s« |
23 : o
3 i 3
1 3 Fii
i s o 3 1 i
| s - 1 i g
'ONE MICROINSTRUCTION 1119011 11111 0001 1110 3411

NOP 1 10R M RW - NOP

- Six Whiero-Orders
. . o

A MICROPROGRAM r._—!__—r..——r___-r-....l—}“ o PN 51 5P SK . COMMEN

: ADD NOP §1 10R M RW NOP . Fetch Qperand
qumm" p

Label NOP T IOR S2 NOP EOP ~PutinsP2

A s2 ADDO A NOP NOP - Addto A-Rey
Three Microinstructions

2177-4A

Figure 4. Elementary Microprogram

in the preceding paragraphs. Note that the microinstruction word
format has 24 bits, the least significant bit (0) on the right and the most
significant bit (23) on the left. The six fields are distributed left to right
as shown; the R field has three bits, the Function field has five bits, and
the remaining fields each have four bits. One microinstruction (the first
one of the microprogram) is shown in full binary form, with the
corresponding mnemonic below each code. The individual command, in
mnemonic or binary form, is termed a “micro-order”,

The three microinstructions which comprise the microprogram (lower
part of figure 4) directly correspond to the three steps which were
outlined earlier in the discussion of figure 2. Thus the first microin-
struction sends the .address in Scratch Pad 1, via the S-bus, to the
M-register and requests memory to read (RW) the contents of that

1-9

location. The second microinstruction transfers the operand from the
T-register (via the S-bus and adder) to Scratch Pad 2. The third micro-
instruction reads the A-register contents to the R-bus, reads Scratch
Pad 2 to the S-bus, adds the two, and stores the result in the A-register.
Note that it is possible, due to the nature of the flip-flop elements, to
specify an A-register read and an A-register store in the same micro-
instruction word. (This characteristic is not true of Scratch Pad regis-
ters, as explained later.)

Other comments on the microprogram: since the Function field (FN)
does not have a NOP (No Operation) code, an Inclusive “OR” (IOR) is
specified; this has no effect in these cases because an IOR of one bus
with NOP (zeros) on the other bus does not affect the data passing
through the adder from the first bus. The EOP (End of Phase) micro-
order causes the ROM Address Register to return to address 0000 after
executing the final microinstruction. It is always located in the micro-
instruction just prior to the final microinstruction. The program label
“ADD?” is assigned and used during assembly of the microprograms by a
microassembler.

THE 2100 APPROACH

The 2100 Computer is not a wholly microprogrammed machine. In
order to maintain software and peripheral compatibility with the earlier
2116, 2115, and 2114 computers, the 2100 was designed to emulate its
predecessors. As a result, some of the controls are hardware-generated,
rather than originating from the microprogram. Thus the control
section is a hybrid firmware/hardware implementation, and as such
bears special considerations which will now be pointed out. First, the
overall organization will be described, followed by a timing discussion.

110

PHYSICAL ORGANIZATION

The control store for the 2100 is configured into four modules of 256
words each. This gives a total of 1024 available addressable locations.
Module 0 is fully occupied by the basic 2100 instruction set, leaving
modules 1, 2, and 3 for extensions to the basic set. Although not
recommended, it is also possible to substitute a different module 0 to
replace the existing basic instruction set.

Figure 5 shows the approximate layout of modules within the 2100.
Note that module O consists of six integrated-circuit packs located on
the ROM Control card. Module 1, if present would consist of an
additional six packs on the ROM Control card. Modules 2 and 3, if
present, would each consist of six additional packs located on the
Timing and Control card. If modules 2 or 3 are used, a flat cable with a
pair of edge-connectors is required to connect these modules to the
ROM Control card.

The Hewlett-Packard Floating Point package is an option designed to
occupy module 1. If this option is present, only modules 2 and 3 are
available for special extensions.

Any mix of modules may be present in the computer, except that
module 0 must always be present. For example, modules 0 and 3 could
be present, with 1 and 2 absent. Thus it is possible to allow for the
future addition of the Floating Point option while proceeding to use
special microprogramming in modules 2 and 3. Jumper connections on
the ROM Control card are manually set so as to allow proper addressing
of the modules. Modules must be physically located in their proper
positions, as indicated in figure 5.

Figure 5 also shows the arrangement for adding modules in the form of
Writable Control Store cards, These cards are designed to be installed in
computer I/O slots, so that they may be loaded (written into) via the
I/O system. That is, machine I/O instructions are used to load words
consisting of coded microinstructions from the accumulators into the
256 word locations on the card. The locations are then accessed by the
ROM Control card by means of a flat cable and top-edge connections,
as shown in the figure,

111

TIMING AND
CONTROL

ROM CONTROL v
CARD 1/0 Slots

Module
2

Module
1 WRITABLE
CONTROL

STORE

Module
0

(Module 1} /l/
{Module 2) /‘/

{Module 3}

Mote: Approximate Representation

2177-5
Figure 5. Control Store Locations

112

When Writable Control Store modules are used, they are assigned
module numbers by manually setting a switch located on each Writable
Control Store card. The corresponding hard-wired module locations on
the ROM Control or Timing and Control cards then may not be used. If
IC packs are present in these modules, they must be removed (except
for module 0) before using WCS as those modules.

Whether the modules consist of hard-wired integrated-circuit packs or
Writable Control Store, or a mixture of both, the addressing capability
limits the maximum number of modules to four.

Figures 6 and 7 show the organization in simplified block form. In
figure 6, the four module blocks correspond to the four hard-wired
module locations shown earlier in figure 5. The basic machine instruc-
tions which are microprogrammed are listed in the module 0 block,
along with some of the other major routines. The optional modules (1,
2, and 3), are represented with broken-line boxes.

Octal addresses for each module, which come from the ROM Address
Register, are listed at the left side of each module block. When one
specific location is addressed, the contents of that location are loaded
into the ROM Instruction Register.

Note that the ROM Address Register has ten bits (0-9), and the ROM
Instruction Register has 24 bits (0-23). In addition to the above
routing, the ten address bits can also be sent to an external control
store in the I/O section, and the 24 microinstruction bits can be
returned via the same cable to the ROM Instruction Register.

The ROM address, which establishes the starting point for a given
routine (e.g., the LDA phase 3 routine) is derived from a mapper, which
generates the appropriate ten bits from the machine instruction code in
the Instruction Register.

In the block on the left side of figure 6 are listed the machine
instructions which are decoded by hardware. While these instructions
do not have dedicated execute routines in firmware, the hardware
decoders must be enabled by special microprograms; these micropro-

113

2177-6A

1-14

instruction Register :

ROM Address Reg.

HARDWARE Phase 1A
DECODE Phase 1B
for / Phase 2
Alter-Skip,
Shift-Rotate
and
nput/Qutput
Instructions

MODULE 1
256 Words

MODULE 2
256 Words

MODULE 3
256 Words

ROM Instruction R

Figure 6. Four-Module Control Store

1/0 Interface

1/0 interface h

1/0 Bus Data

Address
for
Loading

—>

Address
for

(o ot

Address
Decode

Random-Access
Memory
256 Words

Module Executing

Enable

Bits 0-7
Bits 8,9

 FlatCableto
. ROM Control Card

2177-7

g

k3

Figure 7. External Control Store

= {Max = 3}

To-Other
Weitable
Control Store

1-15

grams also provide appropriately timed reading and storing of registers
for those instructions which use registers. The alter-skip and shift-rotate
decoders must be enabled by ASG and SRG microprogram routines
(respectively). In the I/O group, the decoder for flag instructions (STF,
CLF, SFC, SFS, STO, CLO, SOC, SOS) must be enabled by the Flag
routine; control instructions (STC, CLC) must be enabled by the CTRL
routine; input instructions must be enabled by either LI+ or MI*
routines; and output instructions must be enabled by the OT* routine.
In general, hardware decoding was chosen for these instructions to
permit rapid execution. The bit testing and synchronization required
for these instructions would have resulted in decreased performance if
done purely by firmware.

Figure 7 shows the general configuration of one Writable Control Store
unit. As indicated, the storage capability is provided by a Random
Access Memory (RAM) of 256-word capacity. Each location stores one
24-bit word, and is addressed by an integral 8-bit address decoder. Since
the storage elements are writable (as opposed to read-only), the loca-
tions may be loaded by the computer.

A loading example (top of figure 7) assumes that the RAM address is
contained in the eight most significant bits of the B-register; the
microinstruction is contained in the remaining eight bits plus the 16
bits of the A-register.

The load is initialized by issuing a Set Flag (STF) instruction to the
appropriate select code location of the card. This sets a Switch flip-flop
to enable the loading of Load Buffer 1. Then an OTB instruction
transfers the contents of the B-register to Load Buffer 1, via the I/O
bus, and clears the Switch flip-flop. Next, an OTA instruction transfers
the contents of the A-register to Load Buffer 2. Finally a Set Control
signal (STC, not shown) loads the 24-bit microinstruction from the two
Load Buffers into the addressed RAM location.

To execute microinstructions from RAM, the ten address bits from the
ROM Address Register are sent out to Writable Control Store via the

1-16

flat cable connected to the card. Bits 8 and 9 of the address enable the
particular module according to a manually-set switch, and bits G-7 are
used on the card as an address. This eight-bit address reads out one of
the 256 RAM locations via output line drivers to the flat cable. This
cable routes the RAM word to the ROM Instruction Register.
(Although not shown in figure 7, the RAM output can also be read
back to the IO bus by an input instruction for diagnostic checking
purposes.)

TIMING

When writing microprograms for the 2100, it cannot be assumed that
microinstructions can always be executed at the maximum rate (one
every 196 nanoseconds), although this will commonly be the case. The
reason for this is that the memory and 1/O sections of the computer
operate on a cycle that is five times as long as the ROM cycle (980 vs
196 nanoseconds). Thus whenever a microprogram reference to mem-
ory or I/O is made, execution of the microprogram must be synch-
ronized with the memory or IO cycle. That is, the microprogram must
be delayed at certain points until an appropriate point in the longer
cycle is detected.

There are two kinds of delays that achieve synchronization. One is
automatic, called the CPU freeze. The microprogrammer has no control
over this type of delay, but should be aware of its existence. The other
type of delay is deliberately microprogrammed by inserting NOP (No
Operation) microinstructions. It is the microprogrammer’s responsi-
bility to know when to insert a NOP delay and how to apply it
properly.

Figure 8 illustrates the basic timing considerations for micropro-
gramming. Note that the I/O cycle begins at the start of time T2 and
ends at the end of time T6. (The timing nomenclature purposely omits

1-17

INPUT/OUTPUT
CYCLE

MEMORY
CYCLE

ROMCYCLE

TIMING FOR MEMORY REFERENCES

T2y

, ; i 4 . Ptz g bl
Foygorvalma g |
1 1 i i o B
o8y —
Ul i ¢ 1 C D
A A A A Addees
- enamwiew AAB- Dts
‘ 10 Memory *°° to
and Memary
MPV Test
G FOR 10 REFEQENQE'B i
Ve gy COC gy
MiTaisiinziBiAsiwtinin
% : T T R
%/ CPU Freeze // 5 E i i
E E E E 1061 NOP o1 i0t F

. (Enable or 100 100
- VO] Resd

A8
A-F retorence Times, Soe Toxx ‘

él77-8A
Figure 8. Timing Considerations
1-18

BW

cw

TO and T1 in order to maintain documentation uniformity with the
large number of existing interfaces.) Output transfers are made during
T3 and T4 (100 signal), and input transfers are made during T4 and TS
(101 signal).

The memory cycle also begins at the start of T2 and ends at the end of
T6. Memory read (or clear) starts early in T2 and ends in T3, Memory
write begins in the middie of T4 and ends in T6. Thus, when reading
from memory, data will be available in the T-register during T4, and
when writing into memory, data must be loaded into the T-register
before T4.

The ROM cycle, shown for comparison, can cause five microinstruc-
tions to be executed in the same length of time required for one
memory or I/O cycle,

The lower part of figure 8 illustrates the various delays required for
memory and I/O references.

MEMORY REFERENCES. Memory references are caused when an RW
(Read/Write) or a CW (Clear/Write) micro-order is specified in the
Special field of a microinstruction. If such a microinstruction is
decoded during any time period designated T2 through T5 (see A), a
CPU freeze will delay execution of that microinstruction until T6. At
that time the address and the RW or CW signal is sent to memory. (For
CW, a memory protect violation test is also made at this time.)

During T2 and T3, data transfers take place. For reading (RW), a
second CPU freeze occurs if, after issuing the RW, you attempt to read
the T-register (Memory Data) while the read half-cycle is not complete.
The T-register can be read either by a T or COND in the S-bus field
with AAF and BAF both clear in the case of COND. Otherwise, no
freeze will occur. This allows the microprogrammer to use the time
periods T2 and T3 following an RW for additional microcoding. The
data from memory is available at T4 (point B) in either case and must
be read out of the T-register in either T4 or T5. A NOP delay is not

1-19

necessary. For writing, however, provision is made to test for a possible
attempt to store into a protected memory location. Thus the second
CPU freeze does not occur during T2 and T3. Instead, two lines of
microcoding must be inserted (C in figure 8) to be executed at times T2
and T3, before further microprogramming can continue at point D
(T4). During T2 an addressable A/B check may be made, assuming
there is no memory protect violation, and at T3 data is sent to memory.
(Refer to STx listing, addresses 0134, 0135, and 0136.)

Note: The preceding two paragraphs assume that the mem-
ory reference operand for RW is in core memory and
the operand address for CW refers to a location in
core memory. If the operand for RW were in the A-
or B-register, no CPU freeze occurs. However this is
not a common occurrence; the shorter possible execu-
tion time (example: as short as 1.568 microsecond
for ADA 1) is not usually listed as a 2100 Computer
specification.

I/O REFERENCES. I/O references are caused when an IOG1 micro-
order is specified in the Special field of a microinstruction. If such a
microinstruction is decoded during T3 through T6 (see E), a CPU freeze
will delay execution of that microinstruction until T2. At that time the
TOG1 signal enables the 1/O decoders. The next three time periods (T3,
T4, T5) must be coded with NOP microinstructions to allow time for
the hardware to fully decode and execute the current I/O instruction.
The remainder of the microprogram may then continue at point F (T6).
However, if the microprogram involves the input or output of data, IOI
or 100 micro-orders (respectively) must be encoded in the S-bus or
Store fields, respectively, of the microinstruction during T4 and T5.
Additionally, in the case of output, the data must be read out of the A-
or B-register to the S-bus during T3, T4, and T5, by encoding CAB in
the R-bus field and RRS in the S-bus field. In the case of input (LIA/B,
MIIA/B), CAB must be encoded in the STOR field during T5.

In summary: associate T6 with the start of memory references, and T2
with the start of I/O references.

1-20

THE STEPS TO IMPLEMENT
A NEW MICROPROGRAM

This handbook tells only how to write microprograms. However, a
written microprogram is of no use until it is stored in the appropriate
binary form in ROM or RAM. The task of getting your microprogram
into the required form is simplified by the use of Hewlett-Packard
software which is specially prepared for this purpose. Software docu-
mentation is separately available to describe in detail the procedures
required to implement your microprograms.

Figure 9 illustrates the overall process. Briefly, the process is as follows:

First, the microprograms are written using the guidelines given in this
handbook. These are then punched or recorded in a format suitable for
the HP 2100 micro-assembler. The assembler accepts the cards or tape
and produces an interim punched tape or disc file, and a microprogram
listing. This interim tape or file is then loaded into core memory by a
microprogram editor. The editor provides several useful features,
including:

a. the ability to output the block of microprograms in memory to
Writable Control Store;

b. the ability to examine any word in Writable Control Store;
c. the ability to alter any word in memory, and hence in WCS;
d. the ability to produce a new, edited interim tape or file;

e. an output suitable for use by a WCS driver;

f. an output suitable for use by a mask generator program to
produce mask tapes for the manufacture of ROM or program-
mable ROM.

Depending on the desired end result, the HP software will give you
either a fully loaded Writable Control Store or a set of six mask tapes.
With WCS, the driver used to originally load the card is also callable by
FORTRAN and ALGOL programs. This makes it possible to dynami-
cally modify the microprograms.

1-21

HP
2100

Micro-

Assembler

HP

‘\‘ '
Interim
Punched

2100
Micro- Tape
Program {ar Disc Fite)
Editor >
New Listing
{Edited)
Interim Tape
tor Disc File)

WRITABLE C ‘)
CONTROL
STORE

Programmable ROM
Read-Onty Memory Integrated Circuits
Integrated Circuits

2177-9
Figure 9. Microprogram Implementation

1-22

The six mask tapes would be used to make the six integrated-circuit
packages for one hard-wired ROM module. Each IC has a 256-location
storage capability for four bits; thus six IC’s are required in order to
form the 24-bit word length. The programmable ROM version is the
same as ROM except in the way it is manufactured.

Once produced, the ROM packages are to be installed in the reserved IC
locations on the ROM Control and/or Timing and Control printed-
circuit cards. Refer to the 2100 Computer manuals for locations and
procedures.

PRACTICAL CONSIDERATIONS

The decision to extend or replace the 2100 firmware bears careful
consideration. After all, considerable cost will be involved — not only in
hardware investment (primarily the control store hardware), but also in
the time requirements for a microprogrammer to acquire sufficient
knowledge to be able to generate correct microcode, and then to write,
debug, and implement his microprograms. Also to be borne in mind is
the fact that much of your software will have to be modified to
recognize new function codes.

The benefits to be gained by special microprogramming must neces-
sarily outweigh the cost considerations. While it is beyond the scope of
this handbook to enumerate specific applications, some of the basic
benefits are listed in the following paragraphs.

Compute:
Museum

GENERAL FACTORS

SPEED. Microprogramming can increase system speed in many ways. A
frequently-used software subroutine, for example, will execute many
times faster when implemented as a microprogram. Since six additional
CPU registers become accessible (see section 2), the number of memory
references can be greatly reduced. This can be particularly significant in

1-23

real-time systems, or systems which are compute-bound (i.e., I/O runs
faster than computation in a serial input-compute-output application).

MEMORY SPACE. By converting software routines into firmware, core
space is freed for other purposes. The routines remain instantly callable,
as opposed to the technique of relegating routines to mass storage in
order to gain core space.

SPECIAL FUNCTIONS. The software instruction set can be enriched
to perform functions that are application oriented. Thus the general-
purpose computer can become a special-purpose machine, uniquely
adapted to a specific environment. (However, due to hardware restric-
tions, the 2100 cannot be made to emulate other systems.) Because of
the relative inaccessibility of firmware contents (as compared to soft-
ware), proprietary packages can receive a high degree of security.

EXPANDED CAPABILITY. Through microprogramming, six additional
registers become accessible. Software instructions may be invented to
reference and use these registers. In addition, due to the three-operand
format of the microinstruction word, instructions can be created which
perform some function with the contents of two registers and store the
result in a third register. A flag bit, also not otherwise accessible, may
also be used.

As can be expected, certain restrictions limit the operations that may
be performed. These are described later in section 5. However, one
consideration should be mentioned at this point: a microprogram
normally inhibits all I/O interrupts until it is fully executed. (A CIJMP
may be used to circumvent this restriction.) This fact can become
significant if a routine is very long — e.g., if it contains potentially
endless loops or numerous links to other microprograms. Micro-
programs should be kept short. Direct Memory Access (DMA) is not,
however, held off by the microprogram.

WCS/ROM IMPLEMENTATIONS
Deciding whether to use Writable Control Store or a permanent Read-

1-24

Only Memory again involves the factor of cost. WCS is convenient,
ready to install as a plug-in unit, but is more costly than ROM.
Although ROM involves a manufacturing step, the cost factor is usually
decisive when a quantity of units are to be made. For low quantities, a
programmable Read-Only Memory is often a suitable compromise. It is
relatively easy to produce, although the cost per unit for large quan-
tities is somewhat higher than for ROM.

The primary advantage of WCS is that it is modifiable — even dynam-
ically modifiable. An executing software program can actually alter the
functions performed by a microprogram during run time, based upon
any internal or external stimuli that may be desired. The modifiability
feature also means that a preliminary microprogram may be tested and
debugged under actual run conditions. Execution speed is the same
whether operating from WCS or ROM. For this reason, WCS is fre-
quently used to check out microprograms before they are permanently
committed to ROM. This also permits division of labor on micropro-
gramming projects; several microprogrammers can independently test
their microprograms before integration into a total set.

The disadvantages of WCS, apart from cost, are that: 1) each module
uses up one I/O slot, and 2) the stored information is volatile — i.e., the
contents are lost in the event of a power failure. This requires an
automatic restart routine to be written which would reload WCS when
power is restored. If automatic restart is used, firmware routines must
be short enough to run to completion and still allow time for power fail
interrupt and execution of the service routine before power is gone.

1-25

SECTION

CONTROLLABLE FUNCTIONS IN THE 2100 B2

GENERAL CONTROL FUNCTIONS

Figures 10 through 13 represent a four-part block diagram of the 2100
Computer. Each part corresponds to one of the major component parts
of a computer, as illustrated earlier in figure 1.

The block diagram is specifically configured to show where in the
machine the various micro-orders have their effect. Later, under the
heading, “Effects of Microinstruction Fields”, most of the important
controls will be discussed. First, each of the blocks in the four parts will
be described briefly.

CONTROL

The control section of the computer includes the read-only memory
and its addressing and decoding logic. Refer to figure 10.

INSTRUCTION REGISTER. The Instruction Register is 16 bits wide.
It accepts software instruction codes, in binary, from memory via the
S-bus. The microprograms are responsible for reading memory data
onto the S-bus, and for storing the S-bus data into the Instruction
Register. Major destinations of Instruction Register outputs are: 1) the
Phase 3 Mapper; 2) the SRG/ASG Decoder, for register reference
instructions, and; 3) the I/O Instruction Decoder (see figure 13), for
I/O group instructions. Other outputs are used for phase control,
operand addressing (IR0-9), and A/B-register references (IR11).

PHASE CONTROL. The Phase Control logic controls the state of the
computer. Operation begins in the fetch phase, and thereafter the Phase

21

Control logic determines the next state (or phase) based upon the
current state and the type of instruction (IR11-15), plus indirect and
interrupt detection logic (not shown). The End-of-Phase (EOP) signal
from the microprogram commands the Phase Control logic to switch to
the next phase. Phase 1A is the fetch phase; phase 1B is the interrupt
fetch phase; phase 2 is the indirect phase; phase 3 is the execute phase.

PHASE 3 MAPPER. The Phase 3 Mapper is enabled by bits 4 through
15 of the Instruction Register and the SPH3 (Set Phase 3) signal from
the Phase Control logic. The mapper accepts these bits from the
Instruction Register and translates this information into a 10-bit ROM
address. This address is the starting location in ROM for the micro-
program which executes the current instruction.

SRG/ASG DECODER. This decoder provides the necessary hardware
controls to enable execution of phase 3 for shift-rotate and alter-skip
group instructions. It, in turn, is enabled by an SRG or ASG signal (not
shown) from the microprogram (i.e., Special field decoder).

ROM ADDRESS REGISTER. The ROM Address Register supplies one
address at a time to ROM. Its contents can be forced to a particular
value from one of seven sources and, unless inhibited by RPT (Repeat)
or overridden by a jump, the content increments on every clock cycle
(196 nanoseconds). The ROM Address Register is loaded for phase 1A
by applying no data input to the register and enabling the parallel-load
terminal with EOP (End of Phase). This forces an address of 0000 (all
addresses are in octal), which is the starting location of the fetch
routine. For phases 1B or 2, EOP again enables the parallel-load
terminal, and addresses 4 or 14 are forced. For phase 3, the address
from the Phase 3 Mapper is loaded into the register, again with EOP;
this is the starting address for the routine which executes the instruc-
tion which has been fetched (in phase 1A) into the Instruction Register.
For microprogram jumps (JMP, JSB, and CJMP) a 10-bit address from
the ROM Instruction Register, consisting of bits 0 through 7 plus 12
and 17, is forced into the ROM Address Register. The JMP, JSB, and
CJMP signals (instead of EOP) enable the parallel-load terminal. The

2-2

contents of the Save Register (discussed next) can also be loaded into
the ROM Address Register; this loading is caused by an RSB (Return
from Subroutine) signal, which also (though not shown) enables the
parallel-load terminal.

SAVE REGISTER AND JSB FF. The Save Register provides a means
for returning from a microprogram subroutine. It is controlled by the
JSB (Jump to Subroutine) flip-flop. Normally, the JSB flip-flop is clear.
In this condition, the Save Register automatically copies the content of
the ROM Address Register on every cycle. Then, when a JSB micro-
order appears in the Function field of a microinstruction, a JSB
signal sets the JSB flip-flop. This inhibits the Save Register from
further copying of ROM Address Register contents; thus the return
address for the subroutine is saved. Later, when the microprogram
completes the subroutine, it generates an RSB (Return from Sub-
routine) signal. This signal forces a parallel-load of the Save Reg-
ister contents into the ROM Address Register, and clears the JSB
flip-flop. The microprogram thus continues following the point
where the JSB was given.

READ-ONLY MEMORY. Four modules of ROM provide 256 locations
each, for a total of 1024 possible locations. Module 0 (octal addresses 0
through 377) contains the microprograms for the basic instruction set.
The remaining three modules are optional. As explained in section 1,
modules can be located in the I/O section and connected to the ROM
Address Register and ROM Instruction Register by direct cabling.

ROM INSTRUCTION REGISTER. This register receives the con-
tents of the ROM location addressed by the ROM Address Register.
The ROM Instruction Register is 24 bits wide, divided into six
fields as shown. Mostly, the outputs of the register go directly to
the ROM field decoders. The EOP micro-order, however, is sep-
arately decoded, and the address bits for a microprogram jump
(0-7, 12, 17) come directly from the register.

ROM FIELD DECODERS. There is a separate decoder for each field of
the ROM word: R-bus, S-bus, Function, Store, Special, and Skip. The
signals they generate depend on the coding of micro-orders in each

23

field. In addition, the output of the R-bus and Store fields can be
affected by AAF and BAF input signals and the A/B bit (IR11) from
the Instruction Register. The Function field can be affected by bit O
of the A-register or a carry-out (COUT) from the arithmetic logic
unit (ALU). A full discussion of the effects of microinstruction fields
is given later in this section.

MICRO-SKIP TEST LOGIC. A microinstruction skip is accomplished
by inhibiting most of the decoder outputs on the next clock cycle.
This will cause the next microinstruction to have no effect. Some
signals, such as the entire R- and S-bus field signals, are permitted to
occur since they do not change anything. The skip signal to the
inhibit gates is generated by the micro-skip test logic. The decoded
Skip field (SK) specifies which condition is to be tested for a possible
skip. Nine such input conditions (see figure 11) are shown: COUT,
TBZ, OVF, FLG, ALUQ, ALU15, Ctr = 17, AAF, BAF. (These are
defined later.) An RSS (Reverse Skip Sense) causes the skip to occur
if the tested condition is false. For example, TBZ alone would cause
a skip if the T-bus is zero; TBZ with RSS would cause a skip if the
T-bus is not zero.

ARITHMETIC LOGIC

The arithmetic logic section contains the data registers and data mani-
pulating logic. Refer to figure 11.

ADDRESSABLE A/B. The Addressable A/B logic contains two flip-
flops, the outputs of which are designated as AAF and BAF
(Addressable A flip-flop and Addressable B flip-flop). One or the
other of these flip-flops may be set (or neither), but not both. If
AAF is set, it indicates that the A-register is being addressed as a
memory reference, Similarly, if BAF is set, it indicates that the B-
register is being referenced as a memory location. Either flip-flop is
conditionally set by an AAB or RW signal from the Special field of
the microinstruction. Thus, AAB or RW will set AAF if T-bus bits 1
through 14 are “0” and ALUOQ is “0” (this is the address of the

24

A-register), and will set BAF if T-bus bits 1 through 14 are “0” and
ALUOQ is “1” (the address of the B-register).

A-/B-REGISTERS. The A-register and B-register are 16-bit accumu-
lators which are accessible to both software programming and
firmware microprogramming. They are loaded from the T-bus by
signals from the Store field, and can be read out to the R-bus by
signals from the R-bus field. The two registers are capable of being
right-shifted as a 32-bit quantity, in a single clock cycle, by speci-
fying R1 (Right one place) in the Special field, with ARS, CRS,
LGS, or MPY in the Function field and B specified in the R-bus and
Store fields. The B-register contents (most significant 16 bits) are
shifted by routing through the ALU and the shifter; the A-register
shifts internally in the register itself. Either register may also be indi-
vidually shifted left or right through the ALU and the shifter, by
specifying L1 or R1 in the Special field. All of these shifts are micro-
programmable, and are in addition to the non-microprogrammed
shifts generated by the shift-rotate group of instructions. (See note
following Q- and F-register description.)

Q-/F-REGISTERS. The Q-register and F-register are 16-bit accumu-
lators which, in the basic computer, are not accessible to software
programming. Special microprograms must be written if it is desired
to have instructions which reference these registers. Under micro-
program control, the Q- and F-registers are loaded from the T-bus
and read out to the R-bus. The two registers are capable of being
left-shifted as a 32-bit quantity, in a single clock cycle, by specifying
L1 (Left one place) in the Special field, with ARS, CRS, LGS, or
DIV in the Function field and F specified in the R-bus and Store
fields. The F-register contents (most significant 16 bits) are shifted by
routing through the ALU and the shifter; the Q-register shifts
internally in the register itself. The Q-register may also be indi-
vidually shifted left or right through the ALU and the shifter, by
specifying L1 or R1 in the Special field. Since the F-register is
used as a fence register by the memory protect feature, any micro-
programs which use the F-register must save the contents on entry
and restore the contents on exit, assuming that the system does use
memory protect.

25

Note: Special care should be taken when microprogramming
long shifts on the B-/A-registers and any shifts on the
F-/Q-registers, particularly if attempting unconven-
tional operations. For example, if you do not
intend to store the result of a long shift (i.e., do
not specify B or F in the Store field), the
A-register would be shifted anyway, but not the
B-register; whereas, in the case of the F- and
Q-registers, neither would be shifted. Also note
that the F-register is not intended to be shifted by
itself as an individual register. This is because the
F-register is permanently linked with the
Q-register. Thus on left shifts, the most significant
bit of the Q-register automatically. shifts into the
least significant bit of the F-register; furthermore
there is the possibility. of an “OR”.tie with the
Flag content if the LWF micro-order is specified.
This can, of course, be circumvented by clearing
the unwanted low-order bits; however, considerable
caution and close study of the computer logic are
advisable before attempting such operations. Right-
shifting of the F-register will not have any serious
consequences.

P-REGISTER. The P-register is a 16-bit program counter, which
contains the memory address of the next instruction to be fetched.
It is initially loaded manually from the front panel. Thereafter, in
run mode, its contents are incremented at the start of each execute
phase (phase 3) by an INP (Increment P) signal from the Phase
Control logic. During the execute phase of skip instructions (alter-
skip group) the register may be incremented a second time by an
INP signa! from the Skip Carry logic. During the execute phase
of JMP and JSB instructions, a different address from Scratch
Pad 1 (SP1) is loaded into the P-register. The address in SP1 is
either a direct address obtained during the fetch phase (from
Instruction Register bits 0-9, conditionally combined with P-
register bits 10-15, depending on the state of page bit IR10) or
a final indirect address obtained from the T-register during an

2-6

indirect phase. The transfer from SP1 to P-register occurs by way
of the S-bus, ALU, and T-bus.

SCRATCH PAD REGISTERS. Like the Q- and F-registers, the four
Scratch Pad registers (SP1, SP2, SP3, SP4) are accessible to software
only by special microprogramming. These are 16-bit registers, nor-
mally used for temporary storage of information during the execution
of a microprogram. They are loaded from the T-bus, and can be read
onto the S-bus. Information is not normally carried over in these
registers from one execute phase to another; only the A- and
B-register have this capability. Unlike the A-, B-, Q-, F-, and
P-registers, which use edge-triggered storage elements, the Scratch Pad
storage elements are latches. This means that it is not possible to read
the contents of one Scratch Pad and store back into that Scratch Pad
in the same cycle (i.e., same microinstruction). Another register, such
as another Scratch Pad would have to be specified for storing, if it is
desired to preserve the T-bus information.

MULTIPLEXER. A four-input multiplexer is used to select one of
four registers (A-, B-, Q-, and F-registers) for reading onto the R-bus.
The multiplexer is controlled by the R-bus field of the decoded
microinstruction. Note that, by specifying an RRS (Read R-bus to
S-bus) in the S-bus field, it is possible to read the output of the
multiplexer onto the S-bus, as well as onto the R-bus.

ARITHMETIC LOGIC UNIT (ALU). The ALU performs one of eight
arithmetic or logical functions on the combined R- and S-bus inputs.
If nothing is read onto one of the buses, its state is all-zero, and the
specified function essentially operates on only the remaining bus
input. The function is specified by the Function field of the decoded
microinstruction. The eight functions are: IOR (“inclusive OR”),
XOR (“exclusive OR”), AND (logical “AND”), NOR (“OR” and
complement), ADD (two’s complement add), SUB (subtract S-bus
from R-bus, two’s complement), INC (add S-bus and R-bus, incre-
ment the result), and DEC (subtract S-bus from R-bus, one’s com-
plement; decrement R-bus if S-bus is zero). The output bits of the
ALU are designated ALUQ through ALU15.

2.7

SHIFTER. The 16 ALU bits are applied to the shifter, which routes
each bit onto the numerically corresponding T-bus line unless a shift
signal is applied by either the SRG/ASG decoder or the Special field
of the decoded microinstruction. The SRG/ASG decoder can generate
all three basic shift signals: R1 (Right one), L1 (Left one), and L4
(Left four). The Special field decoder can supply two of these: R1
and L1. The various types of shifts (arithmetic, logical, etc.) are
enabled by controlling the data bit that is inserted into either the
high end (ALX16) or the low end (LSI) of the shifter. See Shift
Linkage paragraph.

SHIFT LINKAGE. The shift linkage logic takes some combination of
three input data bits (Flag, Extend, and either ALX16 or LSI), and
outputs one bit to either ALX16 or LSI depending on the direction
of the shift. The shift linkage is controlled by shift-type signals from
either the SRG/ASG decoder or the Function field.

RFE LOGIC. The RFE (Rotate Flag and Extend bits) logic exchanges
the contents of the Flag and Extend flip-flops on receiving an RFE
signal from the Function field decoder.

FLAG LOGIC. The Flag logic controls the state of the Flag flip-flop,
which is used by microprograms for temporary storage of a single
data bit or status bit. This is not the same flag referred to in the I/O
group. The state of the bit (FLG) may be tested by the micro-skip
test logic and, as mentioned above, its content may be exchanged
with the Extend bit content. (FLG was also used in the shift linkage
for implementing the shift and rotate instructions of the basic
instruction set.) The Flag flip-flop may be set or cleared by SFLG or
CFLG signals from the Function field decoder, or an LWF (Link with
Flag) micro-order may be used to cause the Flag flip-flop to save the
bit shifted off either end of a word by the shifter. That is, if shifting
left (L1), the Flag will assume the state of ALU15 (which would be
lost from the word shifted to the T-bus). Similarly, if shifting right
(R1), the Flag will assume the state of ALUO. The LWF micro-order
also inserts the Flag content into the vacated bit position at the other
end of the shifted word.

2-8

EXTEND LOGIC. The Extend logic controls the state of the Extend
flip-flop. The bit contained in this flip-flop is accessible to software by
way of the shift-rotate and alter-skip groups of instructions. For micro-
programming purposes, the Extend bit will be set by a carry out
(COUT) from the ALU, when enabled by an ADDO (ADD, with
Overflow enabled) or an INCO (Increment, with Overflow enabled)
micro-order in the Function field. Microprograms cannot directly set or
clear the Extend bit; indirectly it may be controlled by rotating with
the Flag bit, which is directly controllable (see RFE and Flag logic).

OVERFLOW LOGIC. The Overflow logic controls the state of the
Overflow flip-flop. The state of the bit contained in this flip-flop can be
controlled by software (STO and CLO instructions) and may be tested
for skips (SOS and SOC instructions). For microprogramming purposes,
the Overflow bit may be directly set or cleared by SOV and CLO
micro-orders, and may be enabled to check for possible ALU overflow
by ADDO and INCO micro-orders. ALU overflow normally is tested by
comparing ALU15 with bit 15 of the R- and S-buses (“anded”); if a
sign change occurs, Overflow will be set. The Overflow bit output
(OVF) is one of the conditions which may be tested by the micro-skip
test logic.

COUNTER. A five-bit hardware counter is available for use by micro-
programs. Typically it would be used for loop counting: The four least
significant bits (0-3) may be parallellloaded from the S-bus (with bit 4
cleared) by a CNTR micro-order in the Special field, and all five bits
may be read out to the S-bus by a CNTR micro-order in the S-bus field.
The counter is incremented by ICTR or CTRI in the Skip field. The
latter of these two micro-orders, CTRI, enables the micro-skip test logic
to test the counter contents for a full count. A full count is represented
by all ones in the four least significant bits (i.e., octal 17).

MEMORY

The memory section of the computer contains the memory core
modules, plus the memory addressing logic, timing circuits, and a data
holding register. Refer to figure 12,

29

M-REGISTER. The M-register contains the memory address of the core
location which is to be accessed on a given memory cycle. The register
has 15 bit positions. (Bit 15 of an address word is used as an indirect
address indicator and thus never forms part of an address.) Addresses
may be loaded from the S-bus by an M micro-order in the Store
field, and the current M-register contents may be read out to the
S-bus by an M micro-order in the S-bus field. However, the main
output of the M-register is to the Memory Address Decoder. The
Direct Memory Access option may also load the M-register.

MEMORY ADDRESS DECODER. The Memory Address Decoder
converts the address bit pattern in the M-register to a selection of
matrix-arranged addressing lines.

X-Y DRIVER/SWITCHES. A set of Driver/Switch circuits, selected
by the lines from the Memory Address Decoder, supplies the
current required to access one particular memory location. Timing
signals cause the current direction to reverse (for storing) from the
“read” direction to the “write” direction.

CORE. Up to four core modules may be used in optional configura-
tions to provide various storage capacities from 4K (4096 words) to
32K (32,768 words). For reading, the X-Y Driver/Switches provide a
read current to the 17 cores in the selected location; the Sense
Amplifiers (SA) detect the state changes caused by the read currents.
For writing, the X-Y Driver/Switches provide a write current to the
17 cores in the selected location; the bit pattern supplied by the
Inhibit Drivers (described next) causes the T-register contents to be
copied into the core location. (The 17th bit, used by parity-checking
logic, is being ignored in these discussions since parity generation and
checking are not microprogrammable functions.)

INHIBIT DRIVERS. The Inhibit Drivers (ID) are used when writing
data into core. During the write operation, the Driver/Switches
attempt to drive all cores in the selected location to the “1” state.
The Inhibit Drivers supply opposing current to any core which has a
corresponding “0”-state bit in the T-register. Thus the T-register con-
tents will be copied into the core location.

210

SENSE AMPLIFIERS. The Sense Amplifiers (SA) are used when
reading data from core. During the read operation, the Driver/
Switches drive all cores in the selected location to the “0” state. Any
cores that change state obviously were “1”s. The Sense Amplifiers
detect this change of state, and set the corresponding bit in the
T-register. The T-register is always cleared by hardware at the start of
any read operation.

T-REGISTER. The T-register is a 16-bit register that holds the data
that is read out of and written into a memory location during
memory read and write operations. It is automatically loaded
with the contents of a core location during the read operation of
a read/write (RW) cycle, or will be cleared by the clear operation
of a clear/write (CW) cycle. Under microprogram control its con-
tents may be loaded from or read onto the S-bus. A T micro-
order in the Store field loads the register, and a T micro-order in
the S-bus field reads the contents. The Direct Memory Access
option may also load or read the T-register.

MEMORY TIMING. For microprogramming purposes, the memory
timing circuits may be viewed as the block which translates the
RW (Read/Write) and CW (Clear/Write) micro-orders into memory
cycle sequences. A typical microprogrammed read would consist
of specifying RW in the Special field of one microinstruction,
and then reading the contents of the T-register (T in S-bus field)
in the next microinstruction. As explained in section 1, a CPU
freeze will occur, so that the read signal will not actually occur
until data is present in the T-register. A typical microprogrammed
write would consist of specifying CW in the Special field and, in
the same microinstruction, M in the Store field. This will load
the S-bus data (the address) into the M-register and start the
clear operation. Then, after one microinstruction for memory-
protect violation checking (or a forced skip), a T in the Store
field may be used to load the T-register from the S-bus. Note:
the T-register may not be loaded by a microinstruction prior to
issuing CW, since a DMA transfer could destroy the data.

21n

INPUT/OUTPUT

The input/output section includes I/O instruction decoding and
device interfacing, Refer to figure 13.

I/O0 INSTRUCTION DECODER. As mentioned in section 1, the
decoding for I/O instructions is mostly done in hardware. Thus all
Instruction Register bits, IRO-IR15, are shown applied to the I/O
instruction decoder. The decoder is enabled by an I0G1 micro-order
in the Special field. The control and timing logic has not been shown
in detail, since it is not particularly relevant to microprogramming.

S-REGISTER AND DISPLAY. In the run mode, the S-register may
be addressed by I/O instructions as select code 01. Thus its contents
may be transferred to and from the S-bus in the same manner as I/0
interface data (see next paragraph). The Display register, in the run
mode, is locked to the S-register, thus providing a convenient means
of display and modification via the front panel.

I/O BUS. For input and output of data, it is necessary for the micro-
program to gate the data between the S-bus and the I/O bus at the
appropriate time. (Refer to figure 8 for timing details, explained
earlier.) Hardware-decoded controls will take care of the remaining
operations involved in data transfers (i.e., addressing the interface
cards via select codes, and transferring data between the cards and
the I/O bus). An IOO micro-order in the Store field will read the
S-bus onto the I/O bus, and an IOI micro-order in the S-bus field will
read the I/O bus onto the S-bus.

CENTRAL INTERRUPT REGISTER. Whenever an interrupt occurs,
the interrupt address (select code) is loaded into the 6-bit Central
Interrupt Register. The contents of this register are used by the PH1B
(phase 1B, or interrupt fetch phase) microprogram, for transferring
computer control to an interrupt subroutine in software.

SKF SIGNAL. The SKF (Skip Flag) signal is one of the conditions
which the Skip Carry logic can use for a possible software instruction
skip. It is not used in microprogramming.

212

EFFECTS OF MICROINSTRUCTION FIELDS

Most of the micro-orders have been mentioned in the preceding
block-diagram discussion. In order to present a perspective from the
point of view of the microprogram, the following descriptions provide
a summary of controls that are available to the microprogrammer.
Refer to figures 10 through 13. A complete listing of the micro-
program language instruction set is given in section 4.

R-BUS FIELD

The R-bus field, having only three bits, is the smallest of the six
fields. Basically, it selects one of the four R-bus registers (A, B, Q, F)
for reading onto the R-bus. This is done by specifying an A, B, Q, or
F micro-order. Also, the A- and B-registers may be conditionally
selected by specifying AAB or CAB. For AAB, A or B will be
selected depending on whether an AAF or BAF signal is being
supplied by the Addressable A/B logic; if neither is present, the A-
register will be read. For CAB, the selection depends only on the
state of IR11 (“0” for A, “1” for B).

S-BUS FIELD

The S-bus field basically selects one of the five S-bus registers (P,
SP1, SP2, SP3, SP4) for reading onto the S-bus. The respective micro-
orders are P, S1, S2, S3, and S4. Also (in figure 11), an RRS micro-
order can read the R-bus value to the S-bus, and CNTR can read the
counter contents (five bits) to the S-bus.

In figure 10, note that a COND (Conditional) micro-order can force
the R-bus field to conditionally read the A- or B-register, depending
on whether AAF or BAF is set (AAB must be coded in the R-bus
field for this case); hardware logic also enables RRS so that the data
will be routed to the S-bus. If neither AAF nor BAF is set, then the
T-register contents are read onto the S-bus. Also, as shown in figure

2-13

10, a CR or CL micro-order can read an eight-bit constant from the
ROM Instruction Register (RIR0-7) to the S-bus. The CR micro-order
reads this data to the right half of the bus (bits 8 through 15), and
CL reads it to the left half (bits 0 through 7). In each case the
unused bits are cleared. An ADR micro-order reads Instruction Reg-
ister bits 0 through 9 (normally the operand address for memory
reference instructions) to the S-bus, and (not shown) conditionally
may also read P-register bits 10 through 15. See ADR micro-order
definition.

As shown in figures 12 and 13, the S-bus field can also read the
T-register (T micro-order), the M-register (M micro-order), the I/O bus
(I0I micro-order), and the Central Interrupt Register (CIR
micro-order).

FUNCTION FIELD

The Function field controls operations in five separate areas: the
ALU, the Overflow logic, the Flag logic, the shift linkage logic, and
the micro-jump logic. The following five paragraphs summarize the
controls in these areas.

ALU OPERATIONS. Eight functions can be performed by the ALU
on command of micro-orders from the Function field. These are:
IOR (“inclusive OR”), XOR (“exclusive OR”), AND (logical
“AND”), NOR (logical “NOR”), ADD (two’s complement add), SUB
(two’s complement subtract), INC (add R- and S-bus inputs and
increment the sum), DEC (one’s complement subtract, or decrement
R-bus input). The micro-orders ADDO and INCO are the same as
ADD and INC except for the additional logic they enable (see next

paragraph).

OVERFLOW, Two of the Function field micro-orders directly control
the Overflow flip-flop: SOV sets Overflow, and CLO clears Overflow.
The ADDO and INCO micro-orders enable the Overflow logic, so that
Overflow can be set by arithmetic overflow in the ALU. Note that

2-14

ADDO and INCO also enable the Extend logic for the software ADA/B
instruction, Extend is then set by a carry out (COUT) from the ALU.

SHIFT OPERATIONS. Long shifts (32 bits) and multiply and divide
steps can be specified by ARS, CRS, LGS, MPY, and DIV in the
Function field. These are complex operations, involving other logic
(not shown in figure 11) in addition to the essential shift linkage
(shown). Refer to definitions for full explanation.

FLAG LOGIC. The Flag flip-flop can be directly set or cleared by
SFLG or CFLG micro-orders in the Function field. By specifying
LWF (Link with Flag) in the Function field, plus L1 or R1 in the
Special field, the content of the Flag flip-flop can be rotated with the
ALU output (i.e., circular shift), left or right. Also, RFE may be used
to exchange Flag and Extend contents.

MICRO-JUMPS. As shown in figure 10, a JMP, JSB, or CJMP micro-
order will force a jump address into the ROM Address Register. This
address is taken from the eight least significant bits of the current
microinstruction (RIRO0-7) plus RIR12 and RIR17. The Special and
Skip fields cannot be used in this case. For special reasons that will be
explained in section 3, the four least significant bits of the S-bus
(SB0-3) are “OR”-tied into the ROM Address Register. Additionally,
for JSB only, the Save Register will be caused to save the former ROM
Address Register contents; later, an RSB (Return from Subroutine)
micro-order in the Function field can restore the former address from
the Save Register to the ROM Address Register.

STORE FIELD

Mostly, the Store field is used to store the data on the T-bus into a
specifiable register. Four exceptions (next paragraph) involve the S-
bus instead of the T-bus. As shown in figure 11, the nine R- and
S-bus registers (A, B, Q, F, P, SP1, SP2, SP3, SP4) can be loaded
from the T-bus on command from the Store Field decoder, by A, B,

2-15

Q, F, P, S1, S2, S3, or S4 micro-orders. The A- and B-registers may
also be loaded conditionally by AAB or CAB micro-orders. For AAB,
the selection will depend on whether an AAF or BAF signal is being
supplied by the Addressable A/B logic. If neither is present, no store
will occur. For CAB, the selection depends on the state of IR11 (*0”
for A, “1” for B).

The IR, T, and M micro-orders store the data on the S-bus into
(respectively) the Instruction Register, T-register, or M-register. (Refer
to figures 10 and 12.) The I00 micro-order gates the data on the
S-bus onto the I/O bus (figure 13).

SPECIAL FIELD

The Special field provides for several miscellaneous operations,
described in the following paragraphs. Special functions provided for
the SRG/ASG decoder are disregarded.

SKIP SENSE. An RSS (Reverse Skip Sense) in the Special field will
cause the micro-skip test logic to test for a condition which is the
complement of that specified in the Skip field (e.g., skip on cleared
condition instead of set condition). *

ADDRESSABLE A/B. An AAB or RW micro-order enables the
setting of AAF or BAF, depending on whether ALUOQ is “0’’ or “1”,
respectively, with T-bus bits 1 through 14 all “0”. When AAF or
BAF is set as a result of an RW (Read/Write) micro-order, this indi-
cates that the data to be read is in the A- or B-register; thus a
memory fetch (and synchronization) will not be necessary, although
it is still executed. The following microinstruction, which normally
contains AAB and COND in the R- and S-bus fields respectively,
makes the decision as to where to get the data.

SHIFTS. An L1 (Left one) or R1 (Right one) micro-order in the
Special field causes the shifter to shift the ALU data bits left or right
one place onto the T-bus. By using LWF (Link with Flag) in the
Function field, the vacated bit position can be filled with the current

216

bit state of the Flag flip-flop. For long shifts (ARS, CRS, LGS, MPY,
and DIV), L1 and R1 enable shifting of the higher order word. (The
lower order word is shifted internally in the appropriate register.)

COUNTER. The CNTR micro-order in the Special field causes bits O
through 3 of the S-bus to be loaded into the counter, and bit 4 of
the counter to be cleared.

MEMORY. An RW micro-order causes the memory to execute a read/
write cycle; this will place memory data into the T-register. A CW
micro-order causes the memory to execute a clear/write cycle, which
stores the contents of the T-register into memory. The CW command
requires a ‘“‘true” skip condition (specified in the Skip field); other-
wise the command will be inhibited.

SKIP FIELD

The Skip field permits one of several conditions to be specified for
possible microinstruction skip decisions. Some special operations (see
next paragraph) are also coded in this field. Ten skip conditions are
shown in figures 10 and 11, specified by the following micro-orders:
CTR (skip if counter bits 0-3 are all “1”’), CTRI (same as CTR, but
also increment the counter), NEG (skip if ALU15 is “1”), ODD (skip
if ALUO is “1’), COUT (skip if there is a carry out from the ALU),
FLG, (skip if Flag is set), OVF (skip if Overflow is set), TBZ (skip if
T-bus is all “0”), AAB (skip if AAF or BAF is set), and NAAB (skip
if the T-bus value is not the address of the A- or B-register). In
addition, although not shown, there is a test for no memory-protect
violation (NMPV) and an unconditional (UNC) skip micro-order.

There are three special functions available in the Skip field. The RPT
micro-order causes the next microinstruction to be repeated until a
condition specified in the Skip field of that microinstruction is met.
The ICTR micro-order increments the counter. The EOP micro-order
commands the Phase Control logic to switch to the next phase after
executing the next microinstruction.

2-17

| Instruction Register l

A
{ Save Reg. j qu Adrs Reg

Bemen e

ROM 0 . 377 }12586)

i ELN parry ROM 400 - 777 |(512)

f FF ROM 1000 -1377 |(768)
CED)

ROM 1400 -1777 [{1024)

ROM instruction Register

re 3
& RIS IR4:16)
Phase B v
EOP
Control -
Phase 3 SRG/ASG
v IAI1B| 2 l 3 Mapper Decoder
L, I I
v SPH3 l
$PH1B SPH2 tj SB0-3
JIMP,ISB,CIMP
RSE. RIRO:7,12,17
LRO-9

FJ S i FN [ST |7SP4135K

23 {21,201 17,18 [12,01] 8,

COND

}V

h 4

4

ROM Field Decoders

e

Risi FNJSTISP{SK
Ty

D
b j \ FN
§ t—.—i r j] R
: D1
.
e > v/ s

2-18

Figure 10. 2100 Block Diagram, Part A

AAR
Address A ALy
A/B W
8 Multi-
2 | 10R
ARF ™
¢ BAF a plexer XOR
- RRS AND
— T NOR
- I ADD
» NP e ?Hg
3 s
A DEC
SP1
i
REE SP2
SP3 COUT
SP4
El RFE .
togic % (ALUOACUILS
. ALUl4
SFLG Skip ALU1S
CE\'I;.? Car(y i
- Flag [Fric Logic
LR Logic gy (f)lver-
; ow
. Logic
s L
___*_‘ . OVF
3
e
f=ire .
: - ! Extend
Counter M=y “ten £
o4
— LWE
> TCTRCTal
cNTRY
;
> ST
>—
> S
>
> JRO-15
>
SKF
5-BUS

Figure 11. 2100 Block Diagram, Part B

219

M-Register

> :
Memory Jk
Address
Decoder
L X-Y X-Y XY
Driver/ Driver/ Driver/ Driver/
Switch Switch Switch _] Switch '
~
A
Core Core
4K or 4K or CBD.ZE Cso:;e
8K 8K
1 4 r
lnhibit:
Te) Drivers
Sense
SA SA SA Ampl
& &
L x
i
: {
[T-Register 1 RW,CW Memory
Timing
v
IR J
>
ST o
>
S > .
IR0-15
>
SKF
4
$-BUS

2-20

Figure 12. 2100 Block Diagram, Part C

rotertace Coitrol dnd Addressing

‘ TolFrom
Kg Interface | 1O Deviges

1/0 tnstr ' i ‘ .
Oecoder ‘ i Central Int Reg

Control Logic, e
and Timing :

Figure 13. 2100 Block Diagram, Part D
2-21

SECTION

ACCESS SCHEME I

When writing microprograms, it is the responsibility of the micro-
programmer to assign physical addresses for the starting points of his
microprograms. This is a requirement of the micro-assembler. To assign
addresses that are correct and appropriate for the machine structure
requires a thorough understanding of how microprograms are accessed.

This section describes the access scheme. Since microprogram addresses
are derived from machine language instruction codes, we must first
know what codes are available. Therefore, the Macro (MAC) instruction
group, which delimits the available codes, will be discussed first. Fol-
lowing this, it will be shown how instruction codes are mapped into
addresses in the control store modules, and how software can access the
microprograms.

THE MAC INSTRUCTION GROUP

The instruction set for the 2100 Computer reserves a block of binary
codes for extensions beyond the basic set. This block of codes is
designated as the MAC instruction group.

Figure 14 shows how the binary machine codes are allocated for the
MAC group. As shown, the MAC group is specified by a “1” in bit 15
of the instruction, and a “0” in bits 14, 13, 12, and 10. Of this group,
certain codes are preempted by the Extended Arithmetic Group of
instructions; this subset uses bits 11 and 9 in the combinations 00, 01,
and 10. This leaves only the combination 11 to specify a code group for
further extensions. Thus all such extensions are designated with 105 as
the first three octal digits.

31

15914 1312 11109 8 7.6 6 4 .3 2 %0

MAC Group 1 000 0
Used by a 0
Extended 0 1
Arithinetic
Group E 0

I

Code-Group E i

feiti 000 i 101i0] @ i
Extensions: . - N T
t i WV
Eight Bits g
. 1256 Possible Enitry
Not Available ;
Due to Hardwars Poiru)

Moduls Selects

OCTAL RANGE: 105000

105377

2177-14

Figure 14. Binary Machine Codes for Extensions

Of the ten bits of control store addresses, the two most significant bits
cannot be externally coded, since these bits are controlled internally by
module-select jumpers. Thus only eight bits (0 through 7) can be used
in the instruction word to specify the desired functions. Bit 8 is coded
as a “0”. The eight available bits allow 256 possible functions to be
coded, each of which will correspond to a fixed address (i.e., micro-
program entry point) in control store.

The net result is that octal codes 105000 through 105377 are available
for extensions. Some of these, it should be noted, are assigned to
options manufactured by Hewlett-Packard. (For example, the Floating
Point option uses octal codes 105000, 105020, 105040, 105060,

32

105100, and 105120 for instructions FAD, FSB, FMP, FDV, FIX, and
FLT, respectively.) If it is expected that such options will or may be
used in your system, these codes should be avoided.

Due to the hardware mapping arrangement, which will be described
next, the most convenient sequencing of codes is not necessarily
according to consecutive octal numbers (105000, 105001, 105002,
etc.). In fact, the six Floating Point codes listed in the preceding
paragraph are actually the first six most easily implemented codes.

MAPPING

In describing the Phase 3 Mapper in Section 2, it was stated that the
mapper uses bits 4 through 15 of the Instruction Register to generate a
10-bit ROM address. For our purposes (i.e., functions beyond the basic
instruction set), bits 9 and 8 of the instruction will always be “1” and
“0”, respectively. (See preceding paragraphs.) This leaves the four bits 4
through 7 for “primary” mapping. Refer to figure 15.

Primary mapping, therefore, translates the 16 possible codes for bits 4
through 7 of an instruction into appropriate control store addresses
called primary entry points. The use of secondary entry points multi-
plies the total number of possible entry points to 256. However, to
apply the secondary entry points requires a special microprogramming
technique to access bits 0 through 3 of the Instruction Register, plus a
structure of secondary jump tables. This special technique will be
discussed later under the heading, “Secondary Entry Points”. For now,
we will consider only the primary entry points.

As shown in figure 15, the series of 16 binary codes for bits 4 through 7
(i.e., 0000 through 1111) will result in a sequence of octal codes as
follows: 105000, 105020, 105040, etc., through 105360. These are
translated by the mapper to specific control store addresses, depending
on which module has been chosen (and hard-wired) to contain the

33

15 14 13 12:3+:10- 9 @ -7 -6 B -4 -3 2°-1--0

! | 1§] [| 'l [| | | !
1000 101 e A

Primary Secondary:

Entry Entry.Point

Point If: Usod

OCTAL: 105000 00 0 0.0 0:0::0

105020 00 010 000

105040 00 100 0.0:0

105060 00 110 000

105100 01 0 00 0.0 0

efe.

2177-15

Figure 15. Primary Entry Point Codes

primary entry points. The rule here is that the lowest numbered module
in the system, excluding module 0, must contain the primary entry
points. Examples: if modules 0, 1, and 2 are present, module 1 contains
the primary entry points; if modules 0 and 3 are present, module 3
contains the primary entry points. In all cases, the first 16 locations of
the appropriate module are dedicated to this purpose.

Table 1 shows how the mapping is accomplished. Bits 4 through 7 of
the instruction form the four least significant bits of the generated
ROM address. Bits 9 and 8 of the address are fixed by hard wiring
according to the rule stated in the preceding paragraph. The coding for
bits 9 and 8 is 01 for module 1, 10 for module 2, and 11 for module 3.
Thus the octal addresses of the primary entry points will be 400
through 417 for module 1, 1000 through 1017 for module 2, and 1400
through 1417 for module 3.

The microinstructions contained in the primary entry point locations
are normally jumps. Taken together, the 16 locations are referred to as

34

the primary jump table. Primary jump tables may be either standard,
following a convention established for Hewlett-Packard option exten-
sions, or nonstandard. If your microprogrammed extensions are to be
used in conjunction with extensions supplied by Hewlett-Packard, the
standard jump table configuration must be used.

Standard and nonstandard jump tables are considered next.

Table 1. Primary Entry Point Mapping

INSTRUCTION CODE ROM ADDRESS
Octal Binary Binary Octal
B B
105000 1 000 101 000 000. 0000 100 000 000 400
10502011 000 101--000 010.-000:i0 100 000 001} 401
| 1050401 '000--101--000 100000 }0 100 - 000 010} 402
105060 | 1 -000.-101.°-000 110--000{0 100000 011 403
105100 | 100G -101- 001 000 -000{0 100 000 100 404
105120 |1 000 101 001 010 00010 100- 000 101} 405
105140 | 1 - 000101 -001 10000040 100 000 110/} 406
10516011 1 -000 101 001 11000010 100 000 111} 407
1052001 1 Q00--101 010 000 -000{0 100001 000 410
1052201 000101 010 01000010 100 001 0O01| 4M1
105240 {1 - 000 101 010 100 -000}{0 100 001 010] 412
105260 | 1- 000 101 010 110.000{0 100 001 011} 413
1053001 000 101 011 000 00010 100 001 100| 414
1053201 000 101 011 01000010 100 001 101 | 415
1053401 000 101 011 100 000}0 100 001 110! 416
105360 { 1 000. 101 011 110 000} 0 100 001 111} 417
f ik ’
*Coding for Module 1. Octal Addresses Start at 400
For Module 2 (10): Octal Addresses Start at 1000
For Module 3 (11): Octal Addresses Start at 1400

35

STANDARD JUMP TABLE

The jump targets of microinstructions contained in the primary jump
table are defined by convention as shown in figure 16. Three different
situations are shown, where: module 1 contains the primary jump table
(with jump targets in modules 1, 2, and 3); module 2 contains the
primary jump table (module 1 is absent); and module 3 contains the
primary jump table (modules 1 and 2 are absent). In all three cases,
module 0 is assumed to be present, but it does not enter into the jump
table structure.

First consider the case where module 1 contains the primary jump
table. As indicated, the first 16 locations of this module, octal addresses
400 through 417, are used for the table. The first six addresses, 400
through 405, are used for jumps to target addresses within module 1.
The next five addresses, 406 through 412, are used for jumps to target
addresses in module 2. And the last five addresses, 413 through 417, are
used for jumps to target addresses in module 3.

For the jumps within module 1 (see A), the target is any location in the
module following address 417, Since six addresses are allocated to
jumps within module 1, module 1 can contain six microprograms which
can be accessed by direct jumps. (This is the case for the Hewlett-
Packard Floating Point option, which provides six floating point
routines.) However, it is possible for any or all of these primary jumps
to access secondary jump tables instead of pointing directly to a
microprogram routine, As explained later, this would permit up to 96
distinct routines in module 1.

For jumps outside module 1 (see B and C), the target is the numerically
corresponding location in the higher module; i.e., “this location’ plus
octal 400 for module 2, or ‘“this location” plus octal 1000 for module
3. The asterisk is assembler notation for ‘““this location”. Thus, locations
406 through 412 jump to locations 1006 through 1012, and locations
413 through 417 jump to locations 1413 through 1417. In each case,
the location jumped to contains another jump which points directly to
one of the microprograms in that module (or accesses a secondary jump
table, as explained later). Therefore, using only primary entry points,

3-6

400

405
406

412
413

417

1400

1405
1406

1412
1413

2177-16

Modute 1

Jve A

JMP*+400

JMP*+1000

i ‘ . JMP D

JMP*+400

Module 3

Primmary
Jump
Table

ouTE—"

* Currsnt Address

Figure 16. Standard Jump Tables

modules 2 and 3 could contain up to five microprograms each. Note,
incidentally, that the first six and the last five locations of module 2
and the first eleven locations of module 3 (dark shaded) are not used.

Now consider the case where module 2 contains the primary jump
table. Module 1 is absent, so the module jumpers on the ROM Control
card direct all references to routines beyond the basic module 0 set to
primary entry points in locations 1000 through 1017. To allow for
future addition of module 1, the convention here is that locations 1006
through 1012 are used for jumps within module 2 (see D). The next
five locations are for jumps to module 3; the jump targets are “this
location” plus octal 400. Each of these target locations, 1413 through
1417, contains another jump which points directly to one of the
microprograms in module 3 (see E).

Since the decoding of machine instructions provides direct access to the
primary jump table, the possibility exists that an erroneous or inappro-
priate code may inadvertently enter locations 1000 through 1005. To
protect against unpredictable results, these locations should be filled
with jumps to an exit routine (labeled OUT in figure 16). Basically, the
exit routine would simply include an EOP (End of Phase) microinstruc-
tion followed by a NOP.

Note: The protective exit jumps described in the preceding
paragraph could also be used in any unused locations
in the primary and secondary jump tables if it is
desired to protect against erroneous MAC instruction
codes. Frequently, however, it may be found more
important to use such locations for micropro-
gramming, due to the restrictions of available control
store space,

The final case illustrated in figure 16 shows the primary jump table
located in module 3. Modules 1 and 2 are absent, The first eleven
locations, 1400 through 1412, contain exit jumps. Locations 1413
through 1417 are for jumps to microprograms within module 3 (see F).

38

SECONDARY ENTRY POINTS

The preceding descriptions have referred several times to secondary
entry points and secondary jump tables. The use of secondary entry
points is discussed in the following paragraphs.

As stated earlier in discussing figure 15, the use of secondary entry
points multiplies the 16 primary entry points to a total of 256 possible
entry points. Refer back to figure 15. Note that for each primary entry
point code, there can be 16 secondary entry point codes by varying the
coding of bits 0 through 3. (Only code 0000 is shown for secondary
entry points.)

Thus it is apparent that the use of these additional entry points requires
special access to bits O through 3 of the Instruction Register. This
special access is provided by hardware. Every time a microprogram
jump is executed, bits O through 3 of the S-bus are “OR”-tied into the
ROM Address Register along with the specified jump target (bits
RIRO-7, 12, and 17). Normally there is no data on the S-bus when a
jump is executed; however, by specifying ADR in the S-bus field, bits O
through 9 of the Instruction Register will be read onto the S-bus. Of
these 10 bits, only bits O through 3 are used in modifying the ROM
Address Register contents. (The logic involved can be seen in the block
diagram, figure 10).

Figure 17 shows how secondary jump tables can be created using the
special hardware feature described in the preceding paragraph. In this
figure, it is assumed that only two primary entry points are to be
expanded into secondary jump tables. However, any number of the
primary entry points may be expanded in this manner. If all 16 primary
entry points were expanded, there would be six secondary jump tables
in module 1, five in module 2, and five in module 3. The secondary
jump tables need not be adjacent to each other or to the primary jump
table, although they are shown this way in figure 17. Note that each set
of secondary jump tables is accessed from the first 16 locations of the
module, following the scheme illustrated earlier in figure 16. Module 1
is used as an example only.

39

{ 400

JMP B

JMP 776

JMP A

— ADR_IOR S1 — —

— S1 JMP —— 240 |}
= R_IQR S1 — — -
— S1

Or First 18 Locations
of a Higher Order
Maodale

402
Primary
Jump 405
Table
417
420
Secondary
Jump & 425
Table #1
437
440
Secondary
Sump ¢
Table #2
\ 457
A
B
774,
775
2776,
177
2177-17A

3-10

JMP —

ey i S

Figure 17. Secondary Jump Tables

Each secondary jump table consists of 16 consecutive locations, and
must start on a 16-word boundary (octal 420, 440, etc.). In figure 17,
the two tables are assigned to octal addresses 420 through 437 and 440
through 457, and are identified as secondary jump tables number 1 and
number 2. The use of secondary jump table number 1 is described in
the following paragraphs.

Assume that the current instruction has an instruction code of 105125.
From table 1, “Primary Entry Point Mapping”, it can be seen that this
code will map to location 405 in the primary jump table. Location 405
contains a jump to a two-word routine, at location 776 for this
example, which generates the secondary entry point. Location 776
obtains a 15-bit operand address (see ADR definition), of which we are
interested in only the four least significant bits. These four bits are
from the Instruction Register, and specify the secondary entry point.
The address word is stored in Scratch Pad 1 so that it may be read out
in the following “jump’’ microinstruction.

Note: To access secondary jump tables in the odd-numbered
modules (1 and 3), you must use Scratch Pad 1 or 3
in the two-word jump routine, as outlined above and
in figure 17. This is because the least significant bit of
the S-bus field (ROM address bit 17) is part of the
jump target. Thus, when the jump is given (see next
paragraph) bit 17 of the microinstruction must be a
“1”, which is the case when specifying S1 or S3 in
the S-bus field. Conversely, to access secondary jump
tables in the even-numbered modules (0 and 2) the
least significant bit of the S-field must be a *“0””. Thus
Scratch Pads 2 or 4 would have to be used. However,
note that ADR also has a ““0” as the least significant
bit. This means that in modules 0 and 2, the two-
word jump routine is not necessary. Instead, the
entry in the primary jump table may specify a jump
directly to the secondary jump table. For example, if
the primary entry point is 1007, this location may
contain “ADR, JMP, 1020”, which points directly at
a secondary entry point.

31

Continuing with the example in figure 17, note that location 777
contains a jump to location 420 — but in addition also specifies S1 in
the S-bus field. Thus, according to the JMP definition, bits O through 3
(ie., octal 5) will be “OR”-tied into the jump target address. As a
result, the jump is to location 425, which is the sixth entry in
secondary jump table number 1. Location 425 contains the secondary
jump to the actual starting point of the routine (see A) corresponding
to instruction code 105125.

Note that location 405 permanently refers to the jump routine, and
location 777 in the jump routine permanently refers to the starting
point of one secondary jump table. It is the ADR in the microinstruc-
tion which accounts for the selection of microprogram routines.

It is not necessary for all primary entry points to refer to secondary
jump tables just because one entry point does so. The primary jump
table may contain any mixture of direct jumps or jumps to secondary
tables. Thus a primary entry point at location 402 could contain a jump
directly to the starting point of a microprogram routine (see B).

Although the use of secondary jump tables greatly extends the number
of specifiable functions, it should also be remembered that too many
jump tables use up a significant number of valuable control storage
locations.

NON-STANDARD JUMP TABLES

Non-standard jump tables are any which do not follow the conventions
outlined in the preceding descriptions. For example, you may decide to
use only one module and use all 16 locations in the primary jump table
to reference routines or secondary jump tables within that same
module. Or, jump targets for either primary or secondary tables may
point backward — i.e., to lower numbered locations or modules. Any
such departure from convention may be made, provided there is an
adequate understanding of the principles involved and assuming the
decision has been made that the modules so programmed will not be

312

used in conjunction with modules which use the standard jump tables
(e.g., Hewlett-Packard options).

It is permissible (i.e., not a non-standard technique) for microprograms
to have references outside their own module, as long as that module
provides a return to the calling microprogram, or an EOP signal to allow
normal software sequencing to continue. The use of external reference
designators is described in the micro-assembler documentation.

ASSIGNING ADDRESSES

From the preceding, it is apparent that the instruction codes assigned
to specially microprogrammed functions are dependent on the access
scheme. The access scheme you establish is, in turn, dependent on
several factors, including:

the number of modules used
the number of microprograms per module

whether or not secondary entry points are used, and

whether or not the resultant code has previously been assigned
by Hewlett-Packard or the user.

Since these are all variable factors, hard and fast rules about assigning
addresses cannot be established here. Given your specific application,
and using the information given in this section, you will first allocate
the necessary jump tables, configure them as necessary, and assign
appropriate addresses for each table entry and each microinstruction.
Gaps of two or three addresses between each microprogram are
advisable to allow for future modifications.

313

SOFTWARE ACCESS

Table 2 lists two methods of accessing microprogrammed functions
from assembly language. The first method (left) is for those assemblers
which include the RAM (Random Access Memory) pseudo instruction.
The second method (right) is for those assemblers which do not have
the RAM pseudo instruction.

The RAM pseudo instruction essentially merges the MAC group code
(octal 105) with a separately definable code, so that the result may be
executed as a machine instruction. The Equate statement (EQU) is used
to detine up to 256 possible functions.

The alternative method requires an octal number to be inserted in-line
with machine language instructions, so that the octal code will be
executed as a machine instruction.

In both cases, parameters may be passed to the function by use of the
DEF or OCT statement. This will bring the address (or the parameter
itself) into the P-register where it may be accessed by the micro-

Table 2. Assembly Language Access

LDAQ LDAQ
JSB X JSB X
DEF R DEF R
STBY STBY J
RAMSWB 105377
DEF BADD ocT
e e 105000
DEF BADD
255
swpEQU 4

000

314

program, It is the responsibility of the microprogram to increment the
P-register the proper number of times before exiting from the routine,
so that it will point to the next instruction at the end of phase 3.
Remember that the P-register is automatically incremented once upon
entering phase 3. Thus if, for example, three parameters are passed into
the routine via DEFs, then the P-register must be incremented three
times by the microprogram to ensure proper return to the software.

USE OF MODULE 0

It is possible to rewrite module 0. However, as mentioned previously,
this is not recommended. A very high degree of machine knowledge is
required in order to do any rewriting. Furthermore, Hewlett-Packard
warranties and support guarantees are voided if module 0 is modified. It
is expected that the extension capabilities provided by the three addi-
tional control store modules will cover all needs for special micropro-
gramming.

If, however, you do intend to use module 0, machine control can be
switched from the basic ROM module to Writable Control Store by a
switch located on the Writable Control Store card. In this way, the new
module 0 microprograms may be debugged without making any hard-
ware modifications. The next step, if desired, would be to install a
permanent module 0 ROM in place of the original ROM module. This
requires unsoldering the six ROM packs and installing the six new packs
in their place.

315

SECTION

THE 2100 MICROPROGRAMMING LANGUAGE B

MICROINSTRUCTION WORD FORMAT

Figure 18 illustrates the basic formats for microinstruction words. As
shown, the 24-bit word is divided into six fields, and can be represented
by an eight-digit octal number.

When a jump (JMP, JSB, or CJMP) is specified in the Function field,
bits 0 through 7 of the microinstruction are used for part of the jump
target address instead of for Special and Skip operations. The remaining
part of the jump target address consists of bits 12 and 17 of the
microinstruction, Bit 12 is the least significant bit of the Function field
(which accounts for the fact that JMP, JSB, and CJMP each have two
valid Function codes), and forms the most significant bit of the jump
target (i.e., bit 9). Bit 17 is the second most significant bit (i.e., bit 8)

i Sk - el

OR

Constant

2177-18

Figure 18. Microinstruction Formats

41

of the jump target address; note the position reversal with bit 12. When
a jump code is present in the Function field, the micro-assembler
examines the jump address and automatically codes the proper values
for bits 12 and 17. Therefore, care must be taken if an S-bus function is
to be coded concurrently with the jump micro-order. (See detailed note
under the heading “Secondary Entry Points” in section 3.)

When a constant is to be read onto the S-bus (CL or CR in the S-bus
field), bits 0 through 7 of the microinstruction are used for the con-
stant, instead of for Special and Skip operations.

Coding a CL or CR in the S-bus field or JMP, JSB, or CJMP in the
Function field automatically inhibits execution of the Special and Skip
fields.

Table 3 is a consolidated coding table showing the binary coding of
each of the micro-orders. For the R-bus field, only the three least
significant code bits are used. For the Function field, all five bits are
used. For all remaining fields, only the four least significant bits are
used.

ASSEMBLY FORMAT

Normally, the microprogrammer will write his microprograms for
assembly by a micro-assembler, and thus generally he does not have to
be concerned with binary coding. The micro-assembler has its own set
of requirements and rules, which are described in the micro-assembler
documentation. It is assumed that the microprogrammer has this docu-
mentation at his disposal.

For completeness of this text, however, an approximate representa-
tion of the assembly format is shown in figure 19. For assembly, a
fixed-field format is used. Typically, cards would be punched according
to this format, and read by the micro-assembler using a card reader. The
assembly format allows for comments following each microinstruction.

4-2

Table 3. Microinstruction Coding

CODE

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

oayo"‘::::‘OOQo—-—-—-a—-—-—-—-coocoooo—-—-—-—-—-—-—--
A =l R) - P S NI B I 17— e
,j@é#é‘o'o-»-aoo-a-noc—-—-oo—-—-oo—~—-oc-a-aoc-a
¢;6eoaoaoaoao—o—o—oaoacao—OAOAQa

**Undefined codes

5-Bit Field ' R-Bus
4BitFieid | Field
, ‘ 3-Bit Field | 3Bits
NOP | NOP
*ca P
AAB | cL
CAB | CR
F | st
Q 82
B s3
A S4
COND
ADR
CNTR
. RAS
M
T
101
CIR

*See CAUTION note in definitions

k _Function
Field

5 Bits

LWF
cIvpP
ARS
CRS
LGS
RSB
cImp

Store | Special
Field Field
4 Bits. |- 4 Bits
NOP NOP
A RW
B 10G1
AAB cw
CAB | ASG2
Q ASG1
F ECYN
P ECYZ
51 *LEP
S2 AAB
S3 SRG2
sS4 SRG1
IR CNTR
T R1
M L1
100 RSS

Refer to the assembled listing in the appendix of this handbook for
examples of the assembly format.

CODING FORM
Columns:
1—=—~-5 7= —=1011— —14 16— —19 21— —24 26 —=—29 31~ —-34 36 -====== - 54
SWAP NOP NOP 10R NOP NOP NOP No Operation
NOP NOP Jse NOP GETA First Address
] Ld L] L] Ld *
.
. . L] . . . x
Labet R-Bus. S-Bus ~ -Function . ‘Store Special Skip Comments

2177-19

Figure 19. Sample Assembly Coding

MICRO-ORDER INSTRUCTION SET
R-BUS FIELD
A Reads the A-register onto the R-bus.

AAB Reads the A-register or B-register onto the R-bus, depending
on whether the A Addressable FF or B Addressable FF is set.
(Both flip-flops cannot be set at the same time.) If neither
AAF nor BAF is set, the A-register will be read onto the R-bus
(unless COND is present in the S-bus field, in which case the
T-register is read onto the S-bus).

B Reads the B-register onto the R-bus.
4-4

CAB

cQ

NOP

Reads the A-register or B-register onto the R-bus, depending
on whether Instruction Register bit 11 is “0” (A) or “1” (B).

Reads the Q-register onto the R-bus if Instruction Register bit
9 is a “1” and the Index Mode flip-flop is set. Used only for
diagnostics.

CAUTION

The CQ and RFI codes are not intended for use in
special microprogramming. The use of these codes will
affect the operation of module 0 and consequently
will cause incorrect operation of HP software. To
allow continued use of existing software, it would be
necessary to rewrite those instruction routines in
module 0 which use the Q-register. As noted under the
heading “Use of Module 0%, such changes will void
Hewlett-Packard warranties and support guarantees.

Reads the F-register onto the R-bus.
No operation; resuits in all ““0”’s on the R-bus.

Reads the Q-register onto the R-bus.

S-BUS FIELD

ADR

Reads Instruction Register bits 0 through 9 and (if Instruction
Register bit 10 is a “1’’) P-register bits 10 through 15, or (if
Instruction Register bit 10 is a “0’’) six “‘0”’s onto the S-bus.
ADR is normally used to obtain an operand address.

45

CIR

CL

CNTR

COND

CR

Reads the Central Interrupt Register onto S-bus bits 0 through
5.

Reads a constant onto the left half (bits 8 through 15) of the
S-bus; the constant is obtained from bits 0 through 7 of the
ROM Instruction Register. Execution of the Special and Skip
fields is inhibited. Reads “0”s onto the right half (bits 0
through 7) of the S-bus.

Reads the counter contents onto S-bus bits 0 through 4. (Bit 0
is the least significant bit.)

Normally used with AAB coded in the R-bus field. If so, and
AAF is set, the A-register is read onto both the R- and S-buses;
if BAF is set, the B-register is read onto both the R- and
S-buses. If neither is set, the T-register is read onto the S-bus.
If some function other than AAB is coded in the R-bus field
when COND is used in the S-bus field, one of the following
will occur:

a. if neither AAF nor BAF is set, the T-register is read
onto the S-bus;

b. if either AAF or BAF is set, the register selected in the
R-bus field (including F and Q) is read onto both the
R- and S-buses.

If the “Data Ready” signal from memory is false, the CPU will
freeze until this signal becomes true.

Reads a constant onto the right half (bits 0 through 7) of the
S-bus; the constant is obtained from bits 0 through 7 of the
ROM Instruction Register, Execution of the Special and Skip
fields is inhibited. Reads “0”s onto the left half (bits 8
through 15) of the S-bus.

101

NOP

RRS

S1

S2

S3

S4

Reads the I/O bus onto the S-bus.

Reads the M-register onto the S-bus. Note that the M-register
contains only 15 bits.

No operation; results in all ““0”’s on the S-bus.

Reads the P-register onto the S-bus.

Reads the R-bus onto the S-bus.

Reads Scratch Pad 1 onto the S-bus.

Reads Scratch Pad 2 onto the S-bus.

Reads Scratch Pad 3 onto the S-bus.

Reads Scratch Pad 4 onto the S-bus.

Reads the T-register onto the S-bus. If the “Data Ready”

signal from memory is false, the CPU will freeze until this
signal becomes true.

FUNCTION FIELD

ADD

ADDO

ARS

Adds the R-bus and S-bus,

Adds the R-bus and S-bus and enables the Overflow logic. If
the instruction ADA or ADB is detected, the Extend logic is
also enabled.

Logical AND of the R-bus and S-bus.

32-bit arithmetic shift. The direction of shift is specified in the
Special field (L1 or R1). If L1, a “0” is shifted into bit 0 of
the low-order register; bit 14 of the high-order register is lost,

4.7

CFLG

CJMP

CLO

CRS

DEC

and the sign bit is unchanged; the Overflow flip-flop is set if
ALU bits 14 and 15 differ. If R1, the sign is copied into bit 14
of the high-order register, and bit 0 of the low-order register is
lost. ARS also enables IOR.

Note: On 32-bit right shifts, the B- and A-registers
must be used; the B-register contains the
high-order bits and the A-register contains
the low-order bits. On 32-bit left shifts, the
F- and Q-registers must be used; the F-
register contains the high-order bits and the
Q-register contains the low-order bits.

Clears the CPU Flag flip-flop. Also enables IOR,

Conditional jump. (See JMP note.) Executes a jump if, in the
run mode, an interrupt or an operator panel halt command is
detected. Otherwise, the microinstruction is treated as an IOR.
(The IOR function is enabled regardless of whether or not the
jump condition is detected.) In the single-cycle mode, the
detection of CJMP will cause the computer to halt uncon-
ditionally. The Special and Skip fields are inhibited, as is the
“read-P”’ micro-order in the S-bus field. See JMP definition for
derivation of the jump address.

Clears the Overflow flip-flop. Also enables IOR.

32-bit circular shift (rotate). (See ARS note.) The direction of
shift is specified in the Special field (L1 or R1). If L1, bit 15
of the high-order register is transferred to bit 0 of the low-
order register. If R1, bit 0 of the low-order register is trans-
ferred to bit 15 of the high-order register. CRS also enables
IOR.

Subtracts the S-bus from the R-bus in one’s complement form.
If the S-bus contains all “0’’s, the R-bus is decremented.

DIV

INC

INCO

IOR

Divide step. Normally used in a repeat loop as part of a divide
algorithm. DIV subtracts the S-bus from the R-bus (two’s
complement) and checks the COUT (Carry Out) signal for a
store decision. If COUT is ‘1, the result of the subtraction is
left-shifted one place and stored in a register (normally the
F-register). If COUT is “0”, the existing contents of the
F-register are shifted left one place internally in the F-register;
the subtraction result is not stored. In either case, the Q-
register also shifts left one place, COUT is shifted into bit O of
the Q-register, bit 15 of the Q-register shifts into bit 0 of the
F-register, and bit 15 of the F-register is lost. A valid divide
step requires L1 in the Special field, F in the R-bus and Store
fields, and an S-bus register (normally a Scratch Pad) specified
in the S-bus field. DIV requires two CPU clock cycles to
execute.

Increments the sum of the R-bus and S-bus.

Increments the sum of the R-bus and S-bus, and enables the
Overflow logic. If the memory reference instruction ADA or
ADB is detected, the Extend logic is also enabled.

Logical “inclusive OR” of the R-bus and S-bus.

Jump. Transfers bits O through 7 of the ROM Instruction
Register (RIR0-7) to the corresponding bits of the ROM
Address Register, RIR17 to bit 8 of the ROM Address Reg-
ister, and RIR12 to bit 9. Bits 0 through 3 of the S-bus are
“OR”-tied with RIR0-3 in the forming the jump address. The
Special and Skip fields are inhibited, as is the “read-P”’ micro-
order in the S-bus field. Also enables IOR,

Note: JMP, JSB, RSB, and CJMP each require two
machine cycles to execute. The microin-
struction containing the jump is executed
during the first cycle, and a NOP is executed
in the second cycle. The second cycle is used

JSB

LGS

LWF

MPY

NOR

4-10

to allow data to be accessed from control
store at the new address.

Jump to microprogram subroutine. Same as JMP, except also
sets the JSB flip-flop, thus locking the return address in the
Save register.

32-bit logical shift. (See ARS note.) The direction of shift is
specified in the Special field (L1 or R1), If L1, a “0” is shifted
into bit 0 of the low-order register and bit 15 of the high-order
register is lost, If R1, a “0” is shifted into bit 15 of the
high-order register and bit 0 of the low-order register is lost.
LGS also enables IOR.

Link with Flag. If L1 is coded in the Special field, the content
of the Flag flip-flop is transferred to the left-shift input (LSI)
of the shifter, thereby transferring its content to T-bus bit 0,
and ALU bit 15 is transferred to the Flag flip-flop. If R1 is
coded in the Special field, the content of the Flag flip-flop is
transferred to the right-shift input (ALX16) of the shifter,
thereby transferring its content to T-bus bit 15, and ALU bit 0
is transferred to the Flag flip-flop. Also enables IOR.

Multiply step. Normally used in a repeat loop as part of a
multiply algorithm. MPY first checks bit O of the A-register for
an add decision. If this bit is a *“1”*, the R- and S-bus inputs to
the ALU are added; if a ““0”, the R-bus only is routed through
the ALU. In either case, the output of the ALU is shifted right
one place and stored back into the R-bus register (normally
the B-register, assumed to be specified in the Store field), with
COUT forming bit 15. The A-register is shifted right, and ALU
bit O fills vacated bit position 15. Bit O of the A-register is lost.
A valid multiply step requires R1 in the Special field; also,
normally, B in the R-bus and Store fields, and S1/2/3/4 in the
S-bus field.

Logical NOR of the R-bus and S-bus. If a NOP is specified in
either the R-bus or S-bus field, the complement of the other is

P1A

RFE

RFI

RSB

SFLG

SOov

SUB

XOR

obtained. If both the R-bus and S-bus fields contain a NOP,
the ALU output (shifter input) consists of all “1”s.

Sets phase 1A and clears the current phase. Used mainly by
diagnostics.

Rotates the contents of the Flag and Extend flip-flops.

Rotates the contents of the Flag and Index Mode flip-flops.
See CAUTION note under CQ definition.

Return from microprogram subroutine. Transfers the contents
of the Save register into the ROM Address Register. Clears the
JSB flip-flop. Also enables IOR. (See JMP note.)

Sets the CPU Flag flip-flop. Also enables IOR.

Sets the Overflow flip-flop. Also enables IOR.

Subtracts the S-bus from the R-bus in two’s complement form.

Logical “exclusive OR” of the R-bus and S-bus.

STORE FIELD

A

AAB

CAB

Stores the T-bus into the A-register.

Stores the T-bus into the A- or B-register, depending on
whether the A Addressable FF or B Addressable FF is set. If
neither flip-flop is set, no store will occur.

Stores the T-bus into the B-register.

Stores the T-bus into the A- or B-register, depending on
whether Instruction Register bit 11 is “0” (A) or “1” (B).

4-11

100

IR

NOP

S1
S2
S3

S4

Stores the T-bus into the F-register.

Reads the S-bus onto the IO bus.

Stores the S-bus into the Instruction Register.

Stores the S-bus into the M-register, and also into the Viola-
tion register if the computer is in phase 1A, memory protect
mode is set and no memory protect violation has been
detected, and no parity error exists.

No store.

Stores the T-bus into the P-register.

Stores the T-bus into the Q-register.

Stores the T-bus into Scratch Pad 1.

Stores the T-bus into Scratch Pad 2.

Stores the T-bus into Scratch Pad 3.

Stores the T-bus into Scratch Pad 4.

Stores the S-bus into the T-register.

SPECIAL FIELD

4-12

Note: The special functions I0G1, ASG1, ASG2,
SRG1, and SRG2 are used as hardware
enables to allow the 2100 microprocessor to
more easily emulate the 2116-family instruc-
tion set. These functions are available for use
by the microprogrammer; however, proper
use of these functions requires a deeper

AAB

ASG1

ASG2

CNTR

cw

ECYN

understanding of the machine hardware than
is given here. Refer to the Theory of Opera-
tion in the 2100 maintenance documenta-
tion for a more complete explanation of the
operation of these functions.

Enables the setting of A Addressable FF or B Addressable FF,
depending on whether ALU bit 0 is a “0” (A) or a “1” (B),
with T-bus bits 1 through 14 all ““0”.

Enables skip and Extend logic specified by Instruction Reg-
ister bits 0 and 3 through 7. (Register handling is done by
mjcroprogram; see appendix listing.)

Enables skip, Extend, and increment logic specified by Instruc-
tion Register bits 0, 1, and 2. (Register handling is done by
microprogram; see appendix listing.)

Stores S-bus bits 0 through 3 into the counter, and clears bit 4
of the counter.

Clear/write memory cycle. CPU freezes until I/O time T6, then
commands memory to begin a clear/write cycle. (The address
into which data is being stored is also normally sent to the
M-register at this time.) Data stored in the T-register, normally
loaded during the following T3, is stored into memory at the
end of the memory cycle. The Memory Busy FF is then
cleared. CW is enabled by a “set skip” signal, normally as a
result of NMPV in the Skip field (or UNC if memory-protect
testing is not desired).

Enables the Skip Carry logic for software skips. Sets the Carry
flip-flop if the T-bus does not contain all ““0”’s,

Note: If the Carry flip-flop is set, the P-register will
be incremented upon exiting from phase 3.

413

ECYZ

10G1

L1

LEP

NOP

R1

RSS

RW

SRG1

4-14

Enables the Skip Carry logic for software skips. Sets the Carry
flip-flop if the T-bus contains all “0”’s, (See note above.)

Synchronizes CPU with I/O timing and enables I/O group
decoder.

Enables left-shift-one logic. Shifts ALU bits 0 through 14 to
T-bus lines 1 through 15,

Legal entry point. Prevents illegal entry into an Extended
Arithmetic Group instruction microprogram through an incor-
rect MAC code. Causes the microprocessor to execute NOPs
until LEP is detected, or until EOP is detected in the Skip
field. LEP cannot be used for anything other than enabling
entry points to the 2100 Extended Arithmetic Group instruc-
tions, coded only in module 0. Included here for complete-
ness only.

No operation,

Enables right-shift-one logic. Shifts ALU bits 1 through 15 to
T-bus lines 0 through 14,

Reverses (complements) the skip sense of the Skip field func-
tions.

Read/write memory cycle. CPU freezes until I/O time T6, then
commands memory to begin a read cycle and sets the Memory
Busy flip-flop. Memory data output is read into the T-register
prior to the following time T4. The Data Ready flip-flop is
then set to indicate to the CPU that data is available (valid
only through TS5 following the above T6). The ALU shifter
output is tested for address 0 or 1, and the A Addressable FF
or B Addressable FF is set accordingly.

Enables shift-rotate group functions specified by Instruction
Register bits 6 through 9. Sets the SRG flip-flop, which
enables CLE and SL* instruction logic during the next cycle.

SRG2

Enables shift-rotate group functions specified by Instruction
Register bits 4 and 0 through 2.

SKIP FIELD

AAB

coutr

CTR

CTRI

EOP

Note: The term “skip”, as used in the 2100 micro-
processor, is unconventional in that, if a skip
condition is detected, the following instruc-
tion is not “jumped over”. Instead, the
“skipped” instruction is actually forced to
be a NOP (except see EOP).

Skips the next microinstruction if either the A Addressable FF
or B Addressable FF is set.

Skips the next microinstruction if there is a carry-out (COUT)
signal from the ALU,

Skips the next microinstruction if counter bits 0 through 3 are
all “1”’s (octal 17). Ignores bit 4.

Skips the next microinstruction if counter bits 0 through 3 are
all “1”s (octal 17). Ignores bit 4. Increments counter after
testing,

End of phase. Used to terminate the current phase. Sets the
correct next phase flip-flop and executes a hardware jump
through the mapper to the address which begins the next
phase. As opposed to a normal micro-jump, the instruction in
sequence following the instruction containing the EOP is exe-
cuted before the jump is taken. EOP also clears the JSB
flip-flop. The microinstruction containing an EQOP cannot be
skipped (although it can be jumped over). For example, if the
microinstruction preceding the EOP microinstruction contains
UNC, the microinstruction containing EOP will be treated as a
NOP except for the EOP micro-order, which will be executed.

4-15

FLG

ICTR

NAAB

NEG

NMPV

NOP

OoDD

OVF

RPT

TBZ

4-16

Skips the next microinstruction if the CPU Flag flip-flop is set.

Increments the counter.

Skips the next microinstruction if T-bus bits 1 through 14 are
not all-zero. Normally used to detect addressable A/B
addresses on the T-bus.

Skips the next microinstruction if the ALU output is negative
(bit 15 is a “1”).

Skips the next microinstruction if memory protect is disabled
and AAF and BAF are both clear, or if memory protect is
enabled, AAF and BAF are both clear, and no violation is
detected. If either AAF or BAF is set, no skip will occur.

No operation.

Skips the next microinstruction if the ALU output is odd (bit
Oisa‘“1”).

Skips the next microinstruction if the Overflow flip-flop is set.
Causes the next microinstruction to be repeated until a skip
condition is met. The next microinstruction cannot contain
TBZ or RSS, TBZ; also, it cannot contain an add-type func-
tion (ADD, INC, etc.) if the Skip field contains NEG or ODD
(with or without RSS in the Special field).

Skips the next microinstruction if the T-bus contains all “0”’s.

Skips the next microinstruction unconditionally.

SECTION

MICROPROGRAMMING METHO DS K

INTRODUCTION

The most expedient method of creating new microprograms is to
examine the module O listing in the appendix of this handbook, see
how similar operations were implemented, and adapt the appropriate
segments. In all cases, however, it is necessary for the microprogrammer
to know the effect of each micro-order he writes into his micropro-
grams. As given in the appendix, the “comments” do not necessarily list
all the effects of a given line of microcode. It is conceivable that
nonmentioned side effects could be detrimental to other micro-
programs, The preceding sections of this handbook must be studied and
understood before undertaking a microprogramming project for the
2100.

The next major heading, Example Microprogram, takes the reader
through the fundamental operations required to originate a new micro-
program. The example chosen is deliberately designed to use as many
diverse functions as possible (rather than for maximum efficiency).
Even so, the example does not cover all special cases. A list of pro-
gramming aids and restrictions is given at the end of this section.

EXAMPLE MICROPROGRAM

Suppose we wish to microcode a routine to swap two words in core
memory, located at addresses W and W+1, The routine will be called
SWP, and will be entered by the first available primary entry point in
module 2. Thus the octal instruction code for SWP is 105140, and the
entry point (containing the jump to the routine’s starting address) is

5-1

location 1006. (See table 1 and figure 16 in section 2.) The routine is
entered from assembly language by:

OCT 105140
DEF W

where W contains the address of the first word to be swapped (may be
indirect). Or, for assemblers having the RAM pseudoinstruction, the

routine is entered by:

RAM SWP
DEF W

SWP EQU 140B

Table 4 lists the complete microprogram. The following paragraphs
describe how it is generated.

Table 4. SWP Microprogram

R S FN | ST SP SK Comments
Jse GETAD 1.Put address of 1st-word in'$1
JSB OPGET 2-Put first word in S2
S1 INC S3 3 Put address of 2nd word in S3
S3 IOR W™ RW 4 Fetch 2nd word or set AAF/BAF
AAB COND IOR sS4 5 Put second word in S4
P INC. P 6 Increment P.past DEF
S3 I0R-.- M cw NMPVY 1 7 Start CW ¢ycle if AAF/BAF not set
S2 IOR AAB unc 8 Load 1st'word in A/B if AAF/BAF set
S2 IOR T 9 Or send 1st word to memory
S IOR AAB 10 Reset AAF/BAF according to 1st address
S IOR M Ccw NMPV |11 Start CW cycle if AAF/BAF not set
S4 IOR" AAB UNC" [12 Load 2nd word in A/B if AAF/BAF set
sS4 IOR T EOP:}13.--Or send 2nd word to memaory
10R 14- End of routine

The first requirement is to fetch the address defined as W. A routine to
fetch this address already exists in module 0 (see address 362 in the
appendix listing), labeled GETAD. Similarly, a routine to fetch the
contents of this address also exists in module O, labeled OPGET.
However, to use these subroutines, we must supply their addresses to
the swap routine. This is done by inserting two “external reference
designator” statements (cards) for the desired routines. (Refer to micro-
assembler documentation.)

These labels may then be used as targets for subroutine calls, as shown
in lines 1 and 2 of the microprogram. The GETAD subroutine stores
the address of W (i.e., the current contents of the address in the
Pregister) into Scratch Pad 1. The OPGET subroutine stores the
contents of W (i.e., the contents of the location pointed to by the
contents of Scratch Pad 1) into Scratch Pad 2.

Since we still have two unused Scratch Pad registers, these may be used
for the address and contents of the next word, in location W+1. Lines
3, 4, and 5 of the microprogram accomplish this purpose. Line 3 reads
out the address of the first word (in Scratch Pad 1), increments this
value, and stores the resultant address in Scratch Pad 3. Line 4 sends
the address in Scratch Pad 3 to memory with a read/write command;
this will cause memory to load the contents of the addressed memory
location into the T-register. If the addressed location is the A- or
B-register, the A Addressable FF or B Addressable FF will be set. Line
5 transfers the contents of the T-register (or A- or B-register) into
Scratch Pad 4.

At this point, the -two words and their addresses are in Scratch Pad
registers 1 through 4. We may now proceed to swap the words. First,
however, since memory is still busy from the preceding RW (line 4),
this is an appropriate time to increment the P-register past the DEF
statement. (On entering phase 3, the P-register is automatically incre-
mented, and thus up until now has been pointing at the address of W —
i.e., the DEF statement.,) Line 6 increments the P-register.

Line 7 reads out the address of the second word and sends it to the
M-register in memory; simultaneously (unless inhibited), the CW micro-

5-3

order tells memory to begin a clear/write memory cycle for the location
addressed by the M-register. The CW micro-order is inhibited if AAF or
BAF is set. As noted in the CW definition, CW is enabled only if there is
a true “set skip” signal. Line 8 loads the first word into the A- or
B-register if the second word originally was in either of these registers
(AAF or BAF would still be set from line 4); this line would be skipped
if neither AAF nor BAF were set. An unconditional skip then omits
line 9. Line 9 is executed instead of line 8 if the second word was not in
the A- or B-register. In this case, the first word is sent to the T-register
in memory; the clear/write cycle, already in progress, will store the
T-register contents into the location currently addressed (i.e., the
original location of the second word).

Note: The routine as shown is not concerned with memory
protect, and in fact assumes that memory protect is
not enabled. The NMPV in the Skip field is used only
to check for addressable A-/B-register references. If
we wished to check for memory protect violation, the
coding in lines 7 and 11 would be:

F S3 DEC M CW NMPV (7)
F S1 DEC M CW NMPV (11)

Line 10 reads out the address of the first word (in S1) and, depending
on the contents, either sets the A Addressable or B Addressable flip-
flops or clears both. Line 11 reads out the address of the first word and
sends it to the M-register; simultaneously, unless inhibited, the CW
micro-order tells memory to begin a clear/write cycle. The CW micro-
order is inhibited if the address is 0 or 1. Line 12 loads the second word
into the A- or B-register if the first word originally was in either of
these registers (note AAF or BAF would have been set in line 10);
otherwise this line is skipped. The UNC micro-order inhibits storing S4
in the T-register; however, since EOP cannot be inhibited, the routine
ends here and the next phase is set. Line 13 is executed instead of line
12 if the first word was not in the A- or B-register. In this case, the
second word is sent to the T-register; the clear/write cycle, already in
progress, will store the T-register contents into the location currently
addressed (i.e., the original location of the first word).

54

Line 13 also specifies End of Phase (EOP). However, since this micro-order
takes effect after the succeeding microinstruction, one additional line (no
operation in line 14) is necessary to complete the microprogram.

This completes the example given in table 4. The example has shown
typical coding for: the use of external references (lines 1 and 2),
reading from memory (lines 4 and 5), writing into memory (lines 7, 8,
9, and 11, 12, 13), passing parameters (lines 1, 2, and 6) ending a
microprogram (lines 13 and 14).

PROGRAMMING AIDS AND RESTRICTIONS

Most of the special situations that must be considered in writing a
microprogram have been explained in the preceding sections of this
handbook. There are, however, a few unique cases which do not fit into
the general context of the preceding discussions, plus a few which bear
repeating. The following paragraphs define some of these cases.

BLANK FIELD. Leaving a field blank results in a NOP for that field.
The exception is the Function field, which will be given an IOR
function,

AAF AND BAF DEFINED. The A Addressable flip-flop (AAF) and B
Addressable flip-flop (BAF) are hardware flip-flops which, when set,
indicate that the desired data is in, respectively, the A-register or
B-register. When location 00000 is referenced, AAF will be set, thus
selecting the A-register. When location 00001 is referenced, BAF will be
set, thus selecting the B-register. (Note that this makes core locations
00000 and 00001 inaccessible to the software programmer.) See fol-
lowing two paragraphs for application,

AAB IN R-BUS FIELD. With AAB programmed in the R-bus field and
AAF and BAF both clear, the A-register will be read onto the R-bus
(except see next paragraph).

5-5

COND IN S-BUS FIELD. Programming COND in the S-bus field nor-
mally requires that AAB be specified in the R-bus field. If a NOP is
coded instead of AAB, then COND will result in reading the T-register
onto the S-bus or ‘““0”s onto both the R- and S-buses. If a specific
register is selected in the R-bus field with COND in the S-bus field, and
AAF or BAF is set, then the R-bus register is read onto both the R- and
S-buses. In the normal case (coded AAB, COND,), if AAF or
BAF is set, the A-register or B-register will be read onto both the R-bus
and S-bus simultaneously. Be careful of what is specified in the Func-
tion field here,

JUMPS AND S-BUS FIELD. On jump micro-orders (JMP, JSB, CIMP),
bits 0 through 3 of the S-bus are “OR”-tied into the least significant
bits of the jump address. Therefore, do not use the S-bus field with
jumps unless this effect is specifically desired.

CJMP TARGET. Early 2100 models may have a version of the Micro-
instruction Decoder 2 card (A4), part no. 02100-60022, which restricts
CJIMP targets to the lower 512 locations of control store.

CW EXECUTION. In order to execute the CW micro-order, the Skip
field must contain a skip micro-order (normally NMPV or UNC), and
the following microinstruction must be skipped as a result of the true
“set skip”’ signal.

MEMORY TIMING. When reading from memory, the T-register must
be read within four time periods after giving the RW command. Nor-
mally this means four microinstructions; however, DIV, JMP, JSB,
RSB, and CJMP take two time periods each, and this would have to be
taken into account. When writing into memory, the data must be sent
to memory within two time periods after giving the CW command.
Since, for a valid CW, the following time period is dedicated to
executing a skip, the data is always sent in the microinstruction fol-
lowing the skipped microinstruction.

5-6

EOP AND SKIP. If a microinstruction containing EOP (End of Phase) is
skipped, due to a true “set skip” signal in the previous microinstruc-
tion, the EOP micro-order will still be executed.

USE OF T- AND M-REGISTERS. Do not use the T- or M-registers as
temporary storage locations. A DMA transfer could alter their contents
at any time,

USE OF SCRATCH PADS. Do not attempt to read from and store into
the same Scratch Pad in the same cycle (microinstruction). These
registers use latches for storage elements, and this type of usage would
result in a race condition. ‘

USE OF F-REGISTER. The F-register is used by memory protect asa
fence register. If it is necessary to use the F-register, the microprogram
must first save the contents of this register (see next paragraph for a
suggestion), On exit from the routine, the microprogram must restore
the contents of the F-register.

USE OF CORE LOCATIONS 0 AND 1. Since software cannot access
core locations 0 and 1, these locations may be used by firmware for
temporary storage locations. For example the F- and P-register contents
may be stored in these locations and thus free these two registers for
use by the microprogram; the contents, of course, must be restored on
exit from the routine. Table 5 shows the access technique. Line 1 stores
a value of 0 into the M-register and issues a clear/write command, along
with the required skip (UNC). Line 2 is a NOP, and line 3 stores the
contents of the F.register into location 0. Line 4 creates a value of 1,
and lines 5, 6, and 7 store the contents of the P-register into location 1.
To restore the F-register, begin by storing 0 into the M-register and
issuing RW (line 8). While we are waiting for the read/write memory
cycle, this is a good time to create the value of 1 (line 9). Line 10 stores
the fetched contents of the T-register into the F-register. (Note that this
differs from the usual method of reading, which would specify AAB
and COND in the R- and S-bus fields.) Similarly, lines 11 and 12 read
location 1 and store the contents into the P-register.

5-7

Table 5. Storing/Reading Locations 0 and 1

Comments

1. Address location O
-2 Skip
3 Store F in location

4 Put1in$4

5 Address location 1
6 Skip

7 Store P in location 1

| 8 Read location 0
9 Purtinst
10 Restore F F

11 Readlocation 1

INFORMATION CARRYOVER. Do not expect information to be
carried over in any registers (except A- and B-registers) from one
microprogram to the next. A power failure can alter their contents,

LONG SHIFTS. When doing left shifts on 32-bit quantities, the F- and
Q-registers must be used, with the F.-register containing the high-order
bits. For right shifts on 32-bit quantities, the B- and A-registers must be
used, with the B-register containing the high-order bits.

SHIFTING THE F-REGISTER. The F-register may be right-shifted by
itself, but not left-shifted. See detailed note in section 2.

5-8

APPENDIX

MICROPROGRAM LISTING

for

BASIC INSTRUCTION SET

A-1

ROM Entry Field Contents

ROM Word Point

Adrs (octat) Label R S FN ST 3P SK
0000 | 77330757 | PH1A — P CFLG | M RW -
0001 1 53771775 AAB | COND | IOR IR — EOP
0002 | 73373557 - ADR |IOR S1 AAB -
0004 | 70330757 | PH1B - CIR CFLG |M RW -
0005 | 77054377 — P suB P - -
0006 | 77154377 - P NOR [P — —
0007 | 53771775 AAB | COND | IOR IR — EOP
0010 | 73373557 - ADR |IOR S1 AAB -
0011 | 77054375 | PDEC - P suB P - EOP
0012 | 77154377 - P NOR |P - —
0014 | 75770757 | PH2 - S1 IOR M RwW —
0015 | 53773775 AAB | COND | IOR S1 - EOP
0016 | 75777557 - S1 I0OR - AAB -
0017 | 45167635 | XX CAB | S2 XOR |- ECYN EOP
0020 | 77777777 - — IOR - — -
0021 | 47777657 | ASGD CAB | -- IOR - ASG1 -
0022 | 47525675 CAB | — ADDO | CAB | ASG2 EOP
0023 | 77777777 - - IOR — - —
0025 | 77775657 | ASGA - - 10R CAB | ASG1 -
0026 | 47525675 CAF | — ADDO | CAB | ASG2 EOP
0027 | 77777777 - — I0R - - -
0031 | 47555657 | ASGB CAB | — NOR |CAB | ASG1 —
0032 | 47525675 CAB | — ADDO | CAB | ASG2 EOP
0033 | 77777777 - - 10R - — -
0035 | 77555657 | ASGC - - NOR |CAB | ASG1 -~
0036 | 47525675 CAB | — ADDO | CAB | ASG2 EOP
0037 | 77777777 - - IOR - — -

ROM

Adrs Comments
0000 | Send current instr adrs to memory, start read cycle.
0001 | Put instr from memory or A/B into I-reg, set next phase.
0002 | If instris MRG, put operand adrs in S1, else NOP.
0004 | Send interrupt adrs to memory and start read cycle.
0005 | Decrement the
0006 | P-register.
0007 | Put trap cell instr into I-reg and set next phase.
0010 | If MRG, put operand adrs in S1, else NOP.
0011 | Decrement the P-register and
0012 | set next phase.
0014 | Send indirect adrs to memory, start read cycle.
0015 | Put operand adrs in S1 (also maybe ind), set next phase.
0016 | Test operand adrs for A- or B-reg.
0017 | Exclusive-OR the contents of A/B-reg with S2 and
0020 | set Carry if result is non-zero. Set next phase.
0021 | Executes the ASG instructions where I-reg bits 8:9 = 0.
0022

0023
0025 | Executes the ASG instructions where I-reg bits 8:9
0026 | indicate CLA/B.
0027

0031 | Executes the ASG instructions where I-reg bits 8:9
0032 | indicate CMA/B.
0033

0035 | Executes the ASG instructions where I-reg bits 8:9
0036 | indicate CCA/B.

0037

A-3

ROM Entry Field Contents

ROM Word Point

Adrs (octal) Label R S FN ST SP SK
0040 | 77777737 | FLAG - - 10R - 10G1 -
0041 | 77777777 - — I0R - — —
0042 | 77777775 - - IOR — — EOP
0043 | 77777777 — - IOR — - -
0060 | 77777737 | MI* — - IOR - 10G1 —
0061 | 77777777 - - I0R - — -
0062 | 70777775 — 10} IOR - — EOP
0063 | 40775777 CAB | 101 IOR CAB | ~ —
0064 | 77777737 | LI* — - I0R - 10G1 -
0065 | 77777777 - - IOR - — -
0066 | 70777775 — 101 IOR — - EQP
0067 | 70775777 - 101 IOR CAB | — -
0070 | 77777737 | OT* — - I0R — 10G1 —
0071 | 42377777 CAB | RRS I0OR — - -
0072 | 42370375 CAB | RRS IOR 100 | — EOP
0073 | 42370377 CAB | RRS IOR 100 | — —
0074 | 77777737 | CTRL — - IOR - 10G1 —
0075 | 77777777 — - IOR - — -
0076 | 77777775 - — IOR - — EQP
0077 177777777 - - IOR — - —
0100 | 07777117 | SRGA A - IOR A SRG1 —
0101 | 07777777 A — IOR — — -
0102 | 07777135 A — I0OR A SRG2 EOP
0103 | 77777777 - — 1I0R - -~ —
0104 | 17776517 {SRGB B — IOR B SRG1 -
0105 | 17777777 B - IOR - — -
0106 | 17776535 B — IOR B SRG2 EOP
0107 | 77777777 - — IOR — - -
0110 | 75770757 | AND — S$1 10R M RW —
0111 | 53773375 AAB | COND | IOR S2 - EOP
0112 | 05147377 A S2 AND A - -

A-4

ROM

Adrs Comments
0040 | Synchronize CPU to I/O time T2. Executes the I0G
0041 | instructions HLT, STF, CLF, SFS, SFC, SOS, SOC.
0042
0043
0060 | Synchronize CPU to I/O time T2, Executes the IOG
0061 | instructions MIA and MIB.
0062
0063
0064 | Synchronize CPU to I/O time T2, Executes the I0G
0065 | instructions LIA and LIB.
0066
0067
0070 | Synchronize CPU to /O time T2, Executes the I0G
0071 | instructions OTA and OTB.
0072
0073
0074 | Synchronize CPU to /O time T2, Executes the I0G
0075 | instructions STC, CLC, SOV, CLO.
0076
0077
0100 | Executes the SRG instructions involving the A-register.
0101
0102
0103
0104 | Executes the SRG instructions involving the B-register.
0105
0106
0107
0110 | Send operand adrs to memory and start read cycle.
0111 | Put data from operand adrs into S2. Set next phase.
0112 | AND operand data with A-reg, put result back in A-reg.

A-5

ROM Entry Field Contents
ROM Word. Point
Adrs {octal) Label R S FN ST sP SK
0114 | 75770754 | CP* - S1 I0R M RW NAAB
0115 157223017 AAB | — JMP s2 XX -
0116 |41167635 CAB | T XOR - ECYN EOP
0117 77777777 - - 10R - - -
0120 | 75770757 | XOR - S1 IOR M RW -
0121 { 53773375 AAB | COND { IOR S2 — EOP
0122 105167377 A S2 XOR | A — -
0124 | 77557557 | JMP — - NOR | — AAB -
0125 | 35467412 F S1 DEC - RSS NMPV
0126 | 75774375 - S1 10R P -~ EOP
0127 77777777 - - I0R - — -
0130 | 75770757 | IOR - S1 IOR M RW -
0131 | 53773375 AAB | COND | IOR S2 - EOP
0132 | 05377377 A S2 IOR A - —
0134 | 35460712 | ST* F S1 DEC M cwW NMPV
0135 | 42376376 CAB | RRS I0R AAB| — UNC
0136 | 42371375 CAB | RRS I0R T -~ EQP
0137 | 77777777 — - I0R - - -
0140 | 76377461 | RRRA | — S2 IOR - CNTR RPT
0141 | 17676450 B — CRS B R1 CTRI
0142 | 77777775 - - I0R - — EQOP
0143 (77777777 - - IOR - - —

ROM

Adrs Comments

0114 | Send operand adrs to memory, start read cycle. Skip next
line if operand adrs in S1 is not A/B-reg.

0115 | Put A/B-reg contents into S2 and jump to 0017.

0116 | Exclusive-OR operand with A/B-reg (depending on IR11),

0117 | set Carry if result is non-zero. Set next phase.

0120 | Send operand adrs to memory, start read cycle.

0121 | Put operand data into S2. Set next phase.

0122) Exclusive-OR S2 with A-reg, put result in A-reg.

0124 | Clear AAF and BAF.

0125 | Test jump adrs in S1, skip next line if violation is detected
and if memory protect is enabled.

0126 Put jump address in P-register and set next phase.

0127

0130 Send operand adrs to memory and start read cycle.

0131 | Put operand data into S2. Set next phase.

0132 | OR operand in S2 with A-reg, put result in A-reg.

0134 | Test operand adrs. If no violation is detected, start memory
clear/write cycle and skip next line.

0135 | Put A/B-reg data (per IR11) into A/B-reg (per AAF/BAF)
and skip next line.

0136 | Put A/B-reg data (per IR11) into T-reg for storage into

0137 | operand location. Set next phase.
Continued from 0247:

0140 | Put shift count into counter and set repeat mode.

0141 | Rotate B- and A-reg right until counter = 17B. Increment
counter each shift. Exits with counter = 20B.

0142 | Set next phase.

0143 | NOP.

A-7

ROM Entry Field Contents
ROM Word Point
Adrs {octal) Label R S FN ST sP SK
0144 | 75770757 | ADD - S1 IOR M RwW —
0145 | 53773375 AAB | COND | IOR S2 - EOP
0146 | 45125777 CAB | S2 ADDO| CAB | — -
0150 | 35460712 |JSB F S1 DEC M Ccw NMPV
0151 | 77346373 - P SFLG | AAB| — AAB
0152 | 77371366 — P IOR T - FLG
0153 | 75514375 - S1 INC P - EOP
0154 | 77777777 - - IOR - - -
0155 | 77756461 | MPY - - CcLO B CNTR RPT
0156 | 15036450 B S2 MPY B R1 CTRI
0157 | 14377403 — S4 IOR - RSS NEG
0160 | 15056777 B S2 suB B - -
0161 | 75377403 — S2 IOR - RSS NEG
0162 | 14056775 B 4 suB B — EQP
0163 | 77114377 - P INC P - —
0164 { 75770757 | LD* - S1 IOR M RW —
0165 | 53773375 AAB | COND | IOR S2 — EOP
0166 | 75375777 - S2 IOR CAB | — -
0170 | 75770757 |1SZ — S1 IOR M RW -
0171 | 57513373 AAB | — INC S2 - AAB
0172 | 71113376 — T INC S2 - UNC
0173 | 75377616 - S2 10R - ECYZ UNC
0174 | 35460712 F S1 DEC M cw NMPV
0175 | 75376376 - S2 IOR AAB | — UNC
0176 | 75371215 - S2 I0R T ECYZ EOP
0177 | 77777777 — — IOR - - -

A8

ROM

Adrs Comments

0144 | Send operand adrs to memory and start read cycle.

0145 | Put operand data into S2. Set next phase.

0146 | Add A/B-reg data (per IR11) to operand in S2, store result
in A/Breg (per IR11). Enable Overflow,

0150 | Test jump address. If no violation is detected, start memory
clear/write cycle and skip next line,

0151 | If AAF/BAF is set, store P-reg into A/B-reg and skip next
line. Set CPU Flag FF.

0152 | Store P-reginto T-reg. Skip next line if CPU Flag set.

0153 | Increment jump adrs and store in P-reg. Set next phase.

0154
Continued from 0213:

0155 | Clear counter, B-reg, and Overflow. Set repeat mode.

0156 | Execute MPY on B and S2 16 times. Result in B, A-regs.

0157 | Skip next line if multiplicand (was A-reg) is positive.

0160 | Subtract multiplier from high order word of result.

0161 | Skip next line if multiplier (from memory) is positive.

0162 | Subtract multiplicand from high word. Set next phase.

0163 | Increment P-reg past the DEF software instruction.

0164 | Send operand adrs to memory and start read cycle.

0165 | Put operand data into S2, Set next phase.

0166 | Put S2 contents into A/Breg, depending on IR11.

0170 | Send operand adrs to memory and start read cycle.

0171 | Increment A- or B-reg (per AAF/BAF) and save in S2. Skip
next line if AAF/BAF is set.

0172 | Increment T-reg contents, save in S2, Skip next line.

0173 | Set Carry if S2 content is 0. Skip next line.

0174 Test operand adrs, If no violation is detected, start memory
clear/write cycle and skip next line.

0175 | Put S2 contents into A/B (per AAF/BAF). Skip next line,

0176 | Put S2 contents into T-reg. Set carry if S2 content is 0.

0177 | Set next phase.

A-9

ROM Entry Field Contents
ROM Word Point
Adrs {octal) Label R S FN ST SP SK
0200 | 77777775 - - IOR - - EOP
0201 | 77777577 | ASL - - I0R - LEP —
0202 | 37222622 | LSL F - JMP S3 ASLA -
0203 | 77777577 - - IOR - LEP -
0204 | 37222742 | RRL F - JMP S3 LSLA —
0205 | 77777577 - — I0R - LEP -
0206 | 37222752 F - JMP S3 RRLA -
0207 | 77777777 — - I0R — — -
0210 | 77777577 | MULT - - I0R - LEP -
0211 | 77207762 - - JSB - GETAD | —
0212 | 77207632 — - JSB — OPGET | —
0213 | 07222155 A - JMP S4 MPY -
0214 | 77777777 - — IOR - - -
0215 | 77777777 - — IOR — — -
0216 77777775 — — IOR - - EOP
0217 77777777 - - I0R - - -
0220 { 77777577 | DIVID | — _ IOR — LEP —
0221 | 77227651 - - JMP - DIv -
0222 | 73053377 | ASLA - ADR | SUB S2 - —
0223 | 17754777 B - CLO F — -
0224 | 07775377 A - IOR Q — -
0225 | 75377461 - S2 10R - CNTR RPT
0226 | 37704430 F - ARS F L1 CTRI
0227 | 27777377 a - IOR A - -
0230 | 37776775 F — IOR B - EOP
0231 |74774777 - S3 10R F — -

A-10

ROM

Adrs Comments

0200 | Unused.

0201 [Legal entry point for ASL. Execute next line.

0202 | Save Fence reg in S3, jump to 0222.

0203 | Legal entry point for LSL. Execute next line.

0204 | Save Fence reg in S3, jump to 0342,

0205 | Legal entry point for RRL. Execute next line.

0206 | Save Fence reg in S3, jump to 0352,

0207 | NOP.

0210 Legal entry point for MPY. Execute next line.

0211 Execute GETAD subroutine, Puts multiplier adrs in S1,

0212 | Execute OPGET subroutine, Puts multiplier in S2.

0213 | Save multiplicand in S4. Jump to 0155.

0214 | Unused.

0215 | Unused. Computer

0216 | Unused. .

02117 Unused.

0220 | Legal entry point for DIV, Execute next line.

0221 | Jump to 0251,

Continued from 0202:

0222 | Put 2’s complement of shift count (IR0:3) into S2.

0223 | Put B-reg contents into F-reg (high word). Clear OVF,

0224 | Put A-reg contents into Q-reg (low order word).

0225 | Put shift count into counter and set repeat mode.

0226 | Arith left shift F, Q-regs until counter = 17B. Increment
counter each shift. Set OVF if F15, F14 = 10 or 01 at any
time, Exits with counter = 20B.

0227 | Replace low order word in A-reg.

0230 | Replace high order word in B-reg. Set next phase.

0231 | Restore fence value to F-register,

ROiVI Entry Field Contents
ROM Word Point
Adrs {octal) Label R S FN ST SP SK
0232 | 75770757 | OPGET | — S1 I0R M RW -
0233 | 53773377 AAB| COND | IOR S2 — -
0234 | 77247411 — — CJMP | — PDEC —
0235 | 77657777 — - RSB - - —
0236 | 77777777 - - 10R - - -
0237 | 77777775 - - I0R — - EOP
0240 | 77777777 — - 10R - — -
0241 | 77777577 | ASR - — 10R - LEP -
0242 | 77227732 | LSR - - JMP — ASRA -
0243 | 77777577 - — IOR - LEP -
0244 | 77227736 | RRR - - JMP - LSRA —
0245 | 77777577 - — IOR - LEP —
0246 | 73053377 - ADR |SuB S2 — -
0247 | 77227540 - — Jmp - RRRA | —
0250 | 77777777 - - IOR - - -
0251 | 77207762 | DIV — — JsB — GETAD | —
0252 | 37202232 F — JsB S4 OPGET | —
0253 | 17764763 B — SOV F — NEG
0254 | 07225262 A - JMP Q DVsS -
0255 | 07773777 A — IOR S1 - —
0256 | 17772777 8 — IOR S3 — -
0257 | 75455364 - S1 suB Q - COuUT
0260 | 74554776 — S3 NOR F - UNC
0261 | 74454777 - S3 suB F — —
0262 | 75373403 | DVS ~ S2 IO0R S1 RSS NEG
0263 | 75453377 - S1 sus S2 - -
0264 | 35057763 F S2 suB - — NEG
0265 | 37226702 F — JMP B DONE -

A2

ROM
Adrs Comments

0232 | Send operand adrs to memory and start read cycle.
0233 | Put operand data into S2,

0234 | Jump to 0011 if interrupt or panel halt. Else confinue.
0235 | Return to calling routine.

0236 | Unused.

0237 | Unused.

0240 | Unused.

0241 | Legal entry point for ASR. Execute next line,

0242 | Jump to 0332,
0243 | Legal entry point for LSR. Execute next line.

0244 | Jump to 0336.

0245 | Legal entry point for RRR. Execute next line.
0246 | Put 2’s complement of shift count (IR0:3) into S2.
0247 Jump to 0140,

0250 | Unused.

Continued from 0221:

0251 | Execute GETAD subroutine. Puts divisor address in S1.
0252 | Execute OPGET subroutine. Puts divisor in S2.

0253 | Put high order word of dividend in F-reg. Set Overflow and
skip next line if dividend is negative.

0254 | Put low order word of dividend in Q-reg, jump to 0262,
0255 | Dividend is negative. Two’s

0256 | complement it to make

0257 | it positive, and put it

0260 | intothe F-and Q-

0261 | registers.

0262 | Save original divisor in S1. Skip next line if positive.

0263 | Convert negative divisor to positive,

0264 | First overflow check. If dividend high word > divisor, set
Overflow and exit with dividend unaltered.

0265 | Exit: put dividend high word back in B-reg, jump to 0302,

A-13

ROM Entry Field Contents
ROM Word Point
Adrs {octal) Label R S FN ST SP SK
0266 | 37664437 F - LGS F L1 -
0267 | 77752461 - - CcLo 53 CNTR RPT
0270 | 35044430 F S2 Div F L1 CTRI
0271 | 27773367 Q - I0R S2 —~ T8Z
0272 | 15562403 B S1 XOR S3 RSS NEG
0273 | 75055377 - S2 suB Q — -
0274 | 24567403 Q S3 XOR — RSS NEG
0275 | 77767777 — — Sov - — -~
0276 | 37773057 F - 10R S2 R1 —
0277 { 17777403 B — 10R - RSS NEG
0300 | 75056776 - S2 suB B — UNC
0301 | 75376777 — S2 10R B — —
0302 | 27777377 | DONE Q - 10R A - —
0303 | 74374775 - S4 10R F - EOP
0304 | 77114377 - P INC P — -
0310 | 77777577 | DLD - — {OR - LEP -
0311 | 77207762 - — JsB — GETAD | —
0312 | 75513377 ~ St INC S$2 — —
0313 | 75770757 - S1 I0R M RW —
0314 | 83777377 AAB | COND | IOR A - -
0315 | 75370757 - S2 IOR M RW -
0316 } 53776775 AAB | COND | IOR B - EOQOP
0317 | 77114377 — P INC P - -
0320 | 77777577 | DST — - JOR — LEP -~
0321 | 77207762 - - JSB - GETAD | -
0322 | 35460712 F S1 DEC ™M CwW NMPV

A-14

ROM

Adrs Comments

0266 | Logical left shift the dividend (F, Q-regs) one place.

0267 | Clear OVF, S3 reg, and counter. Set repeat mode.

0270 | Execute DIV on F-reg and S2 16 times. Positive quotient is
left in Q-reg, and 2X remainder in F-reg.

0271 | Save quotient in S2 for negation test. Skip next line if con-
tents of Q-reg = 0.

0272 | Compare signs of dividend and divisor, save result in S3.
Skip next line if signs are alike.

0273 | 2’s complement quotient and put back in Q-reg.

0274 | Compare quotient sign with expected sign. Skip next line if
the same. This tests for most neg integer = 100. . .00.

0275 | Set OVF.

0276 | Divide remainder by 2 (shift right) and save in S2,

0277 | Skip next line if dividend is positive.

0300 | 2’s complement remainder and put in B-reg. Skip next line.

0301 | Put remainder in B-register.

0302 | Put quotient into A-reg (or dividend low order word if
entered from 0265).

0303 | Restore fence value to F-reg. Set next phase.

0304 | Increment P-reg past the software DEF instruction.

0310 | Legal entry point for DLD.

0311 | Use GETAD subroutine (0362) to fetch adrs of first word.

0312 | Increment first word address, and put in S2.

0313 | Send first word address to memory and start read cycle.

0314 | Put first operand in A-register.

0315 | Send 2nd word address to memory and start read cycle.

0316 | Put second operand in B-register. Set next phase.

0317 | Increment Preg past the software DEF instruction.

0320 | Legal entry point for DST.

0321 | Use GETAD subroutine (0362) to fetch adrs of first word.

0322 | Test 1st adrs for memory protect violation. If none, send it

to memory (S1 stored in M regardless), start a clear/write
cycle, and skip next line.

A-15

ROM Entry Field Contents
ROM Word Point
Adrs | (octal) Label R s FN ST sP SK
0323 | 02376376 A RRS | IOR AAB | — UNC
0324 | 02371377 A RRS | IOR T - -
0325 | 765612567 - S1 INC S3 |AAB -
0326 | 34460712 F s3 DEC M cw NMPV
0327 | 12376376 B RRS | IOR AAB | — UNC
0330 | 12371375 B RRS | IOR T - EOP
0331 | 77114377 - P INC P - -
0332 | 73053377 [ASRA | — ADR | sUB [S2 |- -
0333 | 75357461 - S2 CLO | — CNTR | RPT
0334 | 17706450 B - ARS | B R1 CTRI
0335 | 77777775 - - IOR - - EOP
0336 | 73053377 |LSRA | — ADR | SUB |82 |- -
0337 | 75377461 -~ S2 IOR - CNTR | RPT
0340 | 17666450 B - LGS | B R1 CTRI
0341 | 77777775 - - IOR - - EOP
0342 | 73053377 | LSLA - ADR | SUB [S2 |- -
0343 [17774777 B - I0R F - -
0344 | 07775377 A - IOR Q - -
0345 | 75377461 - S2 10R - CNTR | RPT
0346 | 37664430 F - LGS | F L1 CTRI
0347 | 37776777 F - IOR B - -
0350 | 27777375 Q - I0R A - EOP
0351 | 74774777 - S3 IOR F - -

A-16

ROM

Adrs Comments

0323 | Put 1st word in A/B-reg if AAF/BAF set. Skip next line.

0324 | Send 1st word to memory (T-reg) for storing.

0325 | Incr 1st word adrs, put in S3. Set AAF/BAFif 0 or 1.

0326 | Test 2nd adrs for memory protect violation. If none, send it
to memory (S3 stored in M regardless), start clear/write
cycle, and skip next line.

0327 Put 2nd word in A/B-reg if AAF/BAF set. Skip next line.

0330 | Send 2nd word to memory for storing. Set next phase.

0331 | Increment P-reg past the software DEF instruction.
Continued from 0242:

0332 | Put 2’s complement of shift count (IR0:3) into S2.

0333 | Put shift count into counter, set repeat mode, clear OVF,

0334 | Arith right shift B, A-regs until counter = 17B. Increment
counter each shift. Exits with counter = 20B.

0335 | Set next phase.

Continued from 0244:

0336 | Put 2’s complement of shift count (IR0:3) into S2.

0337 Put shift count into counter and set repeat mode.

0340 | Logical right shift B, A-regs until counter = 17B. Increment
counter each shift, Exits with counter = 20B.

0341 | Set next phase.

Continued from 0204:

0342 | Put 2’s complement of shift count (IR0:3) into 52.

0343 | Put high order word into F-register.

0344 | Put low order word into Q-register,

0345 | Put shift count into counter and set repeat mode.

0346 | Logical left shift F, Q-regs until counter = 17B. Increment
counter each shift. Exits with counter = 20B.

0347 | Put high order word into B-register.

0350 | Put low order word into A-register. Set next phase.

0351 | Restore fence value to F-register.

A-17

ROM Entry Field Contents
ROM Word Point
Adrs {octal) Labef R S FN ST SP SK
0352 | 73053377 | RRLA - ADR | SUB S2 - -
0353 | 17774777 B — fOR F - -
0354 | 07775377 A — IOR a - —
0355 | 76377461 — S2 JIOR - CNTR RPT
0356 | 37674430 F - CRS F L1 CTRI
0357 | 37776777 F - I0R B - -
0360 § 27777375 Q - 10R A - EOP
0361 | 74774777 - S3 10R F - -
0362 | 77370757 | GETAD | — P 10R M RW -
0363 | 53773403 | ONEMO | AAB| COND | IOR S1 RSS NEG
0364 | 77227766 - - JMP — IND -
0365 | 75657557 - St RSB — AAB -
0366 | 77247411 | IND - - CIMP | — PDEC —
0367 { 76770757 - S1 IOR M RW -
03701 77227763 - - JMP - ONEMO | -
0371 | 77777777 - - IOR - - -
0372 | 77777777 — -~ 1OR - - —
0373 | 77777775 -~ - fOR - - EOP
0374 | 77777777 - - I0R -~ - —
0375 | 77777777 -~ - I0R - —~ -
0376 | 77777775 - — I0R - - EOP
0377 { 77777777 - — IOR - - -

A-18

ROM

Adrs Comments

Continued from 0206:

0352 | Put 2’s complement of shift count (IR0:3) into S2,

0353 | Put high order word into F-register.

0354 | Put low order word into Q-register.

0355 | Put shift count into counter and set repeat mode.

0356 | Rotate F, Q-registers left until counter = 17B. Increment
counter each shift, Exits with counter = 20B.

0357 | Put high order word into B-register.

0360 | Put low order word into A-register. Set next phase.

0361 | Restore fence value to F-register.

0362 | Send P-reg adrs to memory, start read cycle. Normally
fetches contents of a software DEF instruction.

0363 | Put fetched word into S1. Skip next line if not indirect
(i.e.,if bit 15 = 0).

0364 | Jump to 0366.

0365 | Set AAF/BAF if S1 contents=0 or 1. Return to calling
subroutine,

0366 | Jump to 0011 if interrupt or panel halt. Else continue.

0367 | Send operand adrs to memory and start read cycle.

0370 | Jump to 0363.

0371 | Unused.

0372 | Unused.

0373 | Unused.

0374 | Unused.

0375 | Unused.

0376 | Unused.

0377 | Unused.

A-19

Alup 8almIag,

‘BAOQR P3IS|| e sasSAUP
2)9dwoa Jlayy stoufi|

'anoys "ttt A8SJ3[MBN ‘Snuwieley
* 7t RIUI0))RD ‘POOMAIION YLON
“+ce13J039 ‘Bluejjy :nok 1@
-1eBU 331310 |eu013a1 ay) JorU0Y

*Q3Ls
AON SYINY SN ¥OI

2£21-89L (pOE) G181
vo)selieyy
VINIDMIA 153M.

E0EZ-EVY-016 XML
TL6€-9SY (902) ‘1L
0086 anAajieg
"IN YIB0T-EEY
NOLDNIHSYM

£810-966-0T4 ‘XML
TEYE-68Z (£0L) *1aL
OEZEZ RUOWYIIY
peoy Jaduads 1112
$159 x08 "0'd
VINIDYIA

$200-662-01§ XML
§5vb-889 (208) ‘121
10¥50 usiBuiiing yinog
EL .Anm__guz

1822 x99 "0'd
1NOWHIA

1895-626-016 XML
S1£0-L8Y (108) ‘181
STTPS A9 aveY Mes
1981)S UJEN yInos 0682
HYLD

0LT1-1£8:016 ‘XML
1L1y-bEY (Z15) 1oL
9228/ DJuDIY Ues
peoy 1eyoNw Ag 1£z

SV9Z-188-016 ‘XML
0009182 (E1L) 3L
42024 uoyshoy

00T aung

ahuQ yJedisap 00£9
€1822 x08 '0°d

€2Lp-£98-016 XML
1019-1€Z (¥12) (3L
0805/ UOSPIEYIY
*Py oyedely '3 102
0/21 %08 '0'd
SYXaL

£2484-18€-012 XML
SES5-VEY (10V) 712y
Y1620 8auspiAGLg 15E3
3Ry Uew ialem €/8
ANVISI JAOHY

0£92-099-0TS XML

000£-692 (§12) *(31

90V6T RISSRid 40 Ruly

¥ied |epISNpu) vISSNid Jo Buiy
ahuary Y38 1201

0S9E-464-0TL XML
YZTL0-1LT (2TY) #|3L
9v1ST 3lllAs0suol
pIeAajnog apjs SSOW 00SZ
YINVATASNNAd

£019-79H-016 XML

1£16-26Z (€0S) 131

SZZL6 pueliod

PrOY 42131 S|I0U3S "M'S SLbY
85T 3UNS ‘lleW SIUISIM
NODIHO

Z989-0£8-016 XML

1082-8v8 (SOP) *181

TITEL A vuloyeNO

Pi1eAd|NOg S13pUNo4 PaAtUN 6162

VYINOHY MO

00ET-978 (v19) ‘1ay
6ITEY sngqunjoy
peoy asiol 01T

STET-651-018 ‘XML
15€0-86Z (£18) (34
6EYSy uokeq

6216°L7¢-018 XML
00£0-5€8 (912) *[31
SYlby puelaAg

peoy aBpry JBIuaY G157
OIHO

9161-926-015 XML
1018-588 (616) :18L
79247 WIvd YMH
19905 UIEW Y)ION £261
8815 X08 ‘0'd
VNITOUYD HLINON

1180-€22-015 ‘XML
00€0-126 (916 (oL
LBLTT AInqpoom

159M Wied sAemssoi) [

ZBYO-TYS-0TL “XML
98vZ-vSb (STE} 7194
TIZET asmagshs

peOY A01|0W 15°3 9585

186G-£52-015 ‘XML
00S6-ELp (31L) 131
£Z99T Jd1sayacy
3ALQ meurfes 6¢

Z100-872-01§ ‘XML
OEELVSY (PT6) (3L
109z1 assdaanysnog

1331)S unyBuiysem 28

0680-252-015 XML
0500-¥5L (£089) ‘3L
09ET Jodtu3
peoy a(pAdwe) 6121

0£Z8-1rb-01L XML
29v8-698 (81S) ‘laL
SOTZT Aueqiy
INUaAY 1eNUI) ZOLT
MNHOA M3IAN

0550-686-0T6 ‘XML
$852-925 (505) 1|aL
10088 sasnag se
aALIg Nekm 95T

$991-686-016 XML
£1L£-92 (508) (3L

80178 anbjanbngly

‘I'N pIeainog sewol 1059
RN

99£8 X08 “0'd

02IXaN MIN

Sy6Y-268-01L XML
000%-£99 (609) HaL
$E080 {1iH K2iayy
Kemysiy sBui "N 0901

1S6-0660T¢ “XMi
0008-69Z (102) *(3L
258940 shweled
peoy AInjuay 0Z1 "M
A3SHIr MIN

0£91-09-016 XML
0005-796 (V1€ 1oy

PPIED $IN0Y 1S

‘pAIG POOMUAIG YINOS Z18Z

£80Z-TLL-016 XML
0008-£9¢ (918) 131
L8159 K319 sesuey
“any 0peI0)0g 1E111
1HNOSSIN

VELE-E9S-016 ‘XML
19v6-6v8 (Z19) 491
1166 (ned 1S

BNUBAY AJISIBAUN 65VT
VLOSINNIN

288Y-72Z-018 XML
0016-£SE (ETE) {81

SL08Y prayyinog

peoy AW BUIN 1S3aM OVBTZ
NVYDIHIINW

$069-9ZE-0TL ‘XML
0968-198 (£19) :131
£41Z0 uojBuIY
"3AY NamUel Zg
SLIISNHOVSSYN

¥895-828-014 XMl
0LE9-8Y6 (T0E) *191
04807 3tiiaxooy
Peay Kiiagd ayoyg g
8y9T x08 "0'd

£516°298-01L XML
00vS-vv6 (10€) 13l
LOZTZ asouwyiieg

peoy auoisalym (0L9
ANVIAYYIN

YTG6-666-018 XML
T029-1Z4 (¥0S) *13L
Z900L 1auuay

pieAajnog swel|im Zp6l
958 x08 '0'd
YNYISINOT

£9Z€-TYE-DT8 XML
1685-9v5 (L1€) *13Y
$0Z9y Sniodeue|pu)
aAQ SMODRIW 6E8E
VNVIANI

£19E-E22:016 XML
00¥0-££9 (Z1E) *j3)
9009 203§
13313 PIEMOR 00S§
SIONITTH

068¥-992-018 XML
1819-967 (VDY) ‘101
8ZEQE EluENY

YuoN R|SIRY 05y
YETBT X08 "0'd
YiD403n

€110-058-0T8 ‘XML
0£6E-1¥8 (SO8) (3]
opuslQ

anuaAy yyjeaMuUOWIIG) 129
YIBZE Uoels uopuIsy
20002 %08 *0'd

6601-GS6-015 XML
0Z0Z-1€L {S08) :laL
LOEEE alepsapney
‘PAIE dIBd PUEINRO "M 908T
01217 08 "0'd
Yooyl

0SLE-B3F0T¢ ‘XML
T§ZT-€58 (£02) <12l
15890 A(EMiOR
anuaky se3 11T

GIYE-SZr-01L XML
¥6£6-682 (€02) *13L
80190 RiojuEy 1363
193J15 pueiio) 805

LNDLLIINNOGD

SDL0-GEB-OTH XML
SSYE-14L (E0E) o)
01108 poomadvl
aauasg 1583 596
oavHo103

0002-GEE-016 XML
00Z€-6£Z (¥14) *10)
£2126 02ejq ues
anlIq 013y 9096

2602-L9€-016 XML
£991-28Y (916 :19l1
57856 Oluswesies

Ny EM 022

082T-££E£-016 XML
0059-£Z€ (511} 131
£0EV6 Ol(Y Ojeg

peoy oiapeliequd (01T

0L1Z-66F-016 XML
T921-248 (€12} 131

¥0916 POOMKI[OH YJON
pieAa|nog Wiysiayuey 6E6€

0001-0¢8 (v12) 3L

€926 uoyaying

any adioyjsBuesp 1s¢3 OgYl
VINHO4(VD

Z9T1-266-016 XML
£1£2-862 (209) ‘I8L
91/68 uosany
Aempeolg)se3 LELS

OEET-166-016 ‘XML
1908-262 (209) *19)
yE0S8 Xiuaoyd

1§ ®louseN 3 9EET
YNOZIHY

$02T-92L-018 XML
165b-188 (502) |01

Z0SSE NJASIUBH

‘M'S peoy 3unds pi4g £00Z
102y %08 "0'd

YRVEVIY

S3LVY1S GilINN

19¢8-7EQ :XAl8L

olly oled YOVdM3H ‘3IqED

(9ZTELE-QT6 ‘XML

10ST-€67 (STH) 1oL

pOEY6 BIVIONIED ‘OAlY Oled

“aAY MAIAIIIH 002E
VANINLINOOHILNI

PIRYIE4-)}o|MaH

1LOVINOD

‘a3LsIT LON SY3UV ¥od

9VTTIZS6E
SRORIEYD HOVAMIH B1GED

CIETN

ogliewesed 13(uinary :alqeld
8IT2L 191

ogliewese

6ST X08 "0'd

‘AN Pue[|oH Olpey-|apng
ANVYNIHINS

2EE OSVE NOHLYS *X3(31
UEN[UES SOINOYLYS 3|9eD
ZYEE-2ZL 'ZVEE-STL (608) *131

Au) eweued NO¥1D3T3 3|98
3uoz jeue)

‘npunIRY ‘00TRYE ixalaL
£EG0EZ ‘IaL
£119 eweued
eully ‘Bpig

ST [anuey ‘aAy
626 X08 '0°'d
¥'S ‘e0qieg 09(upu1d213
VVNVd

0S-€T "ON EBso

endeuen Nvy§3L04

9SO Ues ¥NOTY9 3jge)
€1-98-12 ‘j3L

§sor ues

65101 opesedy

ugiping s03a|e9 opaspy oI
YOI ViS0d

OD1SNI 00PPP X218
€jo80g SI4YY ‘aIqeD
9V-55°Sh 90815y ‘1aL
'3°0 1 ‘ejodog
1829 0219y 0pejredy
65-8Y ‘ON [elalie)

‘Pl
131y g ¥eegadueT 'y YUK
UD}OB UBWINI) S}

0llauer ap o1 ¥IVdMIH 8]qe)
LIPy-9PT ‘181

99 ‘ol1auer ap oy

20-0z 0303308

62 Z3jE €p eny

BpIY "Qa

|selg oQ Pieyoed-HaiMay
2133y 0110d XIVdM3IH *3I9e)
0Ly8-GZ *id1

Jiseig-(Sy) InS Op apuesy o1y
BV 01104

808/908 seles

§7 OuBIOl33 WOQ eIRld
JIsedg 00 PieYIed-113{M3H

ojned 0eg %J¥dMIH :3198)

10peA[eS ue 4 A
0E°66'TL ‘69°88'1L ‘50'88'1L (121 90600 uens ues Z5VE “TSYE ‘I3l «o_zoES_m a_ms VIBN0100 8686-/82 ‘TT1L-882 “15L
sedvied B1)9)1 3p V1d-E ‘BPd engeuey G68P1Z ‘£TSLTZ 8L o3enues INOVIIVS 21qeD ds '€ - o|neg oes
£€605 OpELIEdY PST uead ap aduod ugiay o1911p3 JopEAlES UueS B 96 £2b 151 6T1T edsue) lar4 eny
o 491§ %08 "0'd 689 |e}sod opejedy 1€21 efanzauap 'pAlg oFenues ‘BpIY 0°9°)
BIaNZAUIA 3Q pieyIRd-}}3IMaH “du| ‘s2luo}da|3 uenf ues "9 uglaL 013q0y 6851 121504 Opeliedy c n‘_mmo lISeig 0 PIeNJed-113IMAY
VIANZ3N3A 0214 O1¥3INd VNOVHVIIN 91939013 ostd ;m‘wmm_ﬂm._v_.,sm NNzvye
03PIABIUON WNIOYY 3IQRD Bwiy QIWTA AI9ED L0Sp£-LT00 X213y HOQVATYS 13 EPIT ‘B0 A |uBedje) Jolo9H DUYNIVAMIH ‘2|q8D
Z01E-0 ‘131 006€-22 :131 VL8T-€25 ‘ZETV-EDS ‘1oL 031D HIVAHOH :2iqed JNHD 600T-Z10 :xa[aL
o3pjauoN ewiy 40 'Z1 03Xe SBI-617 ‘96V-21Z *13L TEPOSE '£Z90-GE ‘9EVO-SE ‘I3l
0/E 030 ap ejjised 0€0T e[ised 3{1BA I9P ‘0D oynp $9Y 2483jy 03J0d saJiy souang
LL87 eije}} epjuasy ©ipiS) ueg 0}31d 04j0py 229 661€ x0g 33140 3504 8-908 SE[ES <€~ TLIT 3|ereT
|eLISnpU| 3 [B101310) 2I€ |eneue) anbliug "aAy "A'D 9P 9bZ1 linbeieny a[je) 8 Oue|dljaj WoqQ edeld 1'a'yvs
V'S Opueiiag ojqed WS ENPRK 011933 eiuedw®) 'y'S ‘BUBIIXAN PIENIRJ-HI3JMIH eriatuasul-0jpey ap Soliojeloge] ‘ePi7 BIJIAWOY) & BMISDPU] BU|JUBSIY PJEYORG-IIIIMAIH
AvOONYEN ny3d OQIXaANW yoavnoa |1selg 0Q pieyoed-}idImaH VNIINIDHY
VOIHANY HLNOS ANV TVHLINID

‘anoqe

paisyy ssasppe 3jidwod Byl
1 ‘el) ayuted Ul Y (epe
-ue)) PIENIBG-1BIMAH JICIUCD

‘g@3aLsit
10N SYINY NVIQVYNYD HOJ

£0802-10 xajaL
Z220£-221°019 “XML

2€Zt-L69 (Y15} *aL

auje|) ajutod

PJeA3|N0g SNWAY 677

‘PIT (EPRURD) PIEYOR-NAMIH
23aand

9y2-Z65-019 XML

TI96-L9 (91¥) (131

ajepxay

‘prag Axeley 0§

‘PI1 (epeued) pIeyIEd-11aIMeH

2561-295019 XML

€22Y-T2L (€19) HaL

€ eMmeno

ade|d Ua4i3 Ape] 088

‘P17 (EpEUED) PieYIBd-1}2|MAH
OIUVIND

28YP-142-019 XML

1150-55¢ (208} #1391

Xe))jER

90z 3

“PY 33BNIA YN §VLT

‘P11 (epeue)) pleyded-Hajmay
VIL00S VAON

TESE-1£9-019 XML

186£-98L (V0Z) ‘HaL

Badiuim

‘10 piojpeig 11§

‘P11 (epeue)) piexded-11a;maH
VEOLINVA

6506-226-019 ‘XML

E1Z8-EEY (b09) (18]

¢ Ayeusng yloN

Aem epeued 615y

'PY1 (EpEUED) PIEYIR-IRIMAH
VIBNN10D HSILIyg

TEHZ-TE8-0T9 ‘XML

1955-28F (€0¥) 3L

ugjuowp3

“aAy Jadser Sy/I1

‘P17 (BpRUERD) PIRYORJ-JIA|MAN
vid3gmw

VAVNVY)

98'vzC x3|3)

eABURT YSHIVAMIH 21980

00 ¥S It (220) :I3L
PUE|I3ZIMS

EAJUaD Z ULKBy 121

£ uel-np-siog np any

‘Y'S PIRYded-112|MOH

:LOVINOD SAIHLNNOD

NY340dN3 ¥3H10 11V

€Z6GZ x3laL

BUUSIA HJVdMIH :919B]
60/90 99EE (222) “I9L
elLsnY ‘euUdlA HOZTY
yaey)sod

2/€Z asseujsuu]
H'Qu’sag piexoed-Ra|May
*LOVAINOD 3SVId
STYINNGD LSITVIOOS

06/1Z :x2J3L

s|essnug TIWVHT3A 91983
61 9Z ¥t 'ZE €€ ¥E 121
wn|3|ag ‘0S11 Slossnig
SESOW) sap anUaAR £8
v'S weljdg
VIAVISODNA

890895 :XalaL
9298-826 190 ‘191
YSIYJ ‘wieqIunY
peoy MmaN plojwels
suojjesy ayy

“PI1 pieNoed-AIMeH
ETvie

Y3nojS IIdMIH
TEEE (€5L0) UBNAIS oL
$¥Ing ‘sg ¥ 1S ‘yBnojs
PEOY ujeg vzz

*PI7 PIENOED-HBIMBYH
WOQYNIN gialiNn

INquels| NOILYWIT3L ‘21qed
O OF 6% ‘2L

ngueys|

Koyesey

9£¢ xo08 '0'd

neaing Bupaauidul woyajaL
AMNL

HO ¥SdH E£€£Z XalaL
A3UD YSHIVIMIH 131980
00 ¥ I (z20) 32l
©ABUQY 2 ULIKBW (121

/ Up7-np-sjog np any

'9'y ZI9MUDS PIeNIed J1aImeH

EEGES “XAAL

HJ DVdH 31qed

¥Z/1Z 81 86 (150) 1131
Y21INZ udIdYIS 2G68-HI

07 asseqyssayunz

Oy ZI9MYIS pleyIed Ha|maH
ONYIHIZLIMS

1pujwdy ZTE 12 ‘xalaL

00 89 £2 * T£0 *ioL
1EpUION T TEY-S

06 urjedsiayedey

gy a8LIaAg pleyoed-113|MaH

12201 x0l8)
w(oyy20iS
SINIWINSYIW 91920
05 2T 86 (80) *|3L
02 ewwoig 0Z 1918
yoey
€1 uadeasjaygiuy
gV 23113AS pleyIRd-1I3|MIH
N3IAaMms

euo[aoleg IyYiv3al ‘a1qed
99-by-T12 “13L

g eunfasreg

9/ iaxnpuey

ys soiaiuadu; aely

36yziz x?)al

PUPEW 01VLV3T3L *219eD
£b SE SIZ ‘)3l

91 ‘plIPeN

ZI EyaJie anbuug

VS soialuasu] oeyy
NIVdS

8661 X3JaL

uoqsi] y¥1J313L ‘a1qe)

ZL 09 89 ‘131

1 uogst]

1£6Z %08 "0'd

€01 eJasuod ep 02ppoy eny

1R ‘s09109)3
sgjuawedinby

ap eawday esasdwl

e1393(a)

IVONLINOd

12991 x3)al

0|S0 ¥IVdM3H :3]qe]

03 €8 £5-(z0) ‘a1

wn|seq YHET-N

€1 uaiaasaN

6v1 x0g

/Y 38I0N pieyoed-3{MaH
AVMYON

91z €1 7x3jaL

wepialswy NIGOTV ‘3(qe]
&L LL 25020 oL

11 Z ‘wepsagswy

GZ8L x08 "0'd

L1 ulasaplaapm

AN ‘XN|audg PieyIed-}13[MaH
SANVIHAHLIN

PISI9 Xxalal

2WOoY 1}¥IV¥dM3H 3]19ed

vvSZ 1659 ‘13l

4n3 - awoy $H100-T

GZ WodIe erzzeld

e)e)| ozzejed

v'd's Buel|Rl| PIEYIB-1IRIM3H
9v0ZE Xalal

UBIIN LiNJVdMIH 319ED

(saul| O1) 16¢9 (2) :13L

ueli y2102-1

Z 130ndsap 03Lawy elp

‘y'd'§ Buel|e}|_plieyIed-113|May
ATVl

€148 x3jaL
uanojs JidMaH ‘aiqe)
TYEEE-ESL UBNO|S :lal
s¥ong ‘sg ¥ 178 ‘udnols
peay yieg vz

‘P17 PIeyded-NoImaH
anviad

Y9 HYMY 29 6G 12 'xaldL
Suayly ¥yvy alge)
S'€'TOE0E <181

9zZ1 suagyy

12a4}§ howu3 ‘gl
sjuueAeIE) SEISOY
30338Y

S8 6Y 2G X3(3L

uBYIURN YSHIVIMIH ‘81480
SL/1L 65 69 (1180) *13L

6 UsYIUBW 8a

£1 9sseJispanjui8ay
HAWD-SQaLHaA pIexIed-Ha(ma

ZE €S 12 ixalal

2inquey ySHOVIMIH 3198
25/16 50 b2 (1150) :13L

T 2noweH za

€2 "JISUapuam

HQUWY-58211350A PIBYIRYJIAIMIY

€65 98/G8 Xajal

SE/1€ 08 £9 1120) }|3L
oplassna va

g€ Bam JaBues|aBop
HOQWY-SQaMaA PIBYIBd-1)3IMaH
654 §9 Z¢ XAl

uaguragd 9ydaH ‘8iqed

98 22 99 (1£0£0) f18L
#iaquajinm ‘ueBuyge 0E0Ld
DIT asseljsJadiaquariay
HAQWD-SQaLIRA pleyIed-HalmaH

S0 vE BT X313l

9pOLETE (TTE0) 3L

ZL "M U438 0001-0

HIT/ETT asSel)S JajJopsiawjim
HYWY-SqallIap piexded-1iaimaH

VY4 67 Z€ It X3jaL

Unpjuely YSHIVAM3IH 31980
#9 01 0G (1190) :)a1

95 Wj4/yoeqyos3-1apainN 9a
0F/095 YoRHSOd

L11 asseng saulliag
HQW3-5qali3iaA PIENIRd-HalMaN
ANVAYHID

L5615 X3|aL

62 28 58 (19) ‘121
seudeyg Te-4

eien el ap an 62
ajuely pIeyIed-1idImaH

LTQTE XajaL
uof) HOVAMIH ‘819D
S €9 2v8L 1AL

WG UDAT 69-4

$}101)3 Sap 1eMY ¢
aauely pIEYIE4-112|MBH

8%009 ‘xalal

£es10 MIVAMIH ‘21qe)
10 88 0261 ‘131

Kesip 16-4

9 "oy 3lejsod aljog
n20qe)sNaY ap Jarjienty
39UBly PIeYIRJ-11AIMAN
AONVHS

E9GT-ZT ‘xa)aL
HUIS|3H-AOHIYdMIH 2198)
OEL-ET 191

C1 MuIsi3y

S81Z1 x08 "0'd

9¢ tpieasing

AD pieyord-1aIMaH
ANVING

99-1£-28-(90) *18L
310q241!s 0098-¥a

6 J3AJ0L

S/¥ pipaed-llalmay

0F 99 x3{ay

SY MOVdM3H :31qe)
0% 99 18 {10) ‘i3l
posayila 09YE-Ma
g [anejeg

S/¥ PleNded-Hia|may
MHVYANIG

b6t £ X3(aL

siassnig NIg0Tvd :919e)
opzzzL (20) (8L

Sjassnag 0911-8

UIRI3ANOS NP PIBA3INOE BHE
Xnjauag 'y's PJeyded-1eman
wniv13e

294 SL X313

BUUB|A
INIWNBISNIYOBY] :91q€D
¥6 €1 €7 ‘18 19 2¥ (2¢2) :I8L
BUUAIA S601-Y
€€ X08 "0'd
9 osse3jpieylawuwny
aluawWnI}su) dY3))}JeYISUISSIM
HQW9 Jagejiun
VIuiSNY

adoun3a

JYOdVYINIS HIVdM3IH 31qe]
220EE9 (2L
€ aJodeduls

291140 1504 eJpuEX3|Y

18 ¥08 "0'd

3014J0 ealy

1583 JB4 DIBYIR4-1}AIMAH

alodeduls aWOQ3W “2I1qEd
119289 '€-19€Zv9 *13)
£ ‘asodeduls
alels3 lelnysnpuj fIIH pay
Buety uelef ‘g

p11 Auedwo) BuniasuiBul
uGlISNGUIO] puB [eALURYIBY
3YOdVINIS

BIUBY XIW3D3 *9I9RD
1£-16-88 ‘10-68-68 :[al
eliueW

820T x08 "0'd

802 @ Iez1y ‘hexew

owe) Budsed 6212

121ua) (eloiswwoy) Ieyew
*3ul Xawo1393(3
S3INIddITIHd

Wieley HOLNYIL00D 131qed
126215 *£L20TIS #|3L

£ (Yaesey

peoy uooiey Ye[NpQy
siaquey) HewsoQ

‘p1y ‘Auedwog g oyysay
(1S3M) NVLSDIVd

23320 IYIOMIN 318D
850082 :lal

7 eaoeq

anuaay yeutr ‘T

P}y ‘Auedwo) g oysn
{1S¥3) Nvisiivd

PuBIYINY ‘HIYdMIH 3198
€EL°ELG ‘18l

eduenynd

26015 %08

P11 (Z°'N) PJexded 1131MaH

UOIBULIBM ADVAMIH 3i9eDd
655-95 (3l

TN ‘unBuniap

b6 X08 '0'd

IS UOSXIQ 96-p6

P (Z'N) Paedded-lRiman
aNVIvaZ MIN

NOD3N :3198D

sanbJely 0auainot

£0T x08 "0°d

510770 AV pI 1dv Ty
‘Y07 ‘S3A[EU0D "N 'Y
INDIBNYZION
andwny ejeny AW0JIIW 2(qed
Ie3uelag ‘efer 3ulielad
AR

v9/€T 3u0io] 2

"P11 eIsAe|eiy WOJ3W
VISAVIVN

ni1ag ¥VYITONNOYLIITI 219e]
9r80ZT ‘13l

wieg

€124 xoq "0'd

J981)§ Neaduawa(y

SIpuUdey ‘3 ujjuejsuo)
NONYE3]

1N0as OOVHLWY ‘31qe]

(sau!l p) Ty8G-G/L 13l

1no3s ‘ny-0iducyy

oy 3uofas £0T

*3p1g Bunkyae0 's100(4 Y18 § YlL
€0LT x08 '0'd [n0ag

‘PH] ‘BRl0y

o) Fuipell uedlsawy

vIHON

NOLO¥d *21980
92445 F18L
BAUBY ‘IqOJIEN
TIE8T X08 "0'd
Auly BAUdY
YANDN

S/p0ST-ZEY (S0P) “1aL

222 eweyoyos

ny-nyoyoy

‘oyd-BIBYOLIYS DDET

“3pig OBIN

‘P17 pJENORY-113(MBH-BMEEOYOA

5120166 (250) ‘1ol

£110 edodey ‘ny-einwexey
0y2-110J0y ‘6G “ON

2uipiing 0}

PYY PIRYORAIIRIMOH-EMEAONOA

VAYSOdHA ZEES-GBE *X3J3L
Tv91-€2 (9220) *(3L

eyesy

1ys-13eseq(

eSnsey 8-2-2

-3pig 18eJeq| 18SIN

PIT PIRHORA-NIAIMIH-BMEBONOL

$Z4-€2 HOL LINHYWAHA 91980
dHAPZ0Z-2EC :X3{3L
£/1822-0££-€0 *13L

ohysy ‘ny-eAnaiys

130404 1-65-L

Buipling 14SBYO

‘pI1 pieNded-1a[maH-emeB0N0A
NvVdYr

695-E£0 AL |23seg X3JaL
AIAY-(31 13LSYE i9IgeD
(saulf £) 1v69E 1)
MAY-J3L
120138 ABPEUIWY /T

"P37 13BIS| B[0I0JOW §O “AIQ
Juliasurdul g S2U0J0913
q3VEs)

ueiayal Woosve 2Iqed
1118y ‘DSBEV *181

uesayal

llewoys eqes ‘yy 0yZ
2181 x08 0 'd

P11 ‘w08

NvHl

608-80 X3(3L

NW) :a19ey

09516 'SI6Y ‘{3l
Bunpueg

62 EYopIaW Yelelg
‘AN “A0Q Fuipei) uojog yeg
YISINOONI

HY1S3NT8 :3(qed
+0 8¢ ‘3L

elpu| ‘indpayswer
peoy lipulg
mojedung 19s1ey 81
Py Jeys anig

¥YISINE 219ed

66 X3(3L

S5 6€ 2 ‘IaL

eIpuj ‘T selpeny

yoeag aul puodds pz/€z
P ‘Ueis anig

180443079 2I9e)

16 €9 £ H13)

ElpUj 'c peqeJapunaas
aue) yed 96

‘pi7 “eis anig
g-ai0jedueg

peoy 400Sin J-L1

‘P dels anig

¥v1S3NTA :21qeD
£9p X33l

91 TE 29 1131

eIpUl ‘pg 14120 MaN
1efeN jediey

peoy Buly ve
‘asnoy Jeis en|g
LI RLNELITE

yvisanig :aiqey
SS9 ¥3|3)
IET0ET ‘181
elpul ‘T epndjey
905 xof ‘0d
133418 3ieH £
P Ueig enig

yv183N78 :a1qed
78 88 9 '{3L
etpu| ‘anduex
sauy ALY OF/p1
P71 JE3S Anig

Hv1s3ania ‘alqen
9§12 ‘X33l

10 €4 Gb fal

elpul ‘gage Aequeg
apeyqeld
asney xog pueg
P11 JE3s anjg

150443N19 ‘81987
9512 “X3|3L

T2 0§ 62 ‘131

eipul ‘480z Aequiog
‘py ejel llpaysuser
s3uip|ing Linisey
P17 Jeis enlg
VIaNI

Buoy BUOH 0JLAIWHIS aqed
SE/2€T '8910vT ‘18l

Buoy Fuoy

peOY 2ajeyy ‘01

100{4 WIGT BuIpting S.a0uLd “TIST
£62 %08 "0'd

"P11 (Buoy Buoy) "0 B IPIWIYIS
ONON YNOH

eqeqes|ppy 0JVSY ‘alqed
$8227 ‘18l
eqeqy sIppy
1S WeYBUILNY 65/85
81/ ¥08 ‘0 °d
00 “Pi7 djeALd
Aouady g Jamodsajes uedllyy
VIdOIH1Z

IWVYN-I-3H 3J98)

8295/-¢829 ‘191

eIS09IN

ZSTI xog "0'd

peoy sojnodouay g sau0dag 61
sajuosdAy

SNYdAD

0quoro) INIOdLOH :3jqed
96vG ‘oL

2 oquwole)

1981)S sajdels

Buipiing ereyeA

189 xog ‘0'd

‘PI7 S(29139313 PaYun
NOTAID

TTbS-SE *lel

890k ‘pue|suaany
uopleg

peoy suosdwig G/

P Ad

BIjRJISNY pieyded-113|MaH

vinvdisnv

10y e143qued qyvdmaH :s1qed
v618-67 ‘131
T0ST "L'0°Y uosydlg
161 xog '0'd
1334)§ A3)jo0m O1

P11 CAid
|e23SNY pieyCRd-}13{M3H

UHad gdYdM3H :alqed
0EEE-12 /(3L
0008 "¥'M ‘Yiiad
90B.13] 3plEIapy 961
s3ulp|ing eduejqesen
€1 3}ng ‘10014 pug
P Aid
ellelisny pleyded 113iMaH

apIe|3py QUYAMIH 318D
99£2°G9 *13L
easny yinos
2805 193ds0Jd
PeOY 11YINY] L6

. P Ad
RIBAISNY PIBYORA-NIBIMIN

T9S1C :X3J8L
K3UPAS QUVAM3IH ‘3198)
998L°¢€Y 13l
SaleM Yinog man
GG0Z ISAN smol)
1981}§ Japuexaly 19
PN Aid
€)|eaISNY pieYoed-113|MaH

PeO1E Xa]3]
3UIN0qI3 q¥YdM3IH ‘3]qed
(saull §) TLET°0Z 3L
BLIO}OIA
SpIE ‘SH| ud[9
18315 J19M 9022

P11 Aid
BJISNY piey2ed-1181MaH
viIvdlsny

epueny yyid3ial ‘8iged
epuent
489 x08
3544
son3poy esoqieg ap eny
uvs
50511399|3 Sojuawedinby ap
eluo9| esasdw enjaa[aL
YTODNY

‘VISY ‘voIddvY

T19y8-pE0 X3IaL
)1y Ojed OVdMIH 31880
£9Z1-ELE-016 ‘XML
(1051-€6Y 1£ "2d)
0002-92€ (ST} AL
YOEYE BIUIOj1ED ‘OUIV Oled
“any MalAlilH 002E
VANINILNOOYILNI
prexoed-}1a|maH
1OVINOD ‘'a3LsiT
10N SVY3I¥V H3HLO

PISTY xalaL
awoy 1INOVdMIH 3188

62 Oy 65 (9) ‘3L

eyl ‘an3-awoy py100-1

G2 1u0dIBW ezzeld

294)0

mu:mﬂconmw:oo ﬂ;mxumm.:m_;or
:LOVLNOD

3ISV3ITd NMOHS LON
SFIULNNOD 1SV F1AAIN
AGNV NVINVHY¥ILIAIN

ByeSNT ‘JALAVIYY '3]qD
€6LEL *IRL

edijy |edjuag ‘elquez
EYESN

2642 x08 '0°d

‘py1 (e1quez) AngilL °f Y
VIAWVZ

2bZ NODIVS 'VHINId 213D
B6ELE ‘GOBOT (191

uodjes

2uonA-uath 912

£-H X08 "0'd

“5u| Sulpes] Jejnsuudd
WYNLIIA

pledwey QJWOJ “21G8D
64245 ‘181

ejedwey

6yby X08 "0'd

‘P71 03 2119913-913L epue3n
VANVDN

yoyBueg 922-¥8 OONIINI XL
WOSA9 i319eD
£) 22L016 ‘131
Noydueq
peoy JAWNuyns v19
6E %08 °0 'd

‘py1 "0 Bulaawdul
|euojEUI}U| BYL
ANVTIVHL

1adie] HOVAMIH ‘21880
HOVAMIH b28dL *X3l3L
£19-646 ‘019-6£5 ‘509645 (13L
1adie]

J00[4 uiL "3p1g "diog
30UBJINSU| SBASIIAQ

1 0988

peoy 3sapm OBINS Bunyd 6€

le) pleyded ValMeaR
NVMIVL

(sau

9ESLPE 1oL

|e1eN ‘Jiodianp

66 Xog ‘0'd

Speoy 2100 B JUNH 13ui0)

3Jju3) POOMUI(D gOE
P (Ad}

¥ UINOS PIeNdRd 1131M3H

9000-G xa|3L
umoL aded HOVdMIR ‘2Iqed
GPG9-€ ‘6109-€ ‘I3
uMo) ade)y
19915 aalg
asnoH alisesdslg
P CAd)
BOLIY YINOS PieYIRd Na|MaH

gingsauueyol YOVdMIH 13jqeD
HI 9220 *x3]3L
0£02-G2L '0B0Z'SZL f|aL
Singsauueyor
1234)§ J2ag 2Q 0E
voLIauIN
|eRASUBIL UI3lUOjWeRIE
91/1€ %08 ‘0'd

*pIT ‘(Aid)
BOLU4Y YIN0S pieydeq P3IMaH
voludvY HINOS

(panunuod) YITVHALSAY ‘VISY ‘VIIH4V

e,
- o
e L
: . o ﬁz'% e 5&;@‘5@;@&
B » 7 ,;xwwwsxu‘ Lo (;;Sx;; s wm"s;m
ST ma - e
Srmis s L o
T w?‘,zu s s
e e T Bl
oy msw Tk e v o
.. e e f |
. G NN o Laad
E ;sﬁ;@:g;m e S wwgv e :Q:",g%g«, E
& RO, N0 N i Ponaae Laar
o = .] N] L e
- B e i 1 L N 1 o ko
s s emmEee e it s o . B N f
| T ﬂ;éss,:i;g»:;g»,,:is;;: r srpuz:,:,;,,;;fr;g?‘w:: N 7 Lo N < st
G e, S e o | . 1 - o e N P
e r;%!p,x!«’?‘:’éz‘i'ﬁiisiﬂi,i e K & N £ S “mF,,:@;@:;:é:::';q"!‘;%:é’ K Lee . % @z;}nzﬁg g i ,L:wu«a,;:g,;n:[poa
B e N N X < w“ﬁsav F 1l e s T
e e & oW N L 1 ¥ s & ﬁ:’zrx;w& e i:§ i ae @a» s e wan
o s e g . B B ,s« - e el o
. e 5 1 wé“’a“a“’g N At o w% o . e
senn | a:fiw,:éanéir's;?if;‘;‘? e ;’,“,N,r e == Lg»(»ézs»%‘;' ss%‘,*’wfiw | Sl |
Lant %,MM% o Fhee gl oot o0} e w%zw@gy L e
< p TEL SRR o o N o e
b Ze ot = e, Titata e e ~53,',‘ B, i s i e e B W]
&sﬁ e Pitis S PN S a% ¢ e ey - S
w @iy [0 N da e > e i o o
o S e e g e LT thy
e e N . el o - . =
e m““mm‘" S 1 Xy L e - e Teas
G e s Caaln Moo o wgg;pf s e U e g]
o Smime v e i N e = oNE e .
B eny Zn *‘gwweb%m ae LAl m“”ww, *w%,";“gg Goe
o ?gészugém"wzga;r“ e wwﬁsw;s B R e S, rz,%&wssfas PN ;g»:a%;s% b
e be - i e T . i e
= b e e e CEtmennE x,j’ n@;,@s,m;s;% [N e LN Aher [|
oo gt LN [N L e L me“"’M fone i Ms:’sf&tnw&;’:szf' e G
| ﬁ*m"ﬁﬂwgﬁ ol r = e . Wx ,fs“’;,x& e e . e | e b
- ‘o ol gl N . - . Erasas e
e g, ST, O 2 o et b sheni e N T e Sl Bt
. "“Ti&;@rmy iE . 5 o N . ijm&w f c N b £ i e
G sl ey RN i e %5 b e - % w b Sa b S e
| & | gﬁ”& c s e . | ”»s@»»‘"w it T e
o e cobe N g o an [t N e >:$,a~:~ it S E P
ey Sem e S e ; e T el L S N o BT @, & fo
e E N 5 1 ol g e e . X4 Sennegiay i ten
shoe b8 . e - o e e 4 ihia i | |
e Eomat, e e N 5 T e eI a8 G e A o
e T obny Bt b e B G oo sl
e L . = ek . N G
Gk wam = %;:v;f@;;ai’@iw e R ey P K | i
£ e i iy . 3t e
oo Testin g ga;msg;s;téerv;u o, s e, g gt a []
pe ~~(s:~‘r“§u.;§9?i‘£1'v§i"»<§ & f§:§:5'x§”“~§g~ o N ten X g6 ey sa
o N ol : - N -
oo s?@;ﬁ\fﬁ#&ﬁm;?” o s e N = e
e L . & i”w, agn ﬁ“.\,mzw o
froe e | d&ﬁ& G e 1 oy o ;%awrh ’
|]) "7&’;;!15;255 Soantae
e N R o
e [N1 o L‘K”W:T'ﬁwmu g
S e o oNE ey z s %@m
ce k.. X EE
P s e E
B o .
S o
ooy

C e
N

ol
cemn s

s

.

o

0

Mstw’ e
g ww“"“’s N oo
Sl o St
Sl =K s]
E S e « f w 'Q:V{x:w:?ﬁ':!"n::,‘,J',,JS e
oo G Tendy " L Mg,,a:sn~ b e e e
g e Sl e P > e s seaRd et
:ns,a% . o éﬂ;?iéwsaww - ;a:gsm é iog - o
(o C g | fore e 4 Lelimaio g LN e Gl]
Gean .] e o, Sirea ? T ~ S oy e | Zaney e |
b e i, s i g 5 : . o 5 a6
g2 st kv v%:ffzfts"%@%%% Gl e Se e o o
[sy g e o her s St Goen .
B e ¢ L ,l.ksms ?w o L e S
Loy W T e Gean o e . N S o
ey xwg@ s 5T s ST Y :g»,gm,;wgg i zoE
o WS G B e ,:~:53;:éz;f‘?’ 48 5, . Sl oo
e L “‘tyfe e »g;%fﬂ; i - e L
o w«%w- ?x‘w“ onive el e YT = =
o celiat, N ¢ e G o
. : . s e 1 | |
e L s Lo R ma KL g . o
oo A O g Ms;gi'%ﬁ, S %w | vy | o P
| Tt i A e aiide . - 3 S |
St P cahen N I T B, & et 5 “W%l??’;‘fi'jii@,i;‘f:&f 7:s°,u,g;31:l,;jng’?;',;°za‘V s
e N ot R < > Qgswm S >
e PSS - e oo bfetigs nn L
- N - . ot et .
o %i?*w?%ﬁ;%“ - x%‘“ et :‘3" e KR
Gae [e 1 e wsax - ?‘&f'&‘,ﬁéz;:x;%;“ e
- Earenh P e
S E ;,375'3’,;% et
e Bl 2
E ¢
e

e
i

S

s e s e
. f:rs.,w bl Loehy
e o 3;,44;@;’,;;@,5;, -
e ﬁ?%h,Lm,%(g;@,g,w A
e ;,i:%;g»a;z{s;%g; e e
SSameE L ey Z;S,m’s:és;ﬂs': Bt e e
— =;g§g§i&3z:;;m§%&Qﬁ?@?‘fﬁ%~rw e
mEeesnmaay - T)
X e s

e w» %% e -
. - - T

