i

T4
HEWLETT ﬂ PACKARD 2] O O

computer

microprogramming software

Ml

|l

HEWLETT (hp; PACKARD

=

MICROPROGRAMMING
SOFTWARE

for

Hewlett-Packard Model 2100 Computer

3

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA U.S.A.
" Printed: AUG 1972

02100-90133

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

ERBATA LIST

2100 COMPUTER
MICROPROGRAMMING SOFTWARE

Part No. 02100-90133, Printed Aug. 1972

The italics show which part of the text has been changed.

Page

2-1

2-2

Instructions
Replace the last two paragraphs with the following:

“The HP Microassembler is designed to operate in a Basic
Control System (BCS) environment and requires a minimum
of 8K of memory. In addition, it requires a tape punch device
(the teleprinter’s tape punch may be used for this purpose).

“The operating instructions for loading and executing the HP
Microassembler are as described on pages BCS-11 through
BCS-14 of the BASIC CONTROL SYSTEM module (5951-
1391) of the Software Operating Procedures manual. Even
though it is described as being optional (step 6, page BCS-12),
the BCS Relocatable Subroutine Library must be loaded at
step 7.

“Note: In an 8K BCS environment, neither the magnetic tape
driver nor the buffered version of IQC should be
used. In addition, the user must select the absolute
output option (bit-14 of Switch Register ON) during
step 3 of the loading procedure.”

3rd paragraph. Change the final sentence to: “During Pass 2,
the assembly listing is printed and the object microprogram is
punched.”

1 March 1, 1973

Page

2-3

51,
5-2

5-3

Instructions

4th paragraph. Delete the 3rd sentence and change the 4th
sentence to: “Fatal messages, on the other hand, dreaw the
microprogrammer’s attention to illegal microprogramming
usage which must be corrected.”

The following note belongs between the 2nd and 3rd para-
graphs:

“Note: While the microprogrammer may use symbolic
dddresses as jump addresses in JMP, JSB, and CJMP
microinstructions, he may not use a symbolic address
* a constant as a jump address.”

The format of the $INPUT, $PASS2, $LIST, and $OUTPUT
statements should be:

SINPUT=x
$PASS2=x
$LIST=x
$OUTPUT=x

The format of the SEXTERNALS statement should be:

SEXTERNALS=name 1 » octal address 1, ... ,name n » octal
address n

where A is a space.

Replace the description of $DEBUG with the following:

“Specifies that the debug option is to be used. Note that the
debug option requires that the microprogram be smaller than
272g (186,) locations long. See Section 9, ‘Micro Debug
Editor,” of this manual for further details.”

2

Page
8-3

9-8

Instructions

Message #14 should be flagged by a pair of asterisks and the
“Meaning” and “Corrective Action” entries should be:

“Warning! JMP, JSB, or JMP, JSB, and CJMP use the
CJMP in the Function low-order bit of the S-bus field
field and a non-NOP in as part of the jump address.

the S-bus field.

Make certain that the S-bus
micro-order does not set this bit
incorrectly.”

Add the following to the description of VERIFY ahead of the
sentence which begins “If no errors are detected . . .”:

“In response to a VERIFY command, the editor asks the
microprogrammer to identify which of the six tapes is to be
verified. The microprogrammer responds by entering one of
the following tape I.D. numbers:

1.D. Number

2320

1916

1512

1108

0704

0300

Tape
Identifies the mask tape which contains bits
23 through 20 of all WCS words.

Identifies the mask tape which contains bits
19 through 16 of all WCS words.

Identifies the mask tape which contains bits
15 through 12 of all WCS words.

Identifies the mask tape which contains bits
11 through 8 of all WCS words.

Identifies the mask tape which contains bits
7 through 4 of all WCS words.

Identifies the mask tape which contains bits
3 through 0 of all WCS words.

3

Page

9-10

9-13

9-14

9-16

Instructions

2nd paragraph. Delete the 2nd sentence, beginning ‘““The
microprogram should then .. .”.

Add the following after the 3rd paragraph:

“The editor’s dump routine uses core memory location 0 for
temporary storage. If the microprogram being debugged uses
core location 0, the microprogrammer should remember that
the contents of that location are altered every time a break-
point is encountered. Also, since the editor’s dump routine
occupies control store locations 272g through 377g, the
microprogrammer should not set a breakpoint above control
store location 2714.

“The editor’s dump routine executes an EOP. Among other
things, the EOP clears the JSB flip-flop. Consequently, if the
breakpoint occurred within a subroutine, execution must not
be restarted within the subroutine because the RSB at the end
of the subroutine will not work as expected. After such a
breakpoint, the microprogrammer should restart execution
either from the beginning (EXECUTE,0) or from some
location (EXECUTE,xxxx) which would not allow the sub-
routine’s RSB to be executed.”

Delete the last sentence,

Step 4. Delete the 1st sentence and change the 2nd sentence
to: “If the editor is to be run in the normal mode, the user
must force program loading at this point even though there are
two undefined external symbols (TEST and MACRO).”

Change the final sentence of step 1 to: “Each segment must be
able to be entered by using the same 105xxx macro
instruction and operate independently of the other segments.”

4

Page
10-1

10-3

New

Instructions

Add the following topic between “Requirements” and “Initial
Parameters™:

LOADING INSTRUCTIONS

To load the HP Programmable ROM Writer program, do as
follows:

1. Load BCS using the Basic Binary Loader.

2. Load the HP Programmable ROM Writer program using the
BCS Relocating Loader.

3. When BCS prints the message “RUN’’ on the system con-
sole device, enter the select code of the HP 12909A
Programmable ROM Writer into the Switch Register and
then press RUN.

Note: If the user forgets to enter a value into the Switch

Register and merely presses RUN, the program reacts
in either of the following ways:

e If the Switch Register contains all zeros, the pro-
gram halts with 102022 in the Memory Data regis-
ter. The user responds by entering the select code
into the Switch Register and then pressing RUN,

® [If the Switch Register contains a non-zero value,
the program accepts the specified value as the
select code and proceeds with execution.

Add the following between the 2nd paragraph and “General
Operation™:

TIMING CONSTANT?
The user enters one of the following timing constants to
identify which model computer is being used:

Computer Timing Constant

2100 169
2114 130
2115 130
2116 148

Add the following pages as a new section following Section 10.

5

PREFACE

This manual is a complete software reference source
for microprogramming the Hewlett-Packard 2100
Computer. With -the information given here, the
microprogrammer can expand the already powerful
capability of the 2100 by adding custom-tailored
instructions to the existing set of microprogrammed
operations. This ability to expand the Central Proces-
sor Unit, in addition to the extraordinary expansion
features of the memory and I/O sections, contributes
to the total flexibility and adaptability of the 2100.

It is assumed that the microprogrammer has read
the 2100 Computer Microprogramming Guide
(5951-3028) and that he has a copy of the handbook
available as a comprehensive reference source. The
overview presented in section 1 of this manual is
merely meant to supplement the handbook by pro-
viding additional emphasis and actual symbolic micro-
instruction examples.

This manual is divided into ten sections. Section 1 is
an overview of HP 2100 microprogramming, sections
2 through 8 describe the HP Microassembler, section
9 describes the HP Micro Debug Editor, and section
10 describes the HP Programmable ROM Writer.

While Hewlett-Packard cannot assume responsibility
for the effectiveness of microprograms written by the
user, further information and assistance may be
obtained by contacting a Hewlett-Packard field
office. Sales and Service offices throughout the world
are listed in the back of this manual.

CONTENTS

HP 2100 MICROPROGRAMMING OVERVIEW 1-1
Microprogramming Facilities 1-2
Microinstruction Format 1-5
Accessing a Microprogram 1-7
JumpTables 1-7
Passing Control From an Assembly Language Program . . 1-12
Passing Control From a FORTRAN Program. 1-13
Passing Control From an ALGOL Program 1-14
Passing Parameters 1-15
Jump Table Conventions 1-19
Input/Output, 1-20
Input o 1-20
Output e 1-21
Accessing Core Memory Locations 1-23
Read FromMemory 1-23
WriteIntoMemory 1-24
Microprogramming Shift Operations. 1-25
32-bitDataltems. 1-27
17-bit Dataltems. 1-27
16-bit Dataltems. 1-27

GENERAL DESCRIPTION OF THE

HP MICROASSEMBLER 21
The Assembly Process 2-2
Program Location Counter 2-3
Symbolic Addressing 2-3
Asterisk (*)asan Address 0L 2-4
Assembly Options 24
AssemblerOQutput 2-5

Symbol Table Listing. 2-6

Source Microprogram Listing. 2-6

SYMBOLIC STATEMENT FORMAT 31

Symbolic Statement Fields 3-2
LabelField 3-2
RbusField. 3-3
SbusField, 3-3
FunctionField 3-3
StoreField 3-4
Special Field 34
SkipField 34
Comments Field 3-7

Standard Coding Form 3-7

MICRO-ORDERS 4-1

RbusField 4-1

SbusField 4-4

FunctionField 4-8

StoreField, 4-18

Special Field, 4.21

SkipField 4-25

ASSEMBLER CONTROL STATEMENTS. 5-1

SAMPLE MICROPROGRAMS 6-1

Register Save Microprogram 6-2
Microinstruction Commentary 6-3

Block Move Microprogram 6-4
Microinstruction Commentary 6-5

Table Search Microprogram 6-7
Microinstruction Commentary 6-10

Teleprinter Qutput Driver 6-13
Initiator Section Commentary 6-18
Continuator Section Commentary 6-18

10

vi

MISCELLANY 7-1

Interrupting a Microprogram 7-1
A/B Addressable Flip-flops 7-4
Memory Read 7-4
Memory Write 7-5
RPT Micro-Order 7-7
JSB/RSB Micro-Orders v ... 7-8
Counter @ e e e 79
ERRORMESSAGES 81
HP MICRODEBUGEDITOR 9-1
Requirementso 9-1
Modes of Operation 9-1
NormalMode., 9-2
DebugMode, 9-2
HP Micro Debug Editor Commands 9-3
Input Commands 9-3
Edit Commands 9-5
Output Commands 9-7
Termination Command 9-9
Debug Commands 9-9
The Initialization Program 912
Operating Instructions. 9-14
Loading the Micro Debug Editor 9-14
Debugging a Small Microprogram 9-14
Debugging a Large Microprogram 9-16
Punching Mask Tapes From an Object Tape 9-18

Loading a Microprogram Into WCS From an Object Tape 9-19

HP PROGRAMMABLE ROMWRITER 10-1
Requirements 10-1
Initial Parameters 000 10-1
General Operation. 10-3
Set-Up o e e 10-4
Burningo ool 10-5

ILLUSTRATIONS

1-1. Microprogramming Facilities 14
1-2. Microinstruction Format 1-5
1-3. Control Store Module Number as Stored
in an HP 2100 Microinstruetion 1-12
1-4, 32-bit DataItem Shifts 1-26
1-5. 17-bit Data Item Shifts 1-28
1-6. 16-bit Data Item Shifts 1-29
2-1. Object Code Illustration, 2-7
2-2. Object Microprogram Tape Format 29
2-3. Symbol Table Listing e e e 2-10
2-4. Source Microprogram Listing (first page) 2-11
2-5. Source Microprogram Listing (last page). 2-12
3-1. Symbolic Microinstruction Format 3-2
3-2. Standard Coding Form 3-6
6-1. Register Save Microprogram 6-2
6-2. Block Move Microprogram. 6-5
6-3. Table Search Microprogram 6-8
6-4. Initiator Section 6-14
6-5. Continuator Section. oL L. 6-16
7-1. Interrupt Example. 7-3
TABLES
1-1. Effect of the Various 105xxx Macro Instructions 1-8
1-2. Secondary Jump Table Usage 1-10
1-3. Microinstruction Commentary 1-11
1-4. Passing Control From an Assembly Language
Program to a Microprogram 1-12
1-5. Input Micro-Orders 1-21
1-6. Output Micro-Orders 1-22
2-1. Symbol Table Listing Format 2-6

3-1.
3-2.
6-1.
6-2.
6-3.
8-1.
9-1.
9-2.
10-1.

viii

TABLES (Continued)

Symbolic Microinstruction Format. 31
Valid Mnemonics, 3-5
Register Save Locations 6-3
Even Starting Byte Address 6-7
Odd Starting Byte Address 6-9
ErrorMessages 8-1
Micro Debug Editor Commands 9-4
Initialization Program. 9-13
Commands 10-4

INDEX OF HP 2100 MICRO-ORDERS

Note: In each case, the first page reference is that of
the description of the micro-order,

R-bus Field
A 4.2

AAB 4-2,75
B 4.2

CAB 4-3
CQ 43

F 4.2

NOP 4-1

Q 4-2

S-bus Field

ADR 4.5, 1-10, 1-11, 1-17
CIR 4-7

CL 4-6,1-7

CNTR 4-6,7-9
COND 4-7,7-5

CR 4-6, 1-7

101 4-7,1-21

M 4.5

NOP 4-4

P 4-4,1-16,1-17, 1-18
RRS 4-7

S1 44

S2 4-4

S3 45

S4 4.5

T 45

Function Field
ADD 4-14
ADDO 4-14
AND 49

ARS 4-11,1-26
CFLG 4-17
CIMP 4-13, 2-3, 7-1
CLO 4-17

CRS 4-12,1-26
DEC 4-15

DIV 4-14

INC 4-16

INCO 4-16

IOR 4-9,1-7
JMP 4-13, 1-6, 1-9, 2-3
JSB 4-14, 2-3,7-8
LGS 4-11,1-26
LWF 4-10, 1-28
MPY 4-15

NOR 4-10

P1A 4-18

RFE 4-17

RFI 417

RSB 4-14,7-8
SFLG 4-17

SOV 4-16

SUB 4-15

XOR 49

INDEX OF HP 2100 MICRO-ORDERS (Continued)

Store Field Special Field (Continued)
A 419 L1 4-23, 1-26, 1-28
AAB 4-21,76 LEP 4-25
B 4-19 NOP 4-22
CAB 4-21 R1 4-23, 1-26, 1-28
F 4-20 RSS 4-23
100 4-21,1-22 RW 4-24, 1-16, 1-17, 1-18, 1-23, 7-4
IR 4-19 SRG1 4-25
M 4-19 SRG2 4-25, 1-28
NOP 4-19
P 4-20 Skip Field
Q 4-20 AAB 4-29,7-6
S1 4-20 COUT 4-26
S2 4-20 CTR 4-26
S3 4-20 CTRI 4-26
S4 4-21 EOP 4-26
T 419 FLG 4-27
ICTR 4-27,7-9
Special Field NAAB 4-29
AAB 4-24,7-6 NEG 4-27
ASG1 4-24 NMPV 4-27,1-25,7-5
ASG2 4-24 NOP 4-26
CNTR 4-22,7-9 ODD 4-28
CW 4-22,1-24,7-5 OVF 4-28
ECYN 4-22 RPT 4-28,7-7
ECYZ 4-23 TBZ 4-29

10G1 4-23,1-21,1-22 UNC 4-29

SECTION
HP 2100 MICROPROGRAMMING OVERVIEW

An HP 2100 computer may include one to four control store modules
containing microprograms. These modules are referred to as modules

#0, #1, #2, and #3.

Control store module #0 is always present and is used exclusively for
the HP 2100 basic instruction set. The other three control store
modules are optional. An HP 2100 may include any of the following
control store module combinations:

0

Oand 1

0 and 2

0 and 3
0,1,and 2
0,1,and 3
0,2,and 3
0,1,2,and 3

The HP floating-point instruction set, if included in the HP 2100,
pre-empts module #1. Modules #2 and #3 are available for user-
supplied microprograms (as is module #1 if the floating-point instruc-
tion set is not expected to be used).

Each control store module contains 4005 (256,,) locations; each
location accommodates one microinstruction containing six micro-
orders, The locations in module #0 have the octal addresses 000-377;
those in module #1 have the octal addresses 400-777; those in module
#2 have the octal addresses 1000-1377; and those in module #3 have
the octal addresses 1400-1777.

This section has seven parts. The first part summarizes the entities that
the microprogrammer may work with; the second describes the format
of a microinstruction; the third discusses how to pass control from a

1-1

program to a microprogram; the fourth comments on jump table
conventions; the fifth describes microprogramming input/output; the
sixth describes how to pass data between core memory and control
store modules; and the last part describes microprogramming shift
operations.

MICROPROGRAMMING FACILITIES
The microprogrammer has the following entities to work with:

Thirteen registers

® A-register (16 bits)
B-register (16 bits)

Q‘:eglster (16 bits)
F-register (16 bits)
P-register (16 bits)
Four Scratch Pad Registers (16 bits each)

The shaded registers are available to the microprogrammer only
for a few strictly defined uses. The M- and T-registers are used
for accessing core memory locations. The Central Interrupt
Register is a read-only register that lets the microprogrammer
know which I/O device has caused an interrupt. The CPU
Instruction Register is used for performing input/output opera-
tions, for performing a special shift operation (shift data item
left four bit positions), for calling a microprogram by way of a
secondary jump table, and for passing a 4-bit parameter from
the calling program to a microprogram.

The other nine registers may be considered as general purpose
registers.

A five-bit hardware counter
A function generator
A shifter

Five 16-bit data paths between the registers, the counter, the
function generator, the shifter, and the I/O hardware

® R-bus

® S-bus

® ALU-bus
® T-bus

® [/O-bus

Four flip-flops

Flag (not to be confused with the I/O Flag)
Overflow

Extend

Carry

By examining Figure 1-1, most of the available microprogramming tasks
(referred to as micro-orders) are apparent. For example, a micro-order
can:

Read the contents of a register onto a bus.

Read the contents of a bus into a register.

Read the contents of the R-bus onto the S-bus.
Read the contents of the S-bus onto the I/O-bus.

1-3

1-4

Fi

T-Bus

lip-Flops I M-Register 14.________’
0 Flag [T-Register —I‘—_———_—_—_—_.

l CPU instruction Register;]‘-—-———-——————————’
Overflow

{ Counter

Extend

Carry

3 ——-——————-’{ A-Register J————’
'—'—-———-—-—-—b{ B-Register J—-—-———-’
———-—-—-—-—-——‘-b{ Q-Register }—-———-—-’
F————] F-Register P

R-Bus

A A

Function Generator

——-—————-————-)L P-Register J———————-—”
————————"(Scratch Pad Register 1 J——————————D
‘—‘————'—"iicratch Pad Register 2 J——-———-—————b

$-Bus

————-———-——’l Scratch Pad Register 3 }'————'—"———""
L —-——-—-———-—’r Scratch Pad Register 4 J—*————-—————P

L >

[Central Interrupt Register f

Figure 1-1. Microprogramming Facilities

1/0-Bus

® Read the contents of the I/O-bus onto the S-bus,

® (Cause the function generator and the shifter to perform a
function (e.g., add, subtract, logical “inclusive OR”, shift left
one bit position) using the contents of the R- and S-buses as
input. The result is automatically read onto the T-bus.

All the available micro-orders are described in section 4 of this manual.

MICROINSTRUCTION FORMAT

An HP 2100 microinstruction comprises 24 bits and is divided into six
fields as shown in figure 1-2.

Bits: 23-21 20-17 16-12 11-8 7-4 3-0

Field: R-Bus S-Bus Function Store Special Skip

Figure 1-2. Microinstruction Format

All micro-orders in a given microinstruction are executed simultane-
ously. Whenever a data item is read onto a bus, the data item is
available on the bus only during execution of that particular
microinstruction.

The R-bus field reads the contents of the specified register onto the
R-bus.

The S-bus field reads the contents of the specified register onto the
S-bus. It is also used for reading a constant or the contents of the R-bus
or I/O-bus onto the S-bus,

1-5

The Function field causes the function generator and the shifter to
perform the specified function using the contents of the R- and S-buses
as input. The result is automatically read onto the T-bus. The Function
field is also used for jumping and for manipulating the Overflow,
Extend, and Flag flip-flops.

The Store field reads the contents of the T-bus into the specified
register. It is also used for reading the contents of the S-bus into the
M-register, the T-register, the CPU Instruction Register, or onto the
1/O-bus.

The Special field is used for diverse purposes. It is used for initiating
input/output operations, for accessing core memory locations, for
loading the counter from the S-bus, for manipulating the Carry flip-
flop, and it is used in shifting operations for specifying which direction
the data is to be shifted.

The Skip field is used for skipping a microinstruction. If the condition
specified in the Skip field is true, the next sequential microinstruction
is skipped. In HP 2100 microprogramming, the term “skip” is used in
an unconventional way: if the skip condition is true, the next se-
quential microinstruction is not actually “jumped over”, but is forced
to be a NOP. The micro-order EOP (End of Phase) is used in the Skip
field to exit from a microprogram. When an EOP is sensed, the exit
occurs after the next microinstruction is executed. It should be noted
that if an EOP is in a microinstruction that is to be skipped, the EOP is
executed and the exit occurs after execution of the next sequential
microinstruction.

There are two cases where the usual function of the Special and Skip
fields is inhibited:

1) If the Function field specifies that a jump be performed, the
jump address is supplied in place of the Special and Skip fields.
The jump address may be in the form of an asterisk expression
or a symbolic address.

Examples: -- -- JMP -- *+20
- -- JMP -- XYZ

1-6

2) If the S-bus field specifies that a constant be read onto the
S-bus, the constant is supplied in place of the Special and Skip
fields.

Examples: -- CL IOR - 10
- CR IOR -- 311

The constant is always coded in the symbolic microinstruction
as an octal number.

CL specifies that the constant be read onto the leftmost eight
bits (8-15) of the S-bus; CR specifies that the constant be read
onto the rightmost eight bits (0-7) of the S-bus.

The Function field cannot contain a NOP. By convention, if a
pseudo-NOP is desired in the Function field (as in the above
example), an IOR is used.

ACCESSING A MICROPROGRAM

JUMP TABLES

One control store module must be designated as the entry module. This
decision is communicated to the hardware by a hardwired connection
on the control store board (A2),

To transfer control from a program to a microprogram, the program
executes a macro instruction whose format is 105xxx (octal), where
xxx is 000-377. This passes control to one of the first sixteen locations
of the entry module. See Table 1-1.

1-7

Table 1-1. Effect of the Various 105xxx Maecro Instructions

Control Store Location Jumped To
Value of xxx Entry Module

#1 #2 #3
000-017 400 1000 1400
020-037 401 1001 1401
040-057 402 1002 1402
060-077 403 1003 1403
100-117 404 1004 1404
120-137 405 1005 1405
140-157 406 1006 1406
160-177 407 1007 1407
200-217 410 1010 1410
220-237 411 1011 1411
240-257 412 1012 1412
260-277 413 1013 1413
300-317 414 1014 1414
320-337 415 1015 1415
340-357 416 1016 1416
360-377 417 1017 1417

The first sixteen locations of the entry module are referred to col-
lectively as the primary jump table. Each location in the primary jump
table normally contains a jump microinstruction which passes control
either to the desired microprogram or to a secondary jump table.

If secondary jump tables are not used, a maximum of 16 micro-
programs are callable. In this case, the calling program must use one of
the macro instructions 105000, 105020, 105040, 105060, 105100,
105120, 105140, 105160, 105200, 105220, 105240, 105260, 105300,
105320, 105340, or 105360.

1-8

Note: When secondary jump tables are not used, the only
reason for using any of the other 240 macro instruc-
tions would be to pass a four-bit parameter to the
microprogram. The passing of parameters is discussed
later in this section.

However, each microinstruction in the primary jump table may pass
control to another jump table (referred to as a secondary jump table).
Each secondary jump table may be up to 16 locations long. If every
microinstruction in the primary jump table points to a 16-location
secondary jump table, the maximum number of callable microprograms
increases to 256, The following paragraphs discuss the use of secondary
jump tables,

When a 105xxx macro instruction is executed, the instruction itself is
in the CPU Instruction Register. Whenever a jump microinstruction is
executed, the rightmost four bits (bits 0-3) of the S-bus are auto-
matically “OR”ed with the specified jump address. Usually the S-bus
contains all zeros and the specified jump address is not altered. How-
ever, microinstructions can read the contents of the CPU Instruction
Register onto the S-bus.

The following example demonstrates the use of a secondary jump table.
Assume that:

a) module #1 is the entry module

b) the second microinstruction in the primary jump table (control
store location 401) passes control to a secondary jump table

c) the secondary jump table resides in control store locations 500
through 517

The micro-coding is as shown in table 1-2.

When the macro instruction 105025 is executed by the calling program,
control passes to control store location 401 which, in turn, passes
control to control store location 776. The microinstructions at control
store locations 776 and 777 cause the rightmost four bits of the

19

Table 1-2. Secondary Jump Table Usage

Control Store Location Contents
401 -— - JMP -~ 776
500 through 517 JMP microinstructions
776 -- ADR IOR S1
777 -- S JMP -~ 500

105025 macro instruction (05, octal) to be “OR”ed with the jump
address (500), thus causing a jump to control store location 505. The
microinstruction in control store location 505 then passes control to
the desired microprogram.

Specifically, the microinstructions shown in control store locations 776
and 777 of the above example work as shown in table 1-3.

The microcoding in the above example may be used for jumping to
secondary jump tables that reside in modules #1 or #3 (the only
permissible variation being that Scratch Pad Register 3 may be used
instead of Scratch Pad Register 1).

If the secondary jump table resides in control modules #0 or #2, the

pair of microinstructions shown in control store locations 776 and 777
are combined into one microinstruction, as follows:

Control Store Location Contents

776 -- ADR JMP -- 500

Table 1-3. Microinstruction Commentary

First microinstruction:

® The ADR reads bits 0-9 of the CPU Instruction Register
onto the S-bus.

The 1OR reads the contents of the S-bus onto the T-bus.

The S1 reads the contents of the T-bus into Scratch Pad
Register 1.

Second microinstruction:

® The S1 reads the contents of Scratch Pad Register 1
onto the S-bus.

® The JMP passes control to the effective jump address.
The effective jump address is formed automatically by
"OR"ing bits 0-3 of the S-bus with the specified jump
address {500),

This difference results from the way the jump address is stored in the
microinstruction. Bits 0-7 of the microinstruction specify an address
000-377 while the least significant bit of the S-bus and Function fields
together specify what control store module is being jumped to:
00 = module #0, 01 = module #1, 10 = module #2, and 11 = module
#3. Figure 1-3 shows how the binary module addresses are stored in the
microinstruction.

As long as nothing is coded in the S-bus field, the microassembler
automatically sets these two bits to the proper values. However, when
the microprogrammer codes something in the S-bus field, he forces the
least significant bit of the S-bus field to be set either to a zero
or a one. An ADR micro-order sets the bit off (thus specifying control
store module #0 or #2) whereas an S1 micro-order sets the bit on (thus
specifying control store module #1 or #3).

11

Figure 1-3. Control Store Module Number as Stored in
HP 2100 Jump Microinstruction.

PASSING CONTROL FROM AN ASSEMBLY LANGUAGE
PROGRAM

There are two ways to pass control from an assembly language program
to a microprogram. The first applies only if the RAM (Random Access
Memory) psuedo-instruction is available; the second applies in any case.
The two methods are as illustrated in table 1-4.

Table 1-4. Passing Control From an Assembly
Language Program to a Microprogram

Method 1: RAM SWwWB

SWB EQU xxxB

Method 2: OCT 105xxx

The RAM pseudo-instruction automatically forms the 105xxx macro
instruction using the constant supplied in the EQU statement (the
105xxx macro instruction replaces the RAM pseudo-instruction). In
both cases, xxx is 000-377.

PASSING CONTROL FROM A FORTRAN PROGRAM

A FORTRAN program passes control to a microprogram indirectly by
way of an assembly language program.

For example, the FORTRAN statement
CALL XYZ(A,B)
generates the following calling sequence:

JSB XYZ

DEF *+3

DEF address of the first parameter
DEF address of the second parameter

When the above calling sequence is executed, control passes to the
assembly language program named XYZ. XYZ replaces the JSB XYZ
instruction in the above calling sequence with the 105xxx macro
instruction and then passes control to the 105xxx macro instruction.
The program XYZ is as follows:

ENT XYZ
XYZ NOP

LDA XYZ

ADA =D-1

LDB 105xxxB

STB 0

JMP 0,1

Notes: When the above calling sequence is executed, the
memory address of DEF *+3 is automatically stored
in the entry point location (XYZ NOP).

The A-register is referenced as memory location 0.

Specifically, the program XYZ works as follows:

® The LDA instruction loads the memory address of the DEF *+3
instruction into the A-register.

® The ADA instruction subtracts one from the contents of the
A-register. The A-register now contains the memory address of
the JSB XYZ instruction.

® The LDB instruction loads the 105xxx octal constant into the
B-register.

® The STB instruction stores the contents of the B-register in the
memory location pointed to by the A-register.

® The JMP instruction passes control to the memory location
pointed to by the A-register.

Note that the microprogrammer must be aware of the assembly
language calling sequence produced by the FORTRAN or ALGOL
compiler in order to properly access the parameters passed by the
calling program and to return control to the proper location in the
calling sequence (see “Passing Parameters” later in this section).

PASSING CONTROL FROM AN ALGOL PROGRAM

An ALGOL program passes control to a microprogram indirectly by
way of an assembly language program. The method is the same as
described for FORTR AN programs, above.

1-14

PASSING PARAMETERS
ASSEMBLY LANGUAGE PROGRAMS

There are three methods of passing parameters from an assembly
language program to a microprogram:

® Use the A- and/or B-registers.

® Use DEF or OCT statements immediately following either the
R AM psuedo-instruction or the octal 105xxx macro instruction.

® Use the rightmost four bits of the octal 105xxx macro
instruction.

With the first method, the calling program loads the parameters into the
A- and/or B-registers (using LDA and/or LDB instructions) just prior to
executing the 105xxx macro instruction. The microprogram could then
access the parameters directly from the registers. The microcode for
accessing the parameters in this manner would be as follows:

A -—- IOR * - -
B -- IOR * - --

* = any register

With the second method, the calling program supplies a series of OCT
and/or DEF statements immediately following the 105xxx macro
instruction. The OCT and DEF statements may either contain the
parameters or point to them. When control passes to the microprogram,
the P-register contains the address of the first instruction following the
105xxx macro instruction.

If the DEF or OCT statement actually contains the parameter, the
microprogram does the following:

® Reads the contents of the P-register into the M-register.

® Executes a read memory (RW) operation.

® Retrieves the parameter from the T-register and reads it into a
general purpose register.

® Increments the P-register,

The microcode would be as follows:
-- P IOR M RW --

-~ T IOR * -- --
-~ P INC P - --

* = any register

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter, as needed.

If the DEF or OCT statement contains the address of the parameter,
the microprogram does the following:

® Reads the contents of the P-register into the M-register.
¢ Executes a read memory (RW) operation.

® Retrieves the parameter address from the T-register and reads it
into the M-register.

¢ Executes another read memory (RW) operation.

® Retrieves the parameter from the T-register and reads it into a
general purpose register.

¢ Increments the P-register.

The microcode would be as follows:

1-16

-- P IOR M RW --

-~ T IOR S1 -- --
-~ S1 IOR M RW --
- T IOR * —- -
-~ P INC P -- --

* = any register

Again, if more than one parameter is being passed, the microprogram
executes the above microcode once for each parameter.

With the third method, the microprogram uses the ADR micro-order to
read bits 0-9 of the CPU Instruction Register onto the S-bus and then
reads the bits into a general purpose register. The microcode would be
as follows:

-- ADR IOR * -- --
* = any register

The three methods described above may be used in any combination.

FORTRAN PROGRAMS

A FORTRAN program passes parameters to a microprogram by supply-
ing them in parentheses in the CALL to the assembly language linkage
program, as follows:

CALL XYZ(15,100,500,7)

where XYZ is the entry point of the assembly language linkage
program; and
15, 100, 500, and 7 are the actual parameters being passed.

After the assembly language linkage program has performed its func-
tion, the following calling sequence is executed:

117

oCT 105xxx

DEF *+5 (this is the return address)
DEF address of the first parameter
DEF address of the second parameter
DEF address of the third parameter
DEF address of the fourth parameter

When the microprogram receives control, the P-register is pointing to
the instruction immediately following the octal 105xxx macro instruc-
tion (i.e., it is pointing to the return address). To access the parameters,
the microprogram does the following:

® Increments the P-register.

® Reads the contents of the P-register into the M-register.

® [Executes a read memory (RW) operation.

® Retrieves the parameter address from the T-register and reads
it into the M-register.

® Executes another read memory (RW) operation.

® Retrieves the parameter from the T-register and reads it into a
general purpose register.

The microcode would be as follows:

-- P INC P -~ --

-- -- JSB -~ GETAD

-- 81 IOR * -- --
GETAD -- P IOR M RW --
GETAX -- T IOR ST -- NEG

~- -- RSB -—- - --

-- S1 IOR M RW --

~- -- JMP -~ GETAX

* = any register

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter. The GETAD routine
handles multiple levels of indirect addressing. After accessing the final
parameter, however, the microprogram must increment the P-register
one more time so it is pointing to the first instruction following the
calling sequence,

ALGOL PROGRAMS

The passing of parameters from an ALGOL program to a microprogram
involves the same technique described for FORTRAN programs, above.

JUMP TABLE CONVENTIONS

The jump table conventions are described on pages 3-6 through 3-8 of
the 2100 Computer Microprogramming Guide (5951-3028).

Note that these conventions in effect divide the primary jump table
among three control store modules (i.e., the first six locations reside in
module #1, the next five locations effectively reside in module #2, and
the last five locations effectively reside in module #3).

It is recommended, though not required, that the microprogrammer
adhere to these conventions.

In actual fact, the following generalizations apply:
® Any module (#1, #2, or #3) may be the entry module.

® Primary jump table entries may point backward or forward, and
may point to any location in modules #1, #2, or #3.

® Any primary jump table location may point to a secondary
jump table.

119

The following restrictions apply if the HP floating-point instruction set
is present:

® The HP floating-point instruction set must reside in module #1.

® The microprogrammer is restricted to the use of macro
instructions 105140 through 105377, These map into modules
#2 and #3 as shown on page 3-7 of the 2100 Computer
Microprogramming Guide.

1f HP options other than the floating-point instruction set are present,
similar restrictions apply.

INPUT/OUTPUT

This section discusses how to pass data during an input/output opera-
tion. Microprogrammed I/O operations that use the interrupt system
also require that certain control instructions such as STC xx,C and CLC
xxX be executed. This is done by loading the octal representation of the
particular instruction into the CPU Instruction Register and then
executing an I0G1 micro-order. See the teleprinter output driver
example in section 6 (“Sample Microprograms™) of this manual.

INPUT

An input operation transfers one character between an input device and
a register. The micro-orders for performing an input operation are as
shown in table 1-5.

1-20

Table 1-5. Input Micro-Orders

N o T R

-~ 10l IOR -- -- --
-~ 10l IOR * -- -

*=M,T,A,B,QF,P, S1,S82 83 orS4

Before executing the above micro-orders, however, the micro-
programmer must place the octal representation of an input instruction
(LIA, LIB, MIA, or MIB) in the CPU Instruction Register. 1025xx is an
LIA instruction, 1065xx is an LIB instruction, 1024xx is an MIA
instruction, and 1064xx is an MIB instruction (xx is the select code of
the desired input device).

The I0G1 causes the hardware to decode and execute the input
instruction. This results in one character being transmitted from the
input device to the I/O-bus. The IOI reads the character from the
I/O-bus onto the S-bus (this is done twice in order to compensate for
the possibility of noise occurring during the “I/O-bus to S-bus” data
transfer). The IOR in the last microinstruction reads the character from
the S-bus onto the T-bus; the Store field reads the character into the
specified register,

The micro-orders must be coded into four consecutive micro-
instructions and must be in the relative positions shown above. The
fields containing “--” are available for other tasks.

OuTPUT

An output operation transfers one character between a register and an
output device. The micro-orders for performing an output operation are
as shown in table 1-6.

1-21

Table 1-6. Output Micro-Orders

S (o]
* * ¥ IOR - - -
* ** JOR 100 -- --
* ** JOR 100 -- --

* = NOP or an R-bus register mnemonic

** = RRS or an S-bus register mnemonic (RRS reads
the contents of the R-bus onto the S-bus)

Before executing the above micro-orders, however, the micro-
programmer must load the octal representation of an output instruction
(OTA or OTB) into the CPU Instruction Register. 1026xx is an OTA
instruction and 1066xx is an OTB instruction (xx is the select code of
the desired output device).

The I0G1 causes the hardware to decode and execute the output
instruction. This results in one character being transmitted from the
I/O-bus to the output device. The S-bus field of the last three micro-
instructions reads the character onto the S-bus. The I00 in the last two
microinstructions reads the character from the S-bus onto the I/O-bus.
The repetition of the R-bus, S-bus, and Store field mnemonics (¥, **,
and I00) is necessary in order to compensate for the possibility of noise
occurring during the “S-bus to 1/O-bus” data transfer. The IOR in the
last three microinstructions is a “pseudo-NOP”,

The micro-orders must be coded into four consecutive microinstruc-
tions and must be in the relative positions shown above. The fields
containing “--” are available for other tasks.

1-22

ACCESSING CORE MEMORY LOCATIONS

By placing a core memory address in the M-register and then executing
an RW or CW micro-order, the microprogrammer can read data from a
core memory location or write data into a core memory location. The
T-register is always used for passing data between core memory and a
control store module.

READ FROM MEMORY

To read data from a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:

* RRS IOR M RW -
(or)
- ol IOR M RW -

where * is any R-bus register.
** is any S-bus register.

The specified register must contain the core memory address. The RW
micro-order initiates the “read from memory’’ operation.

The microprogrammer then retrieves the data from the T-register by
using the following microinstruction:

- T IOR * - -
where * is the register into which the data item is to be stored.
For example, to read the contents of core memory location 3004 into

the B-register, the microprogrammer could use the following
microinstructions:

1-23

- CR IOR 51 300
- S1 IOR M RW -
- T IOR B - -

WRITE INTO MEMORY

To write data into a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:

* RRS IOR M CW ok

(or)
- w IOR M CW **x

where * is any R-bus register.
is any S-bus register.
% js a “‘skip” micro-order (usually UNC or NMPV).

The specified register must contain the core memory address. The CW
micro-order initiates the “write into memory” operation. In order for
the operation to be performed, the next sequential microinstruction
must be skipped.

The microprogrammer then loads the data into the T-register by using
either of following microinstructions:

* RRS IOR T - -
(or)
- *k IOR T - -
where * is any R-bus register.

** is any S-bus register.

1-24

For example, to write a data word from the B-register into core
memory location 1004, the microprogrammer could use the following
microinstructions:

- CR IOR S1 100

- S1 IOR M Cw UNC
- - IOR - - -

B RRS IOR T - -

An NMPV micro-order is used for testing whether or not the specified
core memory address points to a location in the protected area of core
memory. The above example is again shown, only this time using
NMPV.

CR IOR S1 100

S1 DEC M CW NMPV
- JMP - ERROR

RRS IOR T - -

Bl =i

If a memory protect violation is detected, the “write into memory”
operation is not performed and control passes to ERROR. If no
memory protect violation is detected, the JMP microinstruction is
skipped and the “write into memory” operation is performed.

MICROPROGRAMMING SHIFT OPERATIONS

The microprogrammer can perform a variety of shift operations. In the
following paragraphs, the shift operations are categorized according to
the size of the data item being shifted.

125

LOGICAL LEFT SHIFT:

F NOP LGS F L

F-Registar Q-Register
Lost Hﬂai- e e . 11 qu-——-hs 1@« « « « o+ 1J_o]4—— Zero
W NN NS LA

ARITHMETIC LEFT SHIFT:

F-Register

F NOP ARS F L1

Q-Register

I’fbﬂ' P
‘/\/

Lost

CIRCULAR LEFT SHIFT:

F-Register

F NOP CRS F L

Q-Raegister

15114[
N/

LOGICAL RIGHT SHIFT:

B-Register -

B NOP LGS B R1

A-Reqister

Zero—){ﬁi 14r- . e .

AN A

ARITHMETIC RIGHT SHIFT:

B-Register

B NQOP ARS B R1

A-Register

L15I14 L. s e s

30K DI
AA AA

UAA

CIRCULAR RIGHT SHIFT:

B-Register

8 NOP CRS] R1

A-Register

15F41. N
NANA

T ebsEm - e
ANS \AA AA

Figure 1-4. 32-bit Data Item Shifts

1-26

32-8IT DATA ITEMS

The data item must be in the B- and A-registers (for right shifts) or the
F- and Q-registers (for left shifts).

For right shifts, the B-register contains the high-order 16 bits and the
A-register contains the low-order 16 bits. For left shifts, the F-register
contains the high-order 16 bits and the Q-register contains the low-
order 16 bits.

The various 32-bit data item shift operations are shown in figure 1-4.

17-BIT DATA ITEMS

The LWF micro-order allows the microprogrammer to shift the Flag
flip-flop in conjunction with the contents of any register,

The 17-bit data item shift operations are shown in figure 1-5.

16-BIT DATA ITEMS

The data item may be in any register. There are two types of 16-bit
data item shift operations: a logical shift and a circular shift. The logical
shifts are shown in figure 1-6.

The circular shift operation results in the data item being rotated four
bit positions to the left. This is accomplished by using the Shift-Rotate
Group (SRG) instruction decoders.

The microprogrammer must first load the constant 000027, into the
CPU Instruction Register. This is done using the following
microinstruction:

NOP CR IOR iR 21

1-27

CIRCULAR RIGHT SHIFT: . NOR LWE o« a1 =
. en e
NOP t+ UWE e+ @1 - 1

* = Any R-Bus Register ** = Any S-bus Register

Figure 1-5. 17-bit Data Item Shifts

Each time the data item is to be rotated four bit positions to the left,
the microprogrammer executes either of the following:

* NOP IOR * SRG2 -
(or)
NOp #x* IOR * SRG2 -
where * is any R-bus register and ** is any S-bus register. The only

restriction is that the same Scratch Pad Register cannot be specified in
both the S-bus and Store fields of the same microinstruction.

1-28

. =

= Any R-Bus Register e

Any S-Bus Register

Figure 1-6. 16-bit Data Item Logical Shifts

For example, to rotate the contents of the B-register eight positions to

the left, the microprogrammer would use the following micro-
instructions:

NOP CR IOR IR 27

B NOP IOR B SRG2 -
B NOP IOR B SRG2 -

1-29

SECTION
GENERAL DESCRIPTION OF THE HP MICROASSEMBLER

The HP Microassembler translates symbolic source language micro-
instructions into a machine language object microprogram. Source
input is read from either punched cards or paper tape; the object
program is punched on paper tape in a format acceptable to the HP
Micro Debug Editor. The source language provides:

® Alphanumeric mnemonics for each micro-order.
® Symbolic addressing capability.

® A set of assembler control statements for controlling the
assembly process.

The HP Microassembler is designed to run under the Basic Control
System (BCS) and requires a minimum of 8K of memory. In addition,
it requires a system console device (teleprinter or CRT terminal), a line
printer, a paper tape photoreader, a paper tape punch, and a card
reader.

In an 8K BCS environment, neither the magnetic tape driver nor the
buffered version of I0C should be used. In addition, instead of actually
loading the assembler and relocatable library into memory, the user
must produce an absolute punched tape and then load the absolute tape
into memory using the Basic Binary Loader. The operating instructions
for producing the absolute tape are presented in the Software Operating
Procedures manual (5951-1369). In this regard, it should be noted that
the assembler is loaded at step 5 and the BCS relocatable library is
loaded at step 7. The operating instructions for loading the absolute
tape into memory using the Basic Binary Loader are presented on pages
2100-10 and 2100-11 of the Software Operating Procedures manual,

21

THE ASSEMBLY PROCESS

The assembling of a source microprogram into an object microprogram
is a two-pass operation. A pass is defined as one processing cycle of the
source input.

In the first pass, the microassembler reads the entire source micro-
program and creates a symbol table (discussed later in this section)
based upon the statement labels that are used. In addition, it checks for
duplicate labels and, if necessary, generates appropriate error messages.

In the second pass, the microassembler again reads the entire source
microprogram and, using the symbol table, resolves all references to
symbolic addresses. In addition, it checks for more errors and, if
necessary, generates appropriate error messages. It is during Pass 2 that
the object program is created. At the end of Pass 2, the assembly listing
is printed and (if no fatal errors were detected) the object micro-
program is punched.

There are two types of error messages: warning and fatal. Waming
messages are merely informational, drawing the microprogrammer’s
attention to questionable, but not always illegal, microprogramming
usage. Warning messages do not curtail the assembly process. Fatal
errors, on the other hand, prevent the object program from being
punched. All warning and fatal error messages are presented in section
8, “Error Messages”, of this manual.

The assembly listing contains a copy of the symbol table, a copy of the
source language microprogram, plus any error messages. To facilitate
debugging, each error message immediately preceeds the offending
source statement. The assembly listing is discussed in greater detail later
in this section.

Usually the microassembler halts at the end of Pass 1 to allow the
operator to reload the source input in the input device. However, if a
magnetic tape drive is available, the microprogrammer may use an
assembler control statement (§PASS2) to cause the input to Pass 1 to
be copied to magnetic tape for use as input to Pass 2.

2-2

PROGRAM LOCATION COUNTER

The microassembler maintains a counter, called the program location
counter, that is used for assigning absolute control store addresses to
successive microinstructions. By using an assembler control statement
($ORIGIN), the microprogrammer may reset this counter to any
desired value. $ORIGIN statements may appear anywhere within a
source language microprogram. If no $ORIGIN statements are used, the
program location counter is originally set to 400, and is incremented
by one for each successive microinstruction.

SYMBOLIC ADDRESSING

Each source language microinstruction may include an alphanumeric
statement label. The statement label, if present, is the microinstruc-
tion’s symbolic address. Symbolic addresses may be used as jump
addresses in JMP, JSB, and CIMP microinstructions.

During Pass 1 the microassembler compiles a table, called the symbol
table, containing all statement labels used in the microprogram, With
each symbol, the microassembler also records the absolute control store
address assigned to the associated microinstruction. In addition, the
symbol table contains all external symbols that are declared in an
$EXTERNALS assembler control statement.

Whenever it encounters a symbol as the jump address in a jump
microinstruction, the microassembler consults the symbol table and
replaces the symbolic jump address with the appropriate absolute
control store address.

There are three rules pertaining to the use of symbolic addresses
(violation of any constitutes a fatal error):

2-3

1) Two microinstructions may not have the same statement label.

2) A microinstruction may not have a statement label identical to
a declared external symbol,

3) Symbols used as jump addresses must be defined somewhere in
the microprogram.

A symbol is defined if it is used as a statement label or if it appears in
an $SEXTERNALS assembler control statement.

ASTERISK (*) AS AN ADDRESS

The microprogrammer may use an asterisk expression as a jump address
in JMP, JSB, or CIMP microinstructions. When used in this manner, the
asterisk means “the address of the present microinstruction”. Thus, the
microinstruction:

- - JMP - *+10

causes control to pass to the tenth microinstruction following the JMP
*+10 microinstruction. Similarly, the microinstruction:

- - JMP - *-p

causes control to pass to the sixth microinstruction preceding the JMP
*—6 microinstruction,

ASSEMBLY OPTIONS

Through the use of assembler control statements, the microprogrammer
can do the following (the statement mnemonic is shown in
parentheses):

2-4

Specify what device is to be used for reading the source input
($INPUT).

Specify what device is to be used for punching the object
program ($OUTPUT).

Specify what device is to be used for printing the assembly
listing ($LIST).

Cause the input to Pass 1 to be copied to magnetic tape for use
as input to Pass 2 ($PASS2).

Suppress all warning messages ($SUPPRESS).

Reset the program location counter ($ORIGIN).

Define external symbolic addresses (SEXTERNALS).

Specify that the debug option is to be used ($DEBUG). The

debug option affects the mode of operation of the HP Micro
Debug Editor. See section 9 of this manual.

The assembler control statements are described in section 5 of this
manual.

ASSEMBLER OUTPUT

The microassembler produces a printed listing and a punched paper
tape. The punched tape contains the object microprogram in a format
acceptable to the HP Micro Debug Editor. The format is illustrated in
Figure 2-2.

The assembly listing is in two parts: a symbol table listing and a source
microprogram listing (error messages, if present, are interspersed among

25

the source statements). Figure 2-3 shows a symbol table listing while
figures 2-4 and 2.5 show the first and last pages, respectively, of a
source microprogram listing. All three figures are extracted from the
same assembly listing.

SYMBOL TABLE LISTING

External symbols are listed first. They are in the order in which they
were defined in the SEXTERNALS statements. In the symbol table
listing, an external symbol is easily identifiable by the “X” immediately
following the associated absolute control store address.

The symbols that appear as statement labels within the source micro-
program are listed next. Note that they are listed in ascending order by
absolute control store address.

Specifically, the format of a symbol table listing is as shown in table
2-1.

Table 2-1. Symbol Table Listing Format

Print Positions Contents
1-5 Symbol
9-14 Absolute Control Store Address
15 X (if external symbot)
blank {if internal statement label)

SOURCE MICROPROGRAM LISTING

Every source statement in the microprogram is assigned a decimal line
number. These line numbers appear in print positions 1 through 3 of
each line in the listing.

2-6

Assembler control statements and comments statements are printed,
starting in print position 4, exactly as they appear in the source input.

For microinstruction statements, however, two additional fields are
displayed:

® the absolute control store address assigned to the
microinstruction

® the machine language object code for the microinstruction
The control store address appears in print positions 6 through 9. The
octal representation of the machine language object code appears in
print positions 11 through 20.

The object code is interpreted as follows:

® the leftmost three octal digits represent bits 16 through 23 of
the machine language microinstruction

® the rightmost six octal digits represent bits O through 15 of the
machine language microinstruction

This is best illustrated by example. The object code 375 017533
represents the bit pattern shown in figure 2-1.

Bit-{23722] + l21f20l19} - 118)17]16}
1) 11 1ol

8it |15 1413112 11}10] 9 8|76 sjal3 2)110
0 E)o1 ARER 1101 o|1]» o|1]1
] . L

Figure 2-1. Object Code Illustration

The source language microinstruction is then printed, starting in print
position 24, exactly as it appears in the source input. Note that if a
teleprinter or an 80-column line printer is used for printing the
assembly listing, the source statements are truncated after columns 48
and 56, respectively.

The final line of the source microprogram listing tells the program
length and the total number of messages in the listing. Note that the
length is specified in octal and it refers to the number of control store
locations that the object program requires (maximum allowable = 4004
per module).

Warning and fatal error messages immediately precede the offending
source statement. The messages are in the following form:

**WARNING xx IN LINE yy*#
#*ERROR xx IN LINE yy**

where xx is the message number (see section 8 of this manual) and yy is
the line number of the offending statement.

2-8

fRecord Length

Tape Record ORIGIN

Debug Mode Flag

8 Bit Address
Bits 23 - 16

Microinstruction
Bits 15 - 8

Bits7-0

Microinstruction

Biank Waord

Chech {Arithraetic)

Notes:

The record length, tape record origin, debug mode
flag, blank word, and checksum each consist of one
computer word {two tape characters).

Each microinstruction consists of two computer
words (four tape characters).

A tape record may contain a maximum of 27 micro-
instructions.

Whenever a new origin is declared (via an $ORIGIN
assembler control statement). a new tape record is
begun.

The tape record length can be from 7 to 59 computer
words.

Figure 2-2. Object Microprogram Tape Format

29

SYMROL TABLF

STON ¢aiage
TBLY 291628
LDCH CLETA N
GETC® 28Rl
GOONE 281043

TAL 01046
RELX AB1052
TALY 331861
LOW antar7

STCH 381104
pPUTCH LLARRY
PUTCS 981116
PUTX 201123
PLEFY ¢d41125

TaS A1 134
TASX qo1140
TASY #01342

TASE 3613163
SCAN aR1165
SCANL Aa1172
MOVE aa12e3
Mova 91204
MOVEL pR1226
MOVED An1246
MOVEI ani247
MOVS 081250
HOVe 831251
SAVE an1261
RESTO en33e1
JENTP BP1320
JENTR p@1322
LJENTL @@1344
LENTU 201351
JENTX 31354
GETAD @@1358
GETAL 291357
GETAX @@1361
OPGET @@1363

Figure 2-3. Symbol Table Listing

2-10

130RIGIN 1002

2+ STOW = STNRE WORD INTD A THREADED BUFFER
3 129m 375 m17834 STOM 138 TAS CK ADDR,
1081 737 1720847 A I0R S4 Ry THZ S84 1= WORD ADDR
5 19082 160 260712 F S4 DEC ™ CW NMPV STORE WORD
6 1003 139 @570n2 § CR suB & 2 1F ILLEGAL RESET A
7 1284 a5t 171375 8 RRS lOR T
8 1005 @30 137092 A CR ADD & 2 UPDATE ADDR,
9 PRIMARY JMP TABLE
10 1006 355 937420 ADR JNP Bl
11 137 375 237693 Jup MOVE
12 1413 375 a3I7565 JHP SCAN
13 1911 355 a37431 ADR JuP LOCH
14 1912 355 p37%24 ADR JuP STCH
15 1813 377 #37413 JNP 4400
16 10214 377 937414 LT *2400
17 1015 377 837415 JHP »+408
18 1016 377 @a37416 JMP «+ 400
19 1817 377 v37437 JIMP »+400
20+ SECONDARY JMP TABLE
21 1820 377 176775 T8Ly 1I0R 8 EOP 1,0,
22 1921 379 @57e02 CR SuB A 2
23 10827 375 a374em JMP STOW
24 1823 375 837477 JnP LDOW
25 1024 378 837477 JMP LOK
26 1025 375 a37461 JuP SAVE
27 1826 375 837701 Jup RESTO
2B 1027 375 a3rro2 Jup WENTR
29 10830 375 93772 JMP JENTP
32+
31
32¢ GETC « GET A CHARACTER
33
34 1R(813)) @ w THREADED, NO RELEASE
35 1 » THREADED, RELEASE
369 2 » LINEAR
37
38 1831 377 177777 LDCH 10R JuMP PADING
39 1832 375 @17446 Jsh TAL CK ADDR
49 19033 237 122a57 GETCO a LWk S4 R1 84 13 WORD ADDR
41 1834 364 173757 84 10R M A START READ
42 1835 36 117377 A INC A UPDATE ADDR
43 10836 371 171427 CR IoR IR 27 IRI® ALF
44 {A37 345 176406 T 10R 8 RSS FLG
Figure 2-4. Source Microprogram Listing (First Page)

GETAD

226 AR5377
122 137403
362 155377
361 176777
367 (72777
035 234154

375 a17758
160 26712
375 37754
367 171377
364 116777
374 114377
136 1195367
875 032344
365 174375
363 177377

375 170757
345 173763
377 087777
367 170757
375 @37757

367 174757
345 953377

END

319 1336
32m 1337
321 1347
322 134}
323 1342
324 1343
325+«

326 1344
327 1345
328 1346
329 1347
333 1384
RESY 1351
332 1352
333 1353
334 1354
335 1355
336

337

338 1356
339 1357
34D 1364
341 1361
342 1362
343

344 1363
345 1364
346+«

347+
JA8SEND
#+NO ERRORS##

JENTL

JENTC

LENTX

AND OPGFT

GETAD
GETAL

GETAX

OFGET

>

@D

51
§3
53
54
S1

S4

51
$4

32
83

-

31

suB
ADD
NOR
10R
10R
JIMP

Jeg
DEC
IMP
10R
INT
INC
INC
Jup
10R
IoR

I0R
I0R
RSB
10R
JMP

I10R
RSB

x

> VN e UE —
o

RS5 NEG

JENTC
GETAD

CW NMPV
JENTX

JENTL
EOP

NEG

RW
GETAL

RW

Q1% =LENG ASKED ef
ASKED IS SHMALLER

OR ALLOWED Is1i
Ck FOR ZERQ

S11aNEXT PARM
STORE NEXT PARM
(MEM y1DLATION)

INC OUT PTR,S570 TEM
INC IN PTR

DONE?

NO,RESET QUTPTR, 60O
EXIT, RESTORE P

GeT ADDR
INDIRECT?
NG, EXIT
YES, READ AGAIN

GET PARAM

Figure 2-5.

Source Microprogram Listing (Last Page)

SECTION
SYMBOLIC STATEMENT FORMAT

Source microprograms must be coded using the symbolic statement
format described in this chapter.

Each symbolic statement is 80 character positions long and contains the
fields shown in table 3-1.

Table 3-1. Symbolic Microinstruction Format

Field Character Positions

Label 1-5

R-bus 7-9

S-bus 11-14
Function 16-19
Store 21-24
Special 26-29
Skip 31-34
Comments 36-80

Figure 3-1 illustrates the symbolic microinstruction format on an
80-column punched card.

31

Label R-Bus S-Bus Function Store Special Skip
Field Fleld Field Field Flaid Fieid Field Comments Field

ooocoofoccooccjocoofoocosocoooooofjocoodoctooodonanes
(EERE] FNE] NEANY CREN HEREER) LIEYR HEFRY PR rp gt e g prps e e LEDANK
[NRER] IRR! IRRR! LRRA! IRRE] LERE] 1RAR! IRRARRARREARRERRRN! [RRARER]
2222202222222[0222 2022222222222 2022222222222222221212

3333333333333 333333333333 R333333333333333333

LEEXR] tRR! CRNN] IXNN] IRER] LREY: (EER] IERERT RNy PEEE P

5555 S S5 S ST S S S S S SIS SME55555555553553353
65666 MAGEME666M666CM666 G600 OO MEGE6666666666553:

11111 IRRER] IRRE] IRRR] 1RRE] IEER] IRRRRREERRERRERREEE
88888 LR RX] (RRN] ERXX] CRER! LRRR] ERRERREEERRERRRIEE]
EEEER] tEE] EEEE] CEEE! CKEE! iREEl CREE EEEREFESEREEEEREREE)

2p
v2yes vroullsiasnlinzaslizsanflr cuull- V0 2QUERTeLRLS
GLOBE

Figure 3-1, Symbolic Microinstruction Format

SYMBOLIC STATEMENT FIELDS

LABEL FIELD

This field is used for assigning a symbolic address to a microinstruction.
Statement labels are used as jump addresses in JMP, JSB, and CJMP
microinstructions. A valid statement label consists of 1 to 5 alpha-
numeric characters, of which the first character is not a dollar sign ($)
or an asterisk (*). Statement labels must begin in character position 1
and may not contain embedded blanks. The Label field may, of course,
be entirely blank (i.e., a microinstruction may be unlabeled).

An asterisk in character position 1 specifies that the remaining 79
character positions contain an alphanumeric comment. Such statements

3-2

appear in the source microprogram listing but are otherwise ignored by
the microassembler.

A dollar sign in character position 1 specifies that the source statement
is an assembler control statement. See section 5 of this manual.

R-BUS FIELD

This field corresponds to the R-bus field of an HP 2100 microinstruc-
tion. The purpose of the R-bus field is summarized in section 1 of this
manual.

The R-bus field may be entirely blank or may contain any of micro-
order mnemonics shown in column 1 of table 3-2. The effect of each
mnemonic is described in section 4 of this manual. If a mnemonic is
used, it must begin in character position 7. If the R-bus field is entirely
blank, the microassembler automatically supplies a NOP.

S-BUS FIELD

This field corresponds to the S-bus field of an HP 2100 microinstruc-
tion. The purpose of the S-bus field is summarized in section 1 of this
manual.

The S-bus field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 2 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 11. If the S-bus field is
entirely blank, the microassembler automatically supplies a NOP.

FUNCTION FIELD

This field corresponds to the Function field of an HP 2100 micro-
instruction. The purpose of the Function field is summarized in section
1 of this manual.

3-3

The Function field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 3 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 16. If the Function field is
entirely blank, the microassembler automatically supplies an IOR.

STORE FIELD

This field corresponds to the Store field of an HP 2100 microinstruc-
tion. The purpose of the Store field is summarized in section 1 of this
manual.

The Store field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 4 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 21. If the Store field is
entirely blank, the microassembler automatically supplies a NOP.

SPECIAL FIELD

This field corresponds to the Special field of an HP 2100 microinstruc-
tion. The purpose of the Special field is summarized in section 1 of this
manual.

The Special field may be entirely blank or may contain any of the
micro-order mnemonies shown in column 5 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 26. If the Special field is
entirely blank, the microassembler automatically supplies a NOP.

SKIP FIELD

This field corresponds to the Skip field of an HP 2100 micro-
instruction. The purpose of the Skip field is summarized in section 1 of
this manual.

3-4

The Skip field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 6 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 31. If the Skip field is
entirely blank, the microassembler automatically supplies a NOP,

Table 3-2. Valid Mnemonics

R-bus S-bus Function Store Special Skip
NOP NOP IOR NQP NOP NOP
A P XOR M CNTR EOP
B S1 AND T Cw couT
Q S2 NOR IR ECYN CTR
F S3 LWF A ECYZ CTRI
AAB sS4 ARS B 10G1 FLG
CAB M LGS Q L1 ICTR
cQ T CRS F R1 NEG
ADR JMP P RSS NMPV
CNTR CJMP S1 RW OoDD
CL JSB S2 AAB OVF
CR RSB S3 ASG1 RPT
CIR ADD sS4 ASG2 TBZ
101 ADDO 100 LEP UNC
RRS SuB AAB SRG1 AAB
COND MPY CAB SRG2 NAAB
DIV
DEC
INC
INCO
sov
CLO
SFLG
CFLG
RFE
RFI
P1A

35

sz10600120

Vb 340438 400RNY A8 0ILINIO S INIT Punatver omiaz

(47781 G334 INIVNBNLIE AB QILYNIMMIL INIT TwmaIw el INO = T U0+ O whay = O owaz -4
os . o o o o o o o P R R S VI S TS R VIR S TR ST .
P P L
| L L
L i | H
i ;
I S T I . SN
; ; | |
B i ; 1 | REE
! i I
0 - o m = - m - o [G B A G C G S R R O S R B O i
PR I e
Sanamned ssauany awor suoss | [nowswns| | soms | 1somu| | maen
e
s owa — PRV _ aiva _ [F——

WHO4 ONIGOD HITGWISSYOUDIN 0012 GHVYIIVAsLLITMIH

Figure 3-2. Standard Coding Form

3-6

COMMENTS FIELD

This field may be freely used by the microprogrammer to introduce
alphanumeric comments into the assembly listing. Other than this, the
Comments field is ignored by the microassembler.

STANDARD CODING FORM

Hewlett-Packard provides a standard form to facilitate the coding of
source microprograms. This form is illustrated in figure 3-2.

37

MICRO-ORDERS 4

This section describes what each micro-order does. It is assumed that
the microprogrammer has read both the 2100 Computer Micro-
programming Guide and the overview presented in section 1 of this
manual. A few of the descriptions (e.g., MPY, DIV, etc.) refer the
reader to the 2100 Computer Microprogramming Guide.

To facilitate learning, the more esoteric information is shaded. The
reader should concentrate first on the unshaded material. The shaded
information pertains mainly to, but is not limited to, module #0
programming. In conjunction with such descriptions, the reader should
study section 7, “Miscellany”, of this manual.

R-BUS FIELD

The following micro-order mnemonics are valid in the R-bus field of an
HP 2100 microinstruction:

NOP A B Q F

Reads all zeros onto the R-bus.

41

Reads the contents of the A-register onto the R-bus, The information in
the register is not altered.

Reads the contents of the B-register onto the R-bus. The information in
the register is not altered.

Reads the contents of the Q-register onto the R-bus. The information in
the register is not altered.

Reads the contents of the F-register onto the R-bus. The information in
the register is not altered.

CAUTION

The CQ micro-order is not intended for use in special
microprogramming. The use of CQ will effect the
operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con-
tinued use of existing software, it will be necessary to
rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support quarantees.

a3

S-BUS FIELD

The following micro-order mnemonics are valid in the S-bus field of an
HP 2100 microinstruction:

NOP P S1 S2 83 S4 M T ADR

CNTR CL CR CIR IOl RRS.

Reads all zeros onto the S-bus.

Reads the contents of the P-register onto the S-bus. The information in
the register is not altered.

Reads the contents of Scratch Pad Register 1 onto the S-bus. The
information in the register is not altered.

Reads the contents of Scratch Pad Register 2 onto the S-bus. The
information in the register is not altered.

4-4

Reads the contents of Scratch Pad Register 3 onto the S-bus. The
information in the register is not altered.

Reads the contents of Scratch Pad Register 4 onto the S-bus. The
information in the register is not altered.

Reads the contents of the M-register onto bits 0-14 of the S-bus (bit 15
of the S-bus is set to a zero). The information in the register is not
altered.

Reads the contents of the T-register onto the S-bus. The information in
the register is not altered.

Reads bits 0-9 of the CPU Instruction Register onto bits 0-9 of the
S-bus. The information in the register is not altered.

4.5

If bit 10 of the CPU Instruction Register is set (1), then bits 10-15 of
the P-register are read onto bits 10-15 of the S-bus. The information in
the P-register is not altered. If bit 10 of the CPU Instruction Register is
clear (0), then bits 10-15 of the S-bus are set to zeros.

Reads the contents of the counter onto bits 0-4 of the S-bus (bits 5-15
of the S-bus are set to zeros). The information in the counter is not
altered.

Reads an eight-bit constant onto bits 8-15 of the S-bus (bits 0-7 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CL is coded in the S-bus field, normal
execution of the Special and Skip fields is inhibited.

Reads an eight-bit constant onto bits 0-7 of the S-bus (bits 8-15 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CR is coded in the S-bus field,
normal execution of the Special and Skip fields is inhibited.

46

Reads the contents of the Central Interrupt Register onto bits 0-5 of
the S-bus (bits 6-15 of the S-bus are set to zeros). The information in
the register is not altered.

Reads the contents of the I/O-bus onto the S-bus.

e e e e e
inﬁ%mgﬁvm s .

. .
. .

. . .
. -

e
T
o

=
;

.
u ..

g%

FUNCTION FIELD

The following micro-order mnemonics are valid in the Function field of
an HP 2100 microinstruction:

Logical operators:
Shift operators:

Jump operators:

Arithmetic operators:

Flip-flop operators:

Phase operators:

IOR
LWF
JMP

ADD
DEC

SOV

XOR
ARS
Cimp

ADDO
INC

CLO

AND NOR

LGS CRS

JSB RSB

SUB

INCO

SFLG CFLG RFE

The Function field cannot contain a NOP, By convention, an IOR is
used whenever a Function field pseudo-NOP is desired. When an IOR is
used in this manner, a logical “inclusive OR” is still performed by the

function generator.

4-8

Refer to figure 1-1. The function generator and the shifter use a pair of
inputs: the contents of the R-bus and the contents of the S-bus. If a
non-shifting operation is specified (e.g., ADD, IOR, AND, etc), the
result of the operation passes from the function generator onto the
ALU-bus, into the shifter, and then onto the T-bus without being
altered. If a shift operation is specified, the result is available as
described under the individual shift mnemonics (LWF, ARS, LGS, and
CRS) later in this section.

LOGICAL OPERATORS

Causes the function generator to perform a logical “inclusive OR”.

Causes the function generator to perform a logical “exclusive OR”.

Causes the function generator to perform a logical “AND”.

49

Causes the function generator to perform a logical “NOR”. If a NOP is
specified in either the R-bus or S-bus field, the complement of the
other is obtained. If both the R-bus and S-bus fields contain a NOP, the
function generator passes all ones onto the ALU-bus.

SHIFT OPERATORS

The LWF micro-order allows the programmer to shift the contents of
the Flag flip-flop in conjunction with the contents of a register,

If L1 is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the left. The flip-flop bit is shifted into bit O of the register,
bit 15 of the register is shifted into the flip-flop, and bits 0-14 of the
register are shifted one position to the left.

If R1 is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the right. The flip-flop bit is shifted into bit 15 of the
register, bit 0 of the register is shifted into the flip-flop, and bits 1-15 of
the register are shifted one position to the right.

LWF also causes the function generator to perform an IOR.

4-10

Causes an arithmetic shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(R1 =right; L1 = left).

For right shifts, the B- and A-registers are used: the B-register contains
the sign bit plus the high-order fifteen data bits and the A-register
contains the low-order sixteen data bits. All 32 bits are shifted one bit
position to the right (the sign bit is unchanged, bit 0 of the A-register is
lost).

The required microcoding is
B - ARS B Rl *

The Skip field (*) is available for any valid use.

For left shifts, the F- and Q-registers are used: the F-register contains
the sign bit plus the high-order fifteen data bits and the Q-register
contains the low-order sixteen data bits. The sign bit is unchanged and
the 31 data bits are shifted one bit position to the left (bit 14 of the
F-register is lost, bit 0 of the Q-register is set to a zero).

The required microcoding is
F - ARS F L1 *

The Skip field (*) is available for any valid use.

Causes a logical shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(R1 = right; L1 = left).

For right shifts, the B- and A-registers are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are shifted one bit position to the right (bit 15
of the B-register is set to zero, bit 0 of the A-register is lost).
The required microcoding is

B - LGS B Rl *
The Skip field (*) is available for any valid use.
For left shifts, the F- and Q-registers are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order

sixteen bits. All 32 bits are shifted one bit position to the left (bit 15 of
the F-register is lost, bit 0 of the Q register is set to a zero).

The required microcoding is
F - LGS F L1 =

The Skip field (¥*) is available for any valid use.

Causes a circular shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(R1 = right; L1 = left).

For right shifts, the B- and A-registers are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the right (bit 0
of the A-register is shifted into bit 15 of the B-register).

4-12

The required microcoding is

B - CRS B R1 *
The Skip field (*) is available for any valid use.
For left shifts, the F- and Q-registers are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the left (bit 15
of the B-register is shifted into bit 0 of the A-register).
The required microcoding is

F - CRS F L1 *

The Skip field is available for any valid use.

JUMP OPERATORS

JMP

Causes control to pass to the specified jump address.

CJMP

Causes control to pass to the specified jump address only if an I/0O
interrupt or a front panel halt has occurred. In single cycle operation,
the computer halts unconditionally upon execution of a CJMP micro-
order (this is useful in diagnostics) and the jump is not executed.

413

Causes control to pass to the specified jump address. The address of the
next sequential microinstruction is saved as a return address. This
micro-order is used for passing control to a subroutine.

Causes control to pass to the return address. This micro-order is used
for exiting from a subroutine.

ARITHMETIC OPERATORS

Adds the contents of the S-bus to the contents of the R-bus (the

overflow logic is disabled). The overflow logic is discussed under
ADDO, below.

Adds the contents of the S-bus to the contents of the R-bus (the
overflow logic is enabled). If the sign (bit 15) of the R- and S-buses are

4-14

the same (both positive or both negative) and the sign of the ALU-bus
is different, the Overflow flip-flop is set. Note that if the Overflow
flip-flop is set prior to execution of an ADDO micro-order and the
ADDO operation does not result in an overflow condition, the Over-
flow flip-flop is not cleared.

Subtracts the contents of the S-bus from the contents of the R-bus in
two’s complement form,

Subtracts the contents of the S-bus from the contents of the R-bus in

4-15

one’s complement form. If the S-bus contains all zeros, the contents of
the R-bus are decremented by one.

INC

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is disabled). The over-
flow logic is discussed under ADDO, above.

INCO

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is enabled). The over-
flow logic is discussed under ADDO, above.

FLIP-FLOP OPERATORS

SOV

Sets the Overflow flip-flop on (also causes the function generator to
perform an IOR).

4-16

Sets the Overflow flip-flop off (also causes the function generator to
perform an IOR).

Sets the Flag flip-flop on (also causes the function generator to perform
an IOR).

Sets the Flag flip-flop off (also causes the function generator to per-
form an IOR).

Exchanges the contents of the Flag and Extend flip-flops (also causes
the contents of the R-bus to be read onto the T-bus).

4-17

CAUTION

The RFI micro-order is not intended for use in special
microprogramming. The use of RFI will affect the
operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con-
tinued use of existing software, it would be necessary
to rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support guarantees.

PHASE OPERATORS

STORE FIELD

The following micro-order mnemonics are valid in the Store field of an
HP 2100 microinstruction:

NOP M T IR A B Q F P S1
52 S3 sS4 100

4-18

No store.

Stores the contents of the S-bus in the T-register.

Stores the contents of the S-bus in the CPU Instruction Register.

Stores the contents of the T-bus in the A-register.

Stores the contents of the T-bus in the B-register.

4-19

Stores the contents of the T-bus in the Q-register.

Stores the contents of the T-bus in the F-register.

Stores the contents of the T-bus in the P-register.

Stores the contents of the T-bus in Scratch Pad Register 1.

Stores the contents of the T-bus in Scratch Pad Register 2.

Stores the contents of the T-bus in Scratch Pad Register 3.

4-20

SPECIAL FIELD

The following micro-order mnemonics are valid in the Special field of
an HP 2100 microinstruction:

4-21

NOP CNTR CW ECYN ECYZ 10G1
L1 R1 RSS RW '

No operation.

Reads bits 0-3 of the S-bus into bits 0-3 of the counter (bit 4 of the
counter is set to a zero).

Initiates a “‘write-into-memory” operation. See the discussion
“Accessing Core Memory Locations” in section 1 of this manual.

Sets the Carry flip-flop if the T-bus does not contain all zeros. When the
Carry flip-flop is set, the P-register is automatically incremented by one
upon exiting from the microprogram.

4-22

Sets the Carry flip-flop if the T-bus contains all zeros. When the Carry
flip-flop is set, the P-register is automatically incremented by one upon
exiting from the microprogram.

Initiates an input/output operation. See the discussion “Input/Output”
in section 1 of this manual.

Specifies a left shift. See the description of the shift mnemonics (LWF,
ARS, LGS, and CRS) earlier in this section.

Specifies a right shift. See the description of the shift mnemonics
(LWF, ARS, LGS, and CRS) earlier in this section.

Reverses the condition specified in the Skip field. For example, if the
Skip field contains TBZ (skip if the T-bus contains all zeros), an RSS in

4-23

the Special field changes the skip condition to “skip if the T-bus does-
not contain all zeros”.

Initiates a “read-from-memory” operation. See the discussion “Accessing
Core Memory Locations” in section 1 of this manual.

RW also enables the setting of the A-Addressable and B-Addressable
flip-flops. See the discussion of AAB, below.

4-24

SKIP FIELD

The following micro-order mnemonics are valid in the Skip field of an
HP 2100 microinstruction:

NOP EOP COUT CTR CTRI FLG ICTR
NEG NMPV ODD OVF RPT TBZ UNC

4-25

No skip.

End-of-phase. This micro-order is used for exiting from a micro-
program. The exit occurs after the next sequential microinstruction is
executed.

Skips the next sequential microinstruction if a carry-out from bit 15 of
the ALU-bus occurs during execution of the current microinstruction.
A carry-out can result from an ADD, ADDO, SUB, INC, INCO, MPY or
DIV function.

Skips the next sequential microinstruction if bits 0-3 of the counter are
all ones (octal 17). Bit 4 of the counter is ignored. The contents of the
counter are not altered.

Skips the next sequential microinstruction if bits 0-3 of the counter are

4-26

all ones (octal 17). Bit 4 of the counter is ignored. The counter is
always incremented by one after the test.

FLG

Skips the next sequential microinstruction if the Flag flip-flop is set.
The setting of the flip-flop is not altered. FLG tests the state of the
flipflop as it was just prior to execution of the current
microinstruction.

ICTR

Increments the counter by one.

NEG

Skips the next sequential microinstruction if the output of the function
generator is negative (if bit 15 of the ALU-bus is set).

NMPV

Skips the next sequential microinstruction if either of the following is
true:

a) Memory protect is disabled and both the A-Addressable and
B-Addressable flip-flops are clear.

4-27

b) Memory protect is enabled, no memory protect violation is
detected, and both the A-Addressable and B-Addressable flip-
flops are clear.

ODD

Skips the next sequential microinstruction if the output of the function
generator is odd (if bit 0 of the ALU-bus is set).

OVF

Skips the next sequential microinstruction if the Overflow flip-flop is
set. OVF does not alter the setting of the flip-flop. OVF tests the state
of the Overflow flip-flop as it was just prior to execution of the current
microinstruction.

RPT

Causes the next sequential microinstruction to be executed repeatedly
until the condition specified in its Skip field is true.

Some restrictions:

® The next sequential microinstruction must not contain TBZ in
its Skip field.

® The next sequential microinstruction must not have an add-type
mnemonic (ADD, INC, etc.) in its Function field if its Skip field
contains NEG or ODD.

Both of the above restrictions apply even if the skip condition is
reversed (RSS in the Special field).

Skips the next sequential microinstruction if the T-bus contains all
Zeros.

Skips the next sequential microinstruction unconditionally.

NAAB

4-29

SECTION
ASSEMBLER CONTROL STATEMENTS

The nine statements described in this section control the assembly
process. Each assembler control statement must begin in character
position 1 and may not contain embedded blanks.

With the exception of $ORIGIN and $END, all assembler control
statements should appear ahead of the first executable
microinstruction.

There may be more than one $ORIGIN statement. They may be placed
anywhere in the source microprogram.

The $END statement must be the final statement in the source
microprogram,

If an erroneous assembler control statement is detected, the Micro-
assembler prints BAD CONTROL STATEMENT and the erroneous
statement on the system console device and then the computer halts.
The user is expected to repunch the erroneous card, place it at the front
of the deck in the input hopper, and press the RUN switch on the
computer front panel.

$INPUT = L.Ux
x = logical unit number of a card reader or paper tape reader.
Causes all subsequent input to be read through the specified device.

When the assembly process is first begun, the Microassembler expects
the first source statement to be entered through the system console
device. The user may enter the whole source program through the
system console device. Most often, however, he merely enters an

5-1

$INPUT command specifying through what card reader or paper tape
photoreader the rest of the source program is to be read.

$PASS2=1.U.x
x = logical unit number of a magnetic tape drive.

Causes all subsequent input to be recorded on magnetic tape for use as
input to Pass 2. If omitted, the computer halts at the end of Pass 1 to
allow the operator to reload the source microprogram in the $INPUT
device.

$LIST=L.U.x
x = logical unit number of a printing device.

Causes the assembly listing to be printed by the specified device. If
omitted, L.U.6 is assumed.

$OUTPUT=-L.Ux
X = logical unit number of a paper tape punch.

Causes the object code produced by the assembler to be routed to the
specified device. If omitted, L.U4 is assumed.

SEXTERNALS=<name 1><octal address 1>, . . .
,<name n><octal address n>

name 1 through namie n are symbols; octal address 1 through octal
address n are control store addresses.

Assigns symbolic addresses to control store addresses that are external
to the program being assembled. External symbols must conform to the
rules for forming statement labels. Each symbol in the list, along with
the associated octal address, is entered into the symbol table. Once
defined in this manner, external symbols may be used as jump addresses
in JMP, JSB, and CJMP microinstructions.

5-2

$SUPPRESS

Suppresses all warning error messages. Fatal error messages are not
affected.

$DEBUG

Specifies that the debug option is to be used. See section 9, “HP Micro
Debug Editor”, of this manual for the implications of $DEBUG.

$ORIGIN=xxx%
xxxx = octal control store address
Sets the program location counter in the microassembler to the

specified value. If more than one $ORIGIN statement is present, the
specified control store addresses must occur in ascending order.

$END

Signals the end of the source microprogram.

5-3

SAMPLE MICROPROGRAMS 6

This section presents four sample microprograms:

1) A “save registers” microprogram that stores the contents of all
the registers in core memory locations,

2) A “block move” microprogram that moves a group of computer
words from one place in core memory to another.

3) A “table search’ microprogram that scans a group of computer
wotds in core memory until a specified character is found,

4) A “teleprinter output driver” microprogram that sends charac-
ters from a user-specified output buffer in core memory to the
teleprinter.

Each example is presented in the following manner, First, there is a
prose description telling what the sample microprogram does, how it is
called, and what information it passes to the calling program. Then
there is a listing of the actual microinstructions. Finally, there is a
microinstruction by microinstruction commentary describing how the
microprogram works, To aid the reader, both the microprogram listing
and the microinstruction commentary are divided into functional
segments. If several microinstructions together perform a specific task,
the particular group of microinstructions is easily discerned.

The examples are meant to be documented thoroughly enough so that
no additional help is required to understand them,

6-1

REGISTER SAVE MICROPROGRAM

This sample microprogram copies the contents of all the registers into
core memory locations as shown in Table 6-1.

Dume ek DURESS LoC B

© STORE FOIN LOC 2

) 1K F 67 PUY 87 IN F
3 RS JUR M (%] uMC ADDRESS LOC &7

STORE S1 IN LOC &7

INCREMENY F
ADDRESS LOC 7%

STORE S3 1IN

INCREMENT F
ADURESS LuC 73

STORE A IN LOC 79
 INCREWENT F
. ADGRESS LOC Te

F INC F INCREMENT F
F wkS JO% M Cw UNC AULNESS (UL 75
10K
P 108 T STQRE » IN LOC 73
F NG F L pnpREeEN E
F ARSI cu NG ADDRESS 'LOC 76
T OR e :
B TRRSTOR Y i . SYONE @ IN LOC 78
F INC S INCREMENT F AND STORE IN 81
g g S G Sy S S S S S S ——
TORG Mo ADURESS LNC 7
1 TORF : CRESTORE F FRUM LOC @
s 100 M CN UMC ADDRESS LOC 77
10K
F KWS 10RO T EOP STCRE F IN LOC 77
10w EXIT

Figure 6-1. Register Save Microprogram

6-2

Table 6-1. Register Save Locations

Register Core Memory
eqiste Locations (octal)
S1 67
S2 70
S3 71
sS4 72
A 73
B 74
P 75
Q 76
F 77

The register save microprogram is called by other microprograms
through use of the JSB micro-order, No parameters are passed.

MICROINSTRUCTION COMMENTARY

DUMP - - IOR M CW UNC Address core memory location O,
- - IOR - - -
F RRSIOR T - - Store the contents of the
F-register in core memory
location 0,
- CR IOR F &7 Store the value 67 (octal} in the
F RRSIOR M CW UNC F-register, Address core memory
- JIOR - - . location 67,
- 8 IOR T - - Store the contents of Scratch Pad
Register 1 in core memory
location 67,

6-3

F - INC F - - Increment the F-register,
F RRSIOR M CW UNC Address core memory location

. IOR - - - 70.

- 82 IOR T - - Store the contents of Scratch Pad
Register 2 in core memory
location 70.

And so forth , ..

F - INC F - - Increment the F-register.

F RRSIOR M CW UNC Address core memory location

- - IOR - - - 76.

QRRSIOR T - - Store the contents of the
Q-register in core m emory
location 76,

F - INC S1 - - Increment the Feregister and
store the result in Scratch Pad
Register 1,

- - IOR M RW - Address core memory location 0.

- T IOR F - - Restore the F-register from core

memory location 0,

- S1 IOR M CwW UNC Address core memory location

- - IOR - - - 77.
FRRSIOR T - EOP Store the contents of the
- - IOR - . - F-register in core memory

location 77 and exit.

BLOCK MOVE MICROPROGRAM

This sample microprogram moves a group of computer words from one
place in core memory to another, When the microprogram receives
control, it is assumed that:

6-4

The number of words to be moved is in the A-register (in two’s
complement form),

The FROM address is in the B-register.

The TO address is in the core memory location pointed to by
the P-register.

The HP assembly language calling sequence is as follows:

LDA -(number-of-words)

LDB from-address

105xxx

DEF to-address (cannot be indirect)

How & 10/ RS9 THZ CHARACTER: COUNT # ZERQ 7
NP . ouY YES, EXIT (ELSE PROCEED)
P 10H M R GET 1701 ADDRESS
1 108754 PUT IY IN G
LOUP 8 RWS JOR ™ Ru READ A 0ATA WORD
T IOR St PUT IT IN 81
—_—————— e e e e e e]
a 108 §2 PUT FTOL AUDRESS IN 82
E.. 82 DEC .M Cw'. . NMPY: ADURESS THE 101 LOCATION
JNP. our (HENORY - PROTECT VIQLATION)
31 . 1ORT WAITE & DATA WORD 1D MENMORY =
B ING B INCWEMENT THE 'FROM) ADORESS
0 INC @ INCREMENT THE 'TO! ADDRESS
) INC A TBZ OECREMENT AND TEST YHE COUNTER
Inp Loop REPEAT THE MOVE LOOP
———]
out P INC P EQP INCHEWENT THE P REGISTER
108 EXLT
Figure 6-2. Block Move Microprogram
MICROINSTRUCTION COMMENTARY
MOV - P IOR M RW - Get the TO address and store it
- T IOR Q - - in the Q-register, The TO address

cannot be indirect,

6-5

LOOP B RRS IOR

- T

F 82

- 81

6-6

IOR

IOR
DEC
JMP
10R

INC
INC
INC
JMP

INC
IOR

M RW
s1 -
82 -

M CW
- ouT
T -

B -

Q -

A .

- LooP
-

NMPV

EOP

Read a data word from the core
memory location pointed to by
the FROM address and store the
data word in Scratch Pad
Register 1,

Put the TO address in Scratch
Pad Register 2, Address the TO
core memory location. Write the
data word into the core memory
location pointed to by the TO
address. The F, DEC, and NMPV
micro-orders in the “write into
memory’ microinstruction test
the TO address to make sure it
does not refer to alocation in the
protected portion of core
memory. If a memory protect
violation is detected, control
passes to OUT (otherwise the
write into memory” operation
is performed).

{ncrement the FROM address,
Increment the TO address,
Increment and test the number
of words (remember that the
number of words is in two's
complement form; consequently,
the number is effectively
decremented), |f the number = O,
control passes to OouUT,
Otherwise, the move loop is
repeated.

Increment the P-register and exit.

TABLE SEARCH MICROPROGRAM

This sample microprogram searches a table for a specific character.
Each word in the table contains two characters: one in the high byte
position (bits 8-15) and one in the low byte position (bits 0-7).

The calling program passes the following parameters:

® The address of the first byte to be examined. Bits 1-15 specify
the starting core memory location while bit 0 specifies whether
the table search is to begin with the high or low byte (0 = high;
1 =1low).

® The number of bytes to be examined.

® The character being searched for.

® A terminator character.
The table is searched until the specified character is found, until the
terminator character is found, or until the specified number of bytes

have been examined, If the starting byte address is even, the search is
performed as shown in Table 6-2.

If the starting byte address is odd, the search is performed as shown in
Table 6-3.

Table 6-2. Even Starting Byte Address

High Byte Low Byte

Starting core memory location
Next higher core memory location 3
Next higher core memory location
And so forth . ..

6-7

BERCH 4 IR NSE TEZ BYTE COUNT W BERD 2
Jnp out YES, EXIT (ELSE PROCEED)
RFE "W W UNC ADDRESS LOC § AND CLEAR €
108 : ;
RO IOR T SYORE ®IN LO8 @ o
8 10R @ STORE BYYE ADDRESS IN O
T A EL AND 83 3P L FARW MIGH.BYTE TEST! CONSTANT
A 6N AND 83 a7 FORK LW BYTE ITERNI CONSTANT
CR Ior 82 19 STORE {4 (QUCTAL) IN 82
§2 10R CNTR RPT INITIALIZE THE COUNTER
8 trs B R CTRI ROTATE 284 RIGHT B BIT POSITIONS
AERAND L8R TR FORM Lo BYTE JTEBT! CONSTANY
| 8L ANDCBAT AT TOAN HIGH BYTE IYERNI CONBTANT 0
L4 JoR M R GET THE SYTE COUNT
Q ToR B RESTORE THE BTTE AQORESS
T IoOR @ STORE BYTE ECOUNY IN Q
e e e e
v] ToR PRL 00D BITE ADORESH 000 OR EVEN?
Jnp REEAT GvEN) e
L4 SFLG M R REAQ TWO BYTES
T loR & STORE IN 4
JMP LOw SKIP FIRST HIGW SYTE TEST
RPEAY L SFLG W R < READ . THOD l"ll
TOUI0R A STORE In A
A cL AND 8 3rr ISOLATE HIGH BYTE
B 8 XOR RSS T8 BYYE = ITEAT! 7
Jup TESTH {YES)
B84 KGR RESTHT. BYYE w0 bYERWY 4
Inp TERuN tesa)
@ INC O RSS 7181 OECREMENT aNO TEST BYTE COUNT
JnP EXIT (BYTE COUNY w @)
KON AL CGR CAND B o3PR L THOLATE Low syre.
B 82 XOR RSS TS81 GHYTE = 'TERT! %
Jup TESTL (YES) _ _ ___1
s o4y a0 RN TEL Brre o AvEaNi Y
MR L.TE S ;
Bt i i i i i, il U il i i il __._.___.._—._——___-_.___—_._1
P INC P INCREMENT BYTE ADORESS
ISl Aot
q ING % Tl DECREMENY &nD. YESY SYTE COUNY
Jup RPEAY (BYTE cOUNY u D) o
EXIT © IorR B SET 8 TO ALL ZERDS
IR P SET P TO ALL IEROS
A ING & ST 0N mx:u EYTL INDITATORY
BONC M R EGE ADDRESS (o€
T IN P £1x THE Sedraren & v

Figure 6-3. Table Search Microprogram

6-8

Table 6-3. Odd Starting Byte Address

High Byte Low Byte

Starting core memory location
Next higher core memory location 2
Next higher core memory location
And so forth . ..

The assembly language calling sequence is as follows:
LDA <test> <term>
LDB starting-byte-address
105xxx
DEC number-of-bytes
where test is the character being searched for.

term is the terminator character,

starting-byte-address is the address of the first byte to be
examined,

number-of-bytes is the number of bytes to be examined.

After the table search is complete, the microprogram passes the
following information to the calling program:

A-register: The address of the last byte examined (bits 1-15
specify the core memory location and bit 0 is the
high/low byte indicator),

All zeros if neither the specified character nor the
terminator character was found.

6-9

B-register: The last byte examined,

All zeros if neither the specified character nor the
terminator character was found.

Extend flip-flop: 1 = specified character found (or neither the specified
character nor the terminator character was
found).

0 = terminator character found.

MICROINSTRUCTION COMMENTARY

Note: The Flag flip-fiop is always clear {0) when
the microprogram receives control,

- - RFE M CW UNC Address core memory location 0

- - IOR - - - and clear the Extend flip-flop.

- P IOR T - - Store the contents of the
P-register in core memory
location 0.

B - IOR Q - - Store the starting byte address in

the Q-register,

A CL AND S1 377 Save the test character as a “'high

A CR AND S3 377 byte compare constant’’ and save
the terminator character as a
“low byte compare constant”’,

- CR IOR S2 10 Set the counter to 10 {octal) and
- 82 I0OR - CNTR RPT rotate the B-and A-registers eight
B - CRS B R1 CTR| bit positions to the right.

A CR AND S2 377 Save the test character as a “low
B CL AND S84 377 byte compare constant’’ and save

the terminator character as a
“high byte compare constant”,

6-10

RPEAT

IOR
IOR
10R

IOR
JMP

SFLG
10R
JMP

SFLG
IOR

AND

XOR
JMP

XOR
Jmp

INC
JMP

@

R1
RPEAT

RW

LOW

RW

377

RSS
TESTH

RSS
TERMH

RSS
EXIT

ODD

TBZ

T8z

TBZ

Read the number of bytes into
the Q-register (first restoring the
starting byte address to the
B-register).

Test the starting byte address to
determine whether the search
should begin with the high or low
byte {odd=low; even=high), shift
the byte address one bit position
to the right, and store it in the
P-register.

If the address is even, control
passes to RPEAT. Otherwise,
continue,

Set the Flag flip-flop and read
the first word in the table, Store
the word in the A-register,
Control passes to LOW,

Set the Flag flip-flop and read a
table word, Store the word in the
A-register,

Isolate the high byte in the
B-register,

Byte = test character?
Yes, control passes to TESTH,
Otherwise, continue,

Byte = terminator character?
Yes, control passes to TERMH,
Otherwise, continue,

Increment and test the byte
count (remember that the count
is iIn two's complement form;
consequently, the count s
effectively decremented), If the

6-11

LOW ACR AND 8 377

BS2 XOR - RSS TBZ

- - JMP - TESTL

BS3 XOR - RSS TBZ

- - UMP . TERML

- P INC P - .

Q- INC O - 182

- - JMP - RPEAT
EXST Q- 1I10R B - .

-- IOR P - -
TESTH - - RFE - - .

- - SFLG - - UNC
TERML - - CFLG - - .
TESTL - - RFE - - -
TERMH - P IOR A L1 FLG

6-12

count =0, control passes to
EXIT, Otherwise, continue.

Isolate the in the

B-register.

low byte

Byte = test character?
Yes, control passes to TESTL,
Otherwise, continue,

Byte = terminator character?
Yes, control passes to TERML.
Otherwise, continue.

Increment the byte address,

Increment and test the byte
count {remember that the count
is in two's complement form;
consequently, the count is
effectively decremented), }f the
count =0, continue, Otherwise,
repeat the byte search loop.

Set the B- and P-registers to all
zeros,

Exchange the Flag and Extend
flip-flops. Then set the Flag
flip-flop,

Control passes to TESTL,

Clear the Flag flip-flop.

Exchange the Flag and Extend
flip-flops.

Store the byte address in the
A-register (shifting the address
one bit position to the left),
Then test the Flag flip-fiop. If

the Flag flip-flop is set, skip the
next microinstruction,

A - INC A - - Set bit 0 of the A-register.
- - IOR M RW EOP Address core memory location O,
- T IOR P - - Read the contents of core

memory location 0 into the
P-register and then exit.

TELEPRINTER OUTPUT DRIVER

This example presents a teleprinter output driver program. The driver is
in two parts: an Initiator Section and a Continuator Section. The
Initiator Section resides in core memory while the Continuator Section
is a microprogram residing in Module #1 (starting at control store
location 400,).

A 105000 macro instruction resides in the teleprinter interrupt location
in low core memory.

During any given teleprinter output operation, the Initiator Section is
executed only once while the Continuator Section is executed once for
each character that is sent to the teleprinter.

To begin a teleprinter output operation, the user prepares an output
buffer (BUFFR) and a character-count constant (CHCNT) in core
memory and transfers control to the Initiator Section. The Initiator
Section passes parameters to a low core equipment table and then trans-
fers control to the Continuator Section. Thereafter, the Continuator
Section is entered on an interrupt basis as many times as are necessary
to satisfy the specified character count. The Continuator Section
essentially sends one character to the teleprinter and then returns con-
trol to the interrupted program,

613

ORG 2
! FERAARR R R AR T RN R RN
B B8SS 1] *
E.U 8SS | * EQUIPMENT TABLE «
COUNT bSS 1 * L}
ADRES BSS | ARNRA AR R ARRNRRA N RN
1

BFLAG BSS

ENT INIT
INIT NOP FERRRRRRRA RN R RN NN
STF B » "
LDA CHCNY * INITIATOR SECTION w
STA COUNT (] L]
LOA LBYFF RARAN AN A AR R AR AR AR AN SRR
8TA ADRES
CLA
STA BFLAG
LOA MODE
OTA TTY
0CT 185990
JMP INIT, I
.
.
CHWCNT DEC N ARRRRRN AR AT RRTNR R
DBUFF DEF BUFFR ” *
BUFFH ASC N,CHARACTERS] CONSTANTS "
MODE 0OCT {2@0e0 * *
TTY EQU Xx®e ITTTE 2T TR T 2%

Figure 6-4. Initiator Section

When the microprogram receives control, it is assumed that the
following parameters are in the low core equipment table:

Core Memory
Location Contents
23 Number of characters yet to be printed.
24 Address of the core memory location that
contains the next character to be printed.
25 A “high/low byte” flag (zero = high byte;

non-zero = low byte},

6-14

Each location in the output buffer contains two characters: one in the
high byte position (bits 8-15) and one in the low byte position
(bits 0-7). At any given time, the microprogram must know whether it
is to send the high or low byte character to the teleprinter. Core
memory location 25 in the equipment table is used for this purpose,

Upon entry, the microprogram reads the contents of core memory
location 25 into Scratch Pad Register 1 and uses Scratch Pad Register 1
as the “high /low byte” indicator, as follows:

zero = Print the high byte character,

non-zero = Print the low byte character,

When the microprogram receives control from the Initiator Section,
core memory location 25 contains zero. Whenever it prints a high byte
character, the microprogram sets Scratch Pad Register 1 to non-zero,
Similarly, whenever it prints a low byte character, the microprogram
resets Scratch Pad Register 1 to zero. Just before exiting, the micro-
program reads the contents of Scratch Pad Register 1 into core memory
location 25,

Every time it is executed, the microprogram decrements the character--
count (core memory location 23). The character-address (core memory
location 24) is incremented only after a low byte character is printed,

The character output operation is performed as follows:
1) The microprogram tests the character count,

If the count is not zero, the microprogram proceeds with the
character output operation.

If the count is zero, the microprogram forms a CLC instruction,
puts it in the CPU Instruction Register, and causes the I/O
decoders to decode and execute the instruction, This clears the
teleprinter output interrupt. Control then returns to the inter-
rupted program,

6-15

CK I0R 81 2@ SAVE & IN LOC 2¢
L3 I0R M Cw JNC
I0R
A RKS IOR T
§1 ING 82 SAVE 8 IN (0C 2t
52 IOR M cw UNC
IOR
8 RRS I0R T
s2 INC 81 SAVE OvFefF & E IN LOC 22
RFE @ RSS OVF
@ ING @
] LwF @ L1
$1 JOR M Ca UNC
10R
Q RRS IOR T
sS4 ING 82 READ CHARSCOUNT INTO Q/
§2 I0R M RW
52 INC &t
T 10R @ RSS TeZ
Jup e
51 10R M R READ CHAR=4DDRESS INTO &
si ING 82
T IOR A
’— §2 IOR M RW READ BYTE=FLAG INTO S1
T I0R S%
]
A RRS I0R M RW READ A wORD INTO B AND FORM
cr I0R B 211 AN OTA INSTRUCTION
-] CL I0R . 83 288
T I0R B .
51 I0R T8Z TEST BYTE-FLAG
JMP 81 LDOw (LO% BYTE)
NOR 81 SEY BYTEwFLAG ' CW! _J
Ck IOR IR 24 SHIFT 8 RIGHY EIGHT PDSITIONS
-] lorR 8 §RG2 ‘
[10R B SRG2
LOw A INC & INCREMENT CHAR=AUDRESS
8 CK ANOD B 3r? CLEAR THE WIGW BYTE FROM B8
(mnlinueﬁ

Figure 6-5. Continuator Section

2) The microprogram reads the contents of the specified core
memory location into the B-register and isolates the character
to be printed in the low byte position of the B-register:

6-16

If a high byte character is to be printed, the
microprogram shifts the character into the low byte
position and then clears the high byte from the B-
register,

0TA $3 I0R IR 1061 EXECUTE THE OTA INSTRUCTION

Ck IR B 311 FOKM AN 3TC,C INSTRUCTION
8 cL 10k S§3 2a7
§$TC,C $3 IO0R IR 106! EXECUTE THE STC,C INSTRUCTION
9 NG @ INCREMENT CMAR=COUNT
B o wc o _INCREMENT CHAR=COUNT =~ |
STHRE i 1O0R 8 23 STGRE CHAReCOUNT IN LOC 23
8 R&S I0R M (4] uNg
I0R
Q RKS I0R T
) ING B STORE CHAR=ADORESS IN LOC 24
8 RKS IOR M Cw UNC
10R
A RKS IOR T
r__ 8 ING B STORE BYTE-FLAG IN LOC 23
-] RKS I0R M Cw ung
108
s1 IOk T
ck roN S1 ze RESTORE 4 FROM LOC 2@

£ Y4 IR m RW RESYORE B FROm LOC 2%
Se INC St
T IOR B
_———— e —
84 IOR M Ra RESTORE OVF=FF & § FROM LOC 22
tLo
T I0k O
@ LwF G K1
@ RFE RSS QDD
§ov E0P
I0R EXIT
cLc Ck IOR B 3t FOwkM & CLC INSTRUCTION
-] cL IOR S84 215 ANG EXECODTE IT
$3 I0R IR 106y
JMP STORE JUMP TO STORE

Figure 6-5. Continuator Section (continued)

® If a low byte character is to be printed, the micro-
program merely clears the high byte from the B-register.

3) The microprogram forms an OTA instruction, puts it in the
CPU Instruction Register, and causes the I[/O decoders to
decode and execute the instruction. This results in the character
in the B-register being sent to the teleprinter,

4) The microprogram forms an STC,C instruction, puts it in the
CPU Instruction Register, and causes the I/O decoders to
decode and execute the instruction.

5) Control returns to the interrupted program,

INITIATOR SECTION COMMENTARY

INIT

NOP
STF 0

LDA CHCNT
STA COUNT

LDA DBUFF
STA ADRES

CLA
STA BFLAG

LDA MODE
OTA TTY

OCT 105000

JMP INIT,I

Initiator section entry point.
Turn on the interrupt system.

Pass the character-count constant to the low
core equipment table.

Pass the character-address to the low core
equipment table.

Set BFLAG in the low core equipment table
to zero.

Specify that the teleprinter is to be used as
an output device.

Transfer control to the Continuator Section.

Initiator section exit.

CONTINUATOR SECTION COMMENTARY

6-18

- CR JOR
- 81 I0R
- - I0R
A RRS iOR

S1
M CW UNC memory location 20 of the low

20 Save the A-register in core

B . core equipment table,

- 82

B RRS

Q RRS

- S
- §2
- 82

- 81
- 81

A RRS
- CR
B CL

INC
IOR
IOR
I10R

INC
RFE
INC
LWF
IOR
1OR
10R

INC
IOR
INC
I0R
JMP

I0R
INC
I0R

I0R
10R

I0R
fOR
I0R
IOR

IOR
JMP

NOR

S2

—

zooo9

—

S2

S1

S1

RSS

L1
cw

RW

RSS
CLC

RW

RW

RwW
21
205

LOW

UNC

TBZ

Save the B-register in core
memory location 21 of the low
core equipment table,

Read the contents of the
Overfiow and Extend flip-flops
{0,0 or 0,1) into bit positions 1
and 0, respectively, of the
Q-register. Save the Q-register in
core memory location 22 of the
low core equipment table.

Read the character-count from
core memory location 23 in the
low core equipment table into
the Q-register, Test the count, If
zero, pass control to CLC.
Otherwise, continue,

Read the character-address from
core memory location 24 in the
low core equipment tabie into
the A-register,

Read the “highflow byte’ flag
from core memory location 25 in
the low core equipment table
into Scratch Pad Register 1,

Get the first word to be printed
and store it in the B-register.
Form an OTA instruction in
Scratch Pad Register 3,

Test the “high/low byte" flag,

If it is non-zero, pass control to
LOW,

If it is zero, set it to non-zero (all
ones) and continue,

6-19

Low

QTA

sTC,C

STORE

6-20

@

RRS
RRS
RRS

o

B RRS

Q RRS

B RRS

A RRS

I0R
I0R
10R

INC
AND

I0OR
IOR
I0R
IOR

IOR
10R

IOR

INC

IOR
IOR
IOR
I0R

INC
10R
IOR
tOR

IR 27

B SRG2
B SRG2
A -

B 377
IR 10G1
100 -
100 -

B 31
S3 207
IR 10G1
Q -

B 23

M CW

T -

B -

M CW

T -

UNC

Shift the high byte character in
the B-register into the low byte
position.

Increment the character-address
{core memory location 24) and
clear the high byte from the
B-register,

Load the OTA instruction from
Scratch Pad Register 3 into the
CPU Instruction Register, Cause
the instruction to be decoded
and executed,

Form the STC,C instruction in
Scratch Pad Register 3,

Load the STC,C instruction from
Scratch Pad Register 3 into the
CPU Instruction Register, Cause
the instruction to be decoded
and executed,

Increment the character-count
(remember that the count is in
two'’s complement form; conse-
guently, it is effectively
decremented),

Store the charactercount in core
memory Jocation 23.

Store the character-address in
core memory location 24,

8 -
B RRS

- S1

- CR
- S
- S

- 82

- 82

INC
IOR
I0R
I0R

IOR
10R
INC
IOR

I0R
INC
10R

IOR
CLO
I0R
LWF
RFE
sov
I0R

10R
IOR
IOR
JMP

RW

R1
RSS

31
2156
10G1
STORE

UNC

Store the “high/low byte” flag in
core memory location 25,

Restore the A-register from core
memory location 20,

Restore the B-register from core
memory location 21.

Restore the Overflow and Extend
flip-flops from core memory
location 22,

Form a CLC instruction and load
it into the CPU Instruction
Register. Cause the instruction to
be decoded and executed. Then
pass control to STORE,

6-21

MISCELLANY 7

This section is included as a “catch-all” for discussions that may be
added in future editions., The discussions in this first edition were
prepared by HP instructors for use in the HP 2100 Microprogramming
course.

® Interrupting a Microprogram
® A/B Addressable Flip-flops
® RPT Micro-order

® JSB/RSB Micro-orders

® Counter

INTERRUPTING A MICROPROGRAM

Microprogram execution cannot be interrupted by hardware; however,
the execution time of most microprograms is generally short enough so
as not to be detrimental to the interrupt system,

Of course there will be exceptions. For example, a “block move”
microprogram could, if the number of bytes or words to be moved is
large enough, take several milliseconds to execute,

The CJMP micro-order makes it possible for a microprogram to detect
an interrupt. If an interrupt request is present, the CJMP executes as a
JMP; otherwise it executes as a NOP.

7-1

Usually, the section of micro-code that is jumped to upon detection of
an interrupt performs the following functions:

1) Saves all address pointers, counters, and flags used by the
microprogram.

2) Loads the core memory address of the 105xxx macro instruc-
tion into the Pregister,

3) Executes an EOP micro-order (this allows the interrupt to
occur).

Performance of the above functions assumes that the interrupted micro-
program, when re-entered after the interrupt, will continue execution at
the logical point where it was interrupted.

An alternate method is to merely load the core memory address of the
first location in the calling sequence into the P-register and execute an
EOP. In this case, the entire microprogram will be re-executed from the
beginning after the interrupt. This is the method used by the Extended
Arithmetic Group (EAG) instructions, since their execution times are
relatively short,

Refer to Figure 7-1. The CJMP microinstruction passes control to
INRUP if an interrupt request is detected. At INRUP, the P-register
contains the core memory address of COUNT and is used for saving the
current word count in the calling sequence. The P-repister is then
decremented (so it now points to the 105xxx instruction) and an EOP
is executed (setting the PH1B interrupt phase). It is the responsibility
of the interrupting program to save the contents of the A- and
B-registers.

After the interrupt is serviced, control returns to the microprogram by
way of the 105xxx macro instruction. The A- and B-registers were
restored by the interrupting program and the word count is restored by
the first two microinstructions. The microprogram then continues at
the logical point where it was interrupted.

7-2

» LDA =(& OF wURODS)
* STA COuNT
» LDA 'FROM' ADDRESS
» LOB 'TOo! BDURESS
« 125xxx
* COUNT RSS 1
"
L
L s
L
MOVE P 1or L Rn GET THE HeOF=wORDS
T 10R Q
Loee CJMP INKLP INTERRUPT WAITING 7
& ®RS 10R M Riw MOVE A WORD FROM CORE TO 51
7 10R §1
8 IOR §2 PUT 'TO' ADORESS IN 82
-
F §2 VEC " Cw NMPY ®RITE THE wORD INTD CORE
JMP our (MEMORY PROTELT VIOLATION)
S1 Tar T
1 InC A BUMP THE 'FROM! ADORESS
-] INC B BUMP ThE 1TQ' ADDRESS
G INC Q T32 BUMP YWE COUNT & SKIP IF @
JMP Loagr NOT DONE YET
cuy [InC P EQP SEY P AND THEN EXI7
10%
L s
* UPON INTEKRKUPT JUMP MERE AND SAVE THE COUNT
L s
INRUP 4 10R L Cw UNC PUT THE CLOUNT BaCk
Ior IN THE CALLING SEQUENCE
" RS 10R T
4 Su8 P EQP OECREMENY P AND THEN EXIT
P NOR P

Figure 7-1. Interrupt Example

Had there been more variables to be saved, additional core locations
would be required either in the calling sequence or at some other
predesignated area of core memory,

If the microprogram logic requires that a particular group of micro-
instructions be skipped upon re-entry after an interrupt, an interrupt
flag may be used. Normally, the interrupt flag would be off. The
interrupt flag would be set on upon interrupt exit. Whenever the
microprogram is entered, it would test the state of the interrupt flag. If
the flag is on, the particular microinstructions would be skipped; if the
flag is off, the microinstructions would be executed,

7-3

Another method would be to use two 105xxx macroinstructions in the
calling sequence: one that would be used for originally entering the
microprogram and another that would be used for re-entering the
microprogram after an interrupt,

It is also possible to write FORTRAN-callable microprograms that
detect interrupts; however, the FORTR AN-produced assembly language
calling sequence requires greater microprogram manipulation,

A/B ADDRESSABLE FLIP-FLOPS

Refer to the following pages in the 2100 Computer Microprogramming
Guide: 1-9, 2-4, 2-16, 2-19, 4-4, 4-6, 4-13 through 4-16, 5-5, and 5-6.
These two flip-flops are used primarily to implement Memory Reference
Group (MRG) instructions that contain an operand address of O or 1
(A-register = 0; B-register = 1).

A microcode (RW or CW) reference to core memory address 0 or 1 will
access the actual core locations

MEMORY READ

An RW micro-order reads the contents of a core memory location into
the T-register and, for core memory addresses 0 or 1, sets the A-
Addressable or B-Addressable flip-flop. Both flip-flops are cleared if
the core memory address is other than 0 or 1.

The microprogram may test the A-Addressable and B-Addressable flip-
flops and, if either is set, use the contents of the appropriate register
instead of the contents of the actual core location. The micro-code
would be as follows:

74

P IOR M RW -
AAB COND IOR 81 - -

If the P-register contains 0 or 1, the A-Addressable or B-Addressable
flipflop is set and the AAB reads the contents of the A- or B-register
(instead of core locations 0 or 1) onto the R-bus. The COND micro-
order reads the contents of the R-bus onto the S-bus,

If the P-register instead contains 300, the A-Addressable and B-
Addressable flip-flops are both cleared and the AAB reads zeros onto
the R-bus. The COND micro-order reads the contents of the T-register
(i.e., the contents of core memory location 300) onto the S-bus.

In the event that the contents of core location 0 or 1 is wanted, the
AAB and COND micro-orders should be replaced by a T in the S-bus
field (in this case, the A-Addressable and B-Addressable flip-flops are
ignored).

-PIORM RW -
-TIOR 81 - -

MEMORY WRITE

A CW micro-order, if executed, with 0 or 1 in the M-register writes data
from the T-register into core locations 0 or 1, CW does not enable the
setting of the A-Addressable or B-Addressable flip-flops.

- 81 IOR M CW UNC (Assume S1 contains 1)
-- IOR- - -
-84IORT - -

The above coding would cause the contents of Scratch Pad Register 4
to be written into core memory location 1.

To avoid this, an NMPV micro-order should be used in the Skip field of
the CW microinstruction and the B-Addressable flip-flop must be set
prior to execution of the CW microinstruction,

75

- S1 IOR - AAB - {Assume S1 contains 1)
S1IORM CW NMPV

- 54 IOR AAB - -

S4IORT - -

The above coding would cause the contents of Scratch Pad Register 4
to be copied into the B-register. The same principle applies to the
A-egister if S1 contains 0. The “write into memory” operation would
not be performed, Note that the last microinstruction is always exe-
cuted; however, when writing to the A- or B-registers, the last micro-
instruction has no net effect since the “write into memory> operation
was not performed.

The above example assumes that the memory protect feature is not
enabled.

With memory protected enabled, the NMPV micro-order also traps
memory protect violations. The microprogram must decide which event
caused the skip, If memory protect is enabled, the coding could be as
follows:

Linel - S2 1IOR - AAB -
Line2 F S2 DECM CW NMPV

hat th t
Line3 Q- IOR AAB RSS AAB (isssén svrittt?en iseind:hz
Line4 Q RRSIOR T - UNC Q-register)
Line5 - - JMP - VILAT

Line 1 sets either the A-Addressable or B-Addressable flip-flop, or
clears them both. The clearing is necessary since a previous reference
to core address 0 or 1 could have occurred.

Line 2 skips to Line 4 if no memory protect violation occurs and if
both the A-Addressable and B-Addressable flip-flops are clear. In Line 4
the contents of the Q-register are loaded into the T-register, the “write
into memory” operation is performed, and the JMP VILAT micro-
instruction is skipped.

7-6

If either the A-Addressable or B-Addressable flip-flop is set, control
passes from Line 2 to Line 3. Line 3 copies the contents of the
Q-register into the A- or B-register and passes control to Line 4. Line 4
has no net effect (other than to cause Line 5 to be skipped) because the
“write into memory”’ operation was not performed.

If a memory protect violation occurs, control passes from Line 2 to
Line 3. Since both the A- and B-Addressable flip-flops are clear, Line 3
skips to Line 5 which passes control to VILAT. Since the A- and
B-Addressable flip-flops are clear, the AAB micro-order in the Store
field of Line 3 is not enabled.

Note that the above sequence assumes that memory-protect violations
are to be handled by microcode. If memory protect violations are to be
handled by software (the usual case), the RSS and AAB micro-orders in
Line 3, plus all of Line 5, are unnecessary. In such a case, when an EOP
is detected the hardware automatically enters phase 1B because the
memory protect violation flip-flop is set. This causes execution of the
contents of core memory location 5,

The bypassing of core locations 0 and 1 is necessary for implementing
the Memory Reference Group (MRG) instructions. In most user micro-
programs, however, memory references to locations 0 and 1 will not be
made and the above discussions may be disregarded.

RPT MICRO-ORDER
Refer to page 4-16 of the 2100 Computer Microprogramming Guide.

The RPT micro-order causes the next sequential microinstruction to be
executed repeatedly until its skip condition is met, RPT is used pri-
marily in conjunction with a CTRI micro-order to shift a single or
double word data item up to 16, , times,

7-7

Example: Rotate the combined B- and A-registers right 8 positions.

- CRIOR S1 10 Load 10 (octal) into S1.

- S1 IOR - CNTR RPT Load the counter from S1 and
set the repeat mode,

B- CRSB R1 CTRI Rotate the B- and A-registers
and increment the counter,
Repeat until counter = 174,

- S3 IOR S4 - - This microinstruction is not
skipped. The CTRI in the
previous microinstruction
merely breaks the repeat
loop.

RPT may be used in conjunction with skip micro-orders other than
CTRI (e.g., NEG, ODD, etc.).

If the skip condition is never met, the repeat loop will be executed
continually untijl the power is turned off (i.e., infinite loop).

JSB/RSB MICRO-ORDERS

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-2, 2-3, 2-18, and 4-10.

During microprogram execution, the Save Register copies the ROM
Address Register (RAR) until a JSB micro-order is executed. A JSB
micro-order sets the JSB flip-flop, isolating the Save Register from the
RAR and thereby preserving the retum address.

The RSB micro-order is used for returning control from a subroutine to
the calling program. Execution of an RSB micro-order resets the JSB
flip-flop, causing the contents of the Save Register to be loaded into the
RAR.

7-8

Execution of an RSB micro-order without prior execution of a JSB
micro-order is interpreted as a two-cycle NOP. This allows a subroutine
to also be executed as a main line program.

The single Save Register limits the use of subroutines to one level (i.e., a
subroutine cannot, in turn, call another subroutine),

COUNTER

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-9, 4-15, and 4-16.

The counter was designed primarily for implementation of the
Extended Arithmetic Group (EAG) instructions that require a maxi-
mum shift count of 16, .

However, the microprogrammer may also use the counter’s full capacity
of 32 ,.

Example:

- - IOR - CNTR - Set the counter to zero.
LOQP :

(Repeated microinstructions)

- - IOR - - ICTR Increment the counter.

- CNTR IOR - - TBZ Break out of the loop when

- - JMP - LOOP counter = 0,

(continue)

79

Incrementing the counter when it contains 375 (maximum capacity)
causes it to “roll over” to zero.

The CNTR micro-order in the S-bus field reads all five bits of the
counter onto the S-bus.

7-10

ERROR MESSAGES 8

All error messages are presented in table 8-1.

Note: Warning messages are flagged by ** in the left margin.

Table 8-1. Error Messages

Meaning

Corrective Action

1 | Duplicate label.

3 | lllegal RBUS micro-
order.

4 | lllegal SBUS micro-
order.

5 | Htlegal FUNCTION
micro-order.

2 | Bad control statement.

The statement label of the specified
microinstruction is the same as an-
other statement label in the micro-
program or the same as a declared
external symbol. Assign a new state-
ment label and reassemble.

The specified assembler control
statement is illegal. Correct it and
reassemble.

The micro-order in the R-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the S-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Function
field of the specified microinstruc-
tion is illegal. Correct it and
reassembile.

8-1

Table 8-1. Error Messages (continued)

Meaning

Caorrective Action

10

11

**12

Illegal STORE micro-
order.

tttegal SPECIAL micro-
order.

Illegal SKIP micro-
order.

Illegal jump address.

CW in Special field and
no skip condition in the
Skip field.

Program too large.

Warning! CQ detected
in the R-bus field or
RFl detected in the
Function field.

The micro-order in the Store field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Special field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Skip field of
the specified microinstruction is
itlegal. Correct it and reassemble.

The asterisk jump address (* % x} in
the specified microinstruction lies
outside the bounds of the current
control store module or the sym-
botic jump address in the specified
microinstruction is undefined. Cor-
rect it and reassemble.

This combination will not write into
core memory. Correct it and
and reassemble.

The program will occupy more than
256,, (4004) control store loca-
tions. The microprogram must either
be rewritten or assembled in smaller
parts.

These micro-orders affect the opera-
tion of contro! store module #0.
BE CAREFUL!

8-2

Table 8-1. Error Messages (continued)

Meaning Corrective Action
**13] Warning! NOP in the | Thiscombination results in the com-
R-bus field with DEC | plement of the contents of the S-
in the Function field. bus. The use of a NOR micro-order
in the Function field is suggested.
14| SBUS is incompatible | JMP, CJMP, and JSB use the low-
with the jump address. | order bit of the S-bus field as part
of the jump address. The micro-
order in the S-bus field of the
specified microinstruction cannot be
used in conjunction with that par-
ticular jump address. Correct the S-
bus field micro-order and reassemble.
15[SBUS is incompatible | The same Scratch Pad Register can-
with STORE micro- | not be referenced in both the S-bus
order. and Store fields of a microinstruc-
tion. Correct the specified micro-

instruction and reassemble.
**16 | Warning! LEP detected | This micro-order cannot be used for
in the Special field. anything other than enabling entry
points to the 2100 Extended

Arithmetic Group.

**17 | Warning! Potential An M was detected in the Store

memory access problem
detected.

field of the specified microinstruc-
tion and something other than RW
or CW was detected in the Special
field. Memory access should be
started in the specified microinstruc-
tion since the M-register could be
modified by a DMA transfer.

8-3

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

**18

19

20

**21

Warning! Potential
phasing problem

Repeat on non-skip
condition.

Repeat until NEG or
ODD with an add-type
micro-order in the
Function field or repeat
until TBZ or RSS, TBZ.

Warning! RFE in the
Function field with a
non-NOP in the S-bus
field.

An EOP was detected in the pre-
vious microinstruction and the Skip
field of the specified microinstruc-
tion contains something other than
a NOP. Be aware that the specified
microinstruction will be executed
before the EOP is executed.

An RPT was detected in the Skip
field of the previous microinstruc-
tion but the Skip field of the
specified microinstruction does not
contain a “skip’”’ micro-order. Cor-
rect the microinstruction and
reassemble,

An RPT was detected in the Skip
field of the previous microinstruc-
tion but the specified microinstruc-
tion contains NEG or ODD in the
Skip field with an add-type micro-
order (ADD, ADDO, INC, or INCO)
in the Function field or the specified
microinstruction contains TBZ in
the Skip field. These combinations
are illegal. Correct the microinstruc-
tion and reassemble.

In addition to exchanging the Ex-
tend and Flag flip-flops, RFE causes
the contents of the R-bus to be read
onto the T-bus (the S-bus is
ignored).

8-4

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

**22

Warning! P in the S-bus
field acts as a NOP
when a JMP is in the
Function field.

Leave S-bus field blank instead.

8.5

HP MICRO DEBUG EDITOR 9

The HP Micro Debug Editor is a program that makes it possible for the
user to load object microprograms from an HP Microassembler output
tape into a Writable Control Store (WCS) module, debug microcode, or
produce a set of six mask paper tapes that can be used for ‘“burning’ a
set of programmable ROM chips.

REQUIREMENTS

The editor is designed to operate in an 8K Basic Control System (BCS)
environment and requires a system console device (either a teleprinter
or a CRT terminal). In addition, a paper tape photoreader is required if
the input is to be in the form of an object tape and a paper tape punch
is required if the output is to be in the form of mask tapes. For most
purposes, a WCS module is also required.

MODES OF OPERATION

The editor operates in two modes: the normal mode and the debug
mode. The mode of operation is determined by the presence (debug
mode) or absence (normal mode) of the $DEBUG control statement
during the assembling of the microprogram. Though their capabilities
overlap considerably, the two modes are treated separately in the
following discussion.

9-1

NORMAL MODE

The normal mode was designed for two purposes: to transfer object
microcode from an HP Microassembler output tape to a WCS module
and to punch mask tapes from an HP Microassembler output tape,

DEBUG MODE

The debug mode was designed to allow the user to employ breakpoints
to debug microprograms. In this mode the user can insert a breakpoint
in the buffer, load the microprogram from the buffer into a WCS
module, and then execute the microprogram. When the breakpoint is
encountered, execution halts and the editor displays the contents of the
machine registers and flip-flops on the system console device. The user
may then alter the microprogram, alter the contents of the registers,
and/or set another breakpoint.

Specifically, in the debug mode the user can:

® Read a microprogram from an object tape into a core memory
buffer,

® Set a breakpoint in the buffer,
® Write a microprogram from the buffer into a WCS module.
® Execute a WCS-resident microprogram,

® Display the contents of any buffer location on the system
console device,

® Alter the contents of any buffer location.
® Alter the contents of any or all of the machine registers.

The user can also read a microprogram from a WCS module into the
core memory buffer or punch an updated object tape from the contents

9-2

of the buffer. However, these are considered to be secondary capabili-
ties and are of marginal practical value to most users,

To run the editor in the debug mode, the user must previously have
loaded an initialization program, named TEST (see “The Initialization
Program’’ later in this section). Briefly, however, it is used at the start
of debug execution to pass parameters and control to the micro-
program,

HP MICRO DEBUG EDITOR COMMANDS

When the editor is executed, it prints COMMAND? on the system con-
sole device, The user responds to entering one of the input, edit,
output, or debug commands described later in this manual. After the
editor has performed the specified operation, it again prints COM-
MAND? on the system console device, etc. To terminate a Micro Debug
Editor run, the user enters FINISH in response to the COMMAND?
message.

There are twelve Micro Debug Editor commands. They are shown in
Table 9-1. In all cases, the first character of the mnemonic is sufficient
to identify the command to the editor (for example, to terminate a
Micro Debug Editor run, the user may enter F, FI, FIN, FINI, FINIS,
or FINISH).

INPUT COMMANDS

The input commands are:

LOADI[x]
READ x

9-3

Table 9-1. Micro Debug Editor Commands

Input
Commands: LOAD[x] The brackets indicate that
READ,x the parameter may be
omitted.
Edit

Commands: SHOW,xxxx[,yyyy]
MODIFY xxxx[,yyyy]

Output
Commands: DUMPI x]
WRITE,x
: PREPARE[,x] 1 These commands are
e _____VERIFY[x]___ \ available only in the
normal mode.

Termination
Command: FINISH

:Debug
{ Commands: BREA K.yyyy These commands are
' CHANGE[,mnemonic]| available only in the
! EXECUTE(,0 or yyyy]l! debug mode.

LOAD[x]

X is the logical unit number of a paper tape photoreader, If omitted,
X isassumed to be 5,

The LOAD command reads the contents of an HP Microassembler
output tape into core memory through the specified device.

9-4

READ x
X is the logical unit number of a WCS module.

The READ command reads the contents of the specified WCS
module into core memory.

EDIT COMMANDS
The edit commands are:

SHOW xxxx[,yyyy]
MODIFY xxxx[,yyyy]l

SHOW xxxx{,yyyy]

xxxx and yyyy are control store addresses (0-1777, octal), xxxX is
the address of the first location to be displayed and yyyy is the
address of the final location to be displayed. If omitted, yyyy is
assumed to be the same as xxxx. If the user enters fewer than four
digits for xxxx or yyyy, the value entered is right-justified with
zeros automatically filled to the left. Note that the editor uses only
the rightmost eight bits of xxxx and yyyy (0-377, octal).

The SHOW command displays the specified core memory buffer
location(s) on the system console device. The display format is as
follows:

aaaa mmm nnnnnn

where aaaa is the control store address (0-1777, octal) of the loca-
tion being displayed, mmm is the octal representation of bits 24-16
of the location, and nnnnnn is the octal representation of bits 15-0
of the location.

9-5

9-6

MODIFY xxxx[,yyyy]

xxxx and yyyy are control store addresses (0-1777, octal). XXxx is
the address of the first location to be modified and yyyy is the
address of the final location to be modified. If omitted, yyyy is
assumed to be the same as xxxx, If the user enters fewer than four
digits for xxxx or yyyy, the value entered is right-justified with
zeros automatically filled to the left. Note that the editor uses only
the rightmost eight bits of xxxx and yyyy (0-377, octal).

The MOFIFY command allows the user to change the contents of
the specified core memory buffer location(s).

In response to the MODIFY command, the Micro Debug Editor
prints the following on the system console device:

aaaa mmm nnnnnn

where aaaa is the control store address (0-1777, octal) of the loca-
tion being altered, mmm is the octal representation of the current
state of bits 24-16 of the location, and nnnnnn is the octal represen-
tation of the current state of bits 15-0 of the location,

The user then enters:
mmm nnnnnn

where mmm is the octal representation of the desired state of bits
24-16 of the location and nnnnnn is the desired state of bits 0-15 of
the location, If the user enters fewer than three digits for mmm or
fewer than six digits for nnnnnn, the number entered is right-
justified with zeros automatically filled to the left. If it is desired to
leave mmm or nnnnnn unchanged, the user may enter an asterisk
instead of an octal number,

Examples:

6,123 is equivalent to entering 006,000123,

*,123456 means that bits 24-16 of the location are not to be modi-
fied and bits 0-15 are to be set to the value 1234568.

123,* means that bits 24-16 of the location are to be set to the
value 1234 and bits 0-15 are not to be modified.

If the user specifies that a series of locations are to be altered, the
Micro Debug Editor responds by printing aaaa mmm nnnnnn on
the system console device, etc. If the user does not wish to alter the
contents of a particular location in the series, he enters * * instead
of mmm nnnnnn,

After the last specified location has been altered, the Micro Debug
Editor prints COMMAND? on the system console device.

Note that the MODIFY command and the associated entries alter
the specified core memory locations (not the actual WCS locations).
To update the WCS module to the revised state, the user must write
the contenis of the core memory buffer into the WCS module
(using the WRITE command).

OUTPUT COMMANDS
The output commands are:

DUMP[x]
WRITE x
PREPARE(,x]
VERIFY[x]

DUMPY x]

x is the logical unit number of a paper tape punch device. If
omitted, x is assumed to be 4.

9-7

98

The DUMP command punches the contents of the core memory
buffer on the specified device. The tape thus produced is in the
same format as the output tape produced by the HP Micro-
assembler,

WRITE,x
X is the logical unit number of a WCS module,

The WRITE command copies the contents of the core memory
buffer into the specified WCS module,

PREPARE[x|

x is the logical unit number of a paper tape punch device, If
omitted, x is assumed to be 4.

The PREPARE command punches a set of six mask tapes on the
specified device from the contents of the core memory buffer.
Before punching each tape, the editor asks the user to enter the
tape’s I.D. header information, The user may then enter up to three
lines of information (any characters). For tapes two through six,
the user has the option of duplicating the L.D, lines used on the
previous tape,

VERIFY([x]

Xis the logical unit number of a paper tape photoreader. If omitted,
X is assumed to be 5,

The VERIFY command reads a mask tape through the specified
device and compares the contents of the tape against the contents
of the core memory buffer, If no errors are detected, the editor asks
for the next command, If errors are detected, the editor prints

BAD MASK TAPE
DO YOU WANT TO REPUNCH THIS TAPE?

The user responds by entering Y or N, If the user enters N, the
editor asks for the next command. If the user enters Y, the editor
prints
ENTER PUNCH LOGICAL UNIT #

and the user enters the logical unit number of the paper tape punch
device, The editor then asks the user to enter three lines of tape I.D.
information, repunches the tape, and asks for the next command,
The mask tapes may be verified in any order, To verify an entire set

of mask tapes, the user must enter the VERIFY command a total of

six times (assuming that none of the tapes has to be repunched and
reverified).

TERMINATION COMMAND
The termination command is:
FINISH
FINISH

The FINISH command terminates the current Micro Debug Editor
run,

DEBUG COMMANDS

The debug commands are:

BREAK yyy
CHANGE[,mnemonic]
EXECUTE{,0 or yyy]

99

BREAK,yyyy

YYyy is a control store address (0-1777, octal). If the user enters
fewer than four digits for yyyy, the value entered is right-justified
with zeros automatically filled to the left. Note that the editor uses
only the rightmost eight bits of yyyy (0-377, octal).

The BREAK command sets a breakpoint at the specified location in
the core memory buffer, The microprogram should then be written
from the buffer into a WCS module and executed. When the break-
point is encountered during debug execution, execution halts, the
contents of the machine registers (A, B, Q, F, P, S1, S2, S3 S4) and
flip-flops (Flag, Overflow, Extend) are displayed on the system con-
sole device, and the breakpoint is removed from the buffer.

Breakpoints should be set only where a JMP microinstruction is
allowed. For example, a breakpoint should not be set immediately
following a microinstruction that contains either an EOP or RPT
micro-order. However, this responsibility is left entirely up to the
user.

CHANGE[,mnemonic]
mnemonic is one of the folowing mnemonics:

A (A-register)
B (Bregister)
Q (Q-register)
F (F-register)
P (P-register)
S1 (Scratch Pad Register 1)
S2 (Scratch Pad Register 2)
S3 (Scratch Pad Register 3)
S4 (Scratch Pad Register 4)

O (Overflow flip-flop)
E (Extend flip-lop)
FLAG (Flag flip-flop)

The CHANGE command is used for altering the contents of any or
all of the registers and flip-flops.

If the user omits mnemonic, the editor assumes that he wishes to
alter the contents of all the registers and flipflops.

If the user specifies a mnemonic, the editor responds by printing
mnemonic xxxxxx < =

on the system console device, where xxxxxXx is the octal represen-
tation of the current contents of the register or flip-flop.

The user then responds by entering an octal number representing
the desired contents of the register.

If the user enters a CHANGE command with no mnemonic, the
editor assumes that he wishes to alter the contents of all the regis-
ters and flip-flops. In this case, the above conversational process is
done for each register and flip-flop. If the user does not wish to
alter the contents of a particular register or flip-flop, he enters an
asterisk (*) instead of the octal number.

EXECUTE[,0 or yyyy]

is a control store address (0-1777, octal). If the user enters
fewer than four digits for yyyy, the value entered is right-justified
with zeros automatically filled to the left, Note that the editor uses
only the rightmost eight bits of yyyy (0-377, octal).

The EXECUTE command causes the contents of the core memory
buffer to be written to a WCS module and then executes the WCS-

9-11

resident program, If the user has previously used a WRITE com-
mand, the EXECUTE statement automatically uses the same WCS
module referenced by the WRITE command. If the user had not
previously used a WRITE command, the editor first responds to the
EXECUTE command by asking for the logical unit number of the
WCS module.

EXECUTE,Q causes the WCS-resident microprogram to be executed
from the beginning by way of the user’s initialization program,

EXECUTE causes the WCS-resident microprogram to be executed
from the point where it was last interrupted. This is used for re-
starting execution after a breakpoint has been encountered,

EXECUTE,)yyyy causes the WCS-resident microprogram to be exe-
cuted starting at the specified control store address. Note that the
editor uses only the rightmost eight bits of yyyy (0-377, octal).

THE INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run in the debug mode, the user
must supply an initialization program, The initialization program is an
assembly language program that performs whatever functions are neces-
sary to call the microprogram (namely, preparing the necessary param-
eters in core memory and then executing a 105xxx macro instruction).

The name of the initialization program must be TEST. The program
must also have the symbol MACRO as a declared entry point, where
MACRO is the symbolic address of the 105xxx macro instruction,
There should only be one 105xxx macro instruction in the initialization
program, Table 9-2 shows the structure of an initialization program,

9-12

Table 9-2. Initialization Program

ASMB,R,B,L T
NAM TEST
ENT TEST, MACRO

TEST NOP

MACRO OCT 105xxx
DEF P1
DEF P2

DEF Px

JMP TEST,|
P1 {constant definition statement)
P2 {constant definition statement)

Px {constant definition statement)
END

Operating in the debug mode imposes the following four restrictions
on the microcode that is being debugged. The first microinstruction
must be a JMP to the start of the microprogram (i.e., the first micro-
instruction must be a primary jump table entry). The microcode being
debugged must be less than 186,, locations in length. The microcode
cannot access core memory location 0. The user cannot set a break-
point in a subroutine.

OPERATING INSTRUCTIONS

LOADING THE MICRO DEBUG EDITOR

Refer to the Basic Control System manual (02116-9017).

1.

Load the Basic Control System (BCS) using the Basic Binary
Loader.

Load the HP Micro Debug Editor using the BCS Relocating
Loader.

If the editor is to be run in the debug mode, load the initial-
ization program (TEST) using the BCS Relocating Loader,

Load the Relocatable Library using the BCS Relocating Loader.
If the editor is to be run in the normal mode, the user must
force program execution at this point even though there is an
undefined external symbol (TEST). This is done by entering
010 into switches 2-0 of the Switch Register.

Press the RUN switch. BCS responds by printing the loading
map on the system printer device,

Press the RUN switch, The editor responds by typing COM-
MAND? on the system console device.

DEBUGGING A SMALL MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is smaller than 186,, locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1.

9-14

Assemble the microprogram using the debug option.

Load the Micro Debug Editor and the initialization program,

Read the Microassembler output tape into core memory
(LOAD).

Set a breakpoint (BREAK).

Enter an EXECUTE,0 command, This loads the contents of the
core memory buffer into the WCS module (the editor will ask
for the module’s logical unit number) and then causes the initial-
ization program to be executed. The initialization program, in
tum, passes control to the microprogram, When the breakpoint
is encountered, execution halts, the breakpoint is removed from
the core memory buffer, and the contents of the machine
registers and flip-flops are displayed on the system console
device.

Enter any Micro Debug Editor commands.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also the
logical point at which one would terminate the entire Micro
Debug Editor run (FINISH).

Set another breakpoint (BREAK),

Restart execution (EXECUTE or EXECUTE,yyy or EXE-
CUTE,0).

® EXECUTE restarts execution from the point where it
was interrupted.

e EXECUTE,yyy restarts execution from the specified
WCS relative address,

e EXECUTE,Q restarts execution from the beginning (by
way of the initialization program).

9-15

9. When the breakpoint is encountered, repeat steps 6-8, above.

DEBUGGING A LARGE MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is larger than 186,, locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1.

9-16

Break the microprogram into two or more segments in such a
way that each segment is smaller than 186,, locations in
length. Each segment must be able o be entered by using the
same 105xxx macro instruction,

Assemble each segment separately using the debug option,

Load the Micro Debug Editor and the initialization program,

Segment #1

Read the Microassembler output tape for the segment into core
memory (LOAD).

Set a breakpoint (BREAK).

Enter an EXECUTE 0 command. This causes the initialization
program to be executed. The initialization program, in turn,
passes control to the microprogram segment. When the break-
point is encountered, execution halts, the breakpoint is
removed from the core memory buffer, and the contents of the
machine registers and flip-flops are displayed on the system con-
sole device.

Enter any Micro Debug Editor commands.

10.

11.

12,

13.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also the
logical point at which one would initiate the debugging of
Segment #2 (step 11) or terminate the entire Micro Debug
Editor run (FINISH), :

Set another breakpoint (BREAK).

Restart execution (EXECUTE or EXECUTE,yyy or EXE-
CUTE,0).

® EXECUTE restarts execution from the point where it
was interrupted.

® EXECUTEyyy restarts execution from the specified
WCS relative address,

® EXECUTE,Q restarts execution from the beginning (by
way of the initialization program).

When the breakpoint is encountered, repeat steps 7-9, above.

Segments #2 Through x

Read the Microassembler output tape for the segment into core
memory (LOAD),

Set a breakpoint (BREAK).

Enter an EXECUTE,yyy command, where yyy is the WCS
relative address of the first microinstruction to be executed,
When the breakpoint is encountered, execution halts, the
breakpoint is removed from the core memory buffer, and the
contents of all the machine registers and flip-flops are dis-
played on the system console device,

917

14,

15.

16.

17,

Enter any Micro Debug Editor command,

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and)or alters the contents of any or all of
the registers and flip-flops (CHANGE), However, this is also
the logical point at which one would initiate the debugging of
the next segment (step 11) or terminate the entire Micro
Debug Editor run (FINISH).

Set another breakpoint (BREAK).
Restart execution (EXECUTE or EXECUTE yyy).

® EXECUTE restarts execution from the point where
it was interrupted.

e EXECUTE)yyy restarts execution from the
specified WCS relative address,

When the breakpoint is encountered, repeat steps 14-16,
above.

PUNCHING MASK TAPES FROM AN OBJECT TAPE

1.

2.

3.

9-18

Assemble the microprogram,
Load the Micro Debug Editor using the BCS Relocating Loader.

Read the Microassembler output tape into core memory
(LOAD).

Punch the mask tapes (PREPARE).

Verify each mask tape, as follows:

a. Load the mask tape into the paper tape photoreader.
b. Enter a VERIFY command,

c. If the tape contains no errors, load the next tape in the
photoreader and enter another VERIFY command, etc.

If the tape contains errors, the editor prints a message to
that effect on the system console device and allows the user

to repunch the erroneous tape.

6. If all the mask tapes contain no errors, terminate the run
(FINISH).

LOADING A MICROPROGRAM INTO WCS FROM AN OBJECT
TAPE

1. Assemble the microprogram,
2." Load the Micro Debug Editor using the BCS Relocating Loader.

3. Read the Microassembler output tape into core memory
(LOAD),

4. Write the microprogram into a WCS module (WRITE).

5. Terminate the Micro Debug Editor run (FINISH).

9-19

SECTION

HP PROGRAMMABLE ROM WRITER 10

The HP Programmable ROM Writer is a program that uses the mask
tapes produced by the HP Micro Debug Editor to permanently burn
microcode into programmable ROM chips.

REQUIREMENTS

The HP Programmable ROM Writer is designed to operate in an 8K
Basic Control System (BCS) environment and requires a system console
device (either a teleprinter or a CRT console), a paper tape photo-
reader, and an HP 12909A Programmable ROM Writer.

INITIAL PARAMETERS

When loaded, the Programmable ROM Writer prints
PROM WRITER CONTROL PROGRAM

on the system console device and then asks for a series of parameters, as
follows:

ENTER PROM BURN PARAMETERS
CHIP INITIAL STATE (0 or 1)?

10-1

The user enters either a zero or a one, depending upon whether the chip
initially contains all zeros or all ones,

MINIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be bumed on the first
attempt,

MAXIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be bumed on the final
retry.

MAXIMUM NUMBER OF RETRIES?

The user enters a positive decimal integer specifying the maximum
number of times that the burning of a chip is to be retried. The initial
burn attempt is performed using the minimum bum time, If retries are
necessary, each is performed using a proportionately longer bumn time.
If the specified maximum number of retries are necessary, the final
retry is performed using the maximum burn time. For example, if the
user specifies a minimum burn time of 1 millisecond, a maximum bum
time of 11 milliseconds, and a maximum number of retries of 5, the
burn times of the various burn attempts is as follows:

Initial burn attempt: 1 ms
1st retry: 3 ms
2nd retry: 5 ms
3rd retry: T ms
4th retry: 9 ms
5th retry: 11 ms

WAIT TIME RATIO?

The user enters a positive decimal integer that determines the amount
of “wait time” between successive bum passes, as follows:

10-2

“wait time” = RATIO * current burn time

For example, if the current burn time is 100 milliseconds (a tenth of a
second) and the wait time ratio is 5, the program allows 500 milli-
seconds (half a second) between successive burn passes.

The information necessary for entering the above parameters is avail-
able in the documentation provided by the programmable ROM chip
manufacturer,

GENERAL OPERATION

After the initial parameters have been entered, the program prints
COMMAND? on the system console device, The user responds by
entering one of the commands shown in Table 10-1,

If the user enters an illegal command, the program prints INPUT
ERROR on the system console device and requests another command.
In all cases, the first two characters are sufficient for the program to
recognize the command,

After each command (except STOP) is executed, the program requests
another command by printing COMMAND? on the system console
device.

In the following discussions, the overall process of burning a program-
mable ROM chip is divided into two processes: set-up and burning, The
processes are performed sequentially and in that order for every chip
that is to be bumed.

10-3

Table 10-1, Commands

COMMAND

EFFECT

LOAD

VTAPE

VCHIP

BURN

CREAD

STOP

Causes the program to read a mask tape into
core memory and print the tape identity
information on the system console device.

Causes the program to verify the contents of
the mask tape by computing a checksum and
comparing it against a checksum contained
on the tape.

Causes the program to test a chip to be cer-
tain it contains all zeros or all ones.

Causes the program to burn a chip.
Reads the contents of the chip mounted on
the Programmable ROM Writer hardware

into the core memory buffer.

Terminates an HP Programmable ROM
Writer run.

SET-UP

The user mounts a programmable ROM chip on the HP 12909A Pro-
grammable ROM Writer, loads a mask tape in the paper tape photo-
reader, and then enters LOAD through the system console device, The
program reads the mask tape into a buffer area in core memory and
prints the tape identity information on the system console device, The
user should examine the printed identity information to be certain that

the proper tape has been loaded.

10-4

If the proper tape has been loaded, the user enters VT APE through the
system console device. The program verifies the contents of the tape by
computing a checksum and comparing it against a checksum contained
on the tape, If it detects an error, the program prints CHECKSUM
ERROR on the system console device. In such a case, the user reloads
the tape in the photoreader and re-enters the LOAD and VTAPE com-
mands. If the checksum error persists, a new set of mask tapes must be
produced using the HP Micro Debug Editor.

Note: Ifitis desired to duplicate a programmable ROM chip
that is already bumed, use the following set-up pro-
cedure instead of the above:

1) Mount the bumed chip on the HP 12909 A,

2) Entera CREAD command.

3) Remove the burned chip from the HP 12909A.
4) Mount a new (unused) chip on the HP 12909A.

The user enters VCHIP through the system console device. The program
tests the chip to be certain that it contains all zeros or all ones (as speci-
fied in the initial parameters). If the chip does not contain all zeros or
all ones, the program prints BAD CHIP on the system console device, In
such a case, the user discards the chip, mounts a new one, and re-enters
the VCHIP command.

BURNING

The user enters BURN through the system console device. The program
burns the chip using the minimum burn time, After the chip has been
burned, the program reads the chip locations to see if they were burned
properly, If any chip location was not bumed properly during the first
burn pass, a second pass is made using a longer bum time, etc. During
the retry passes, only the erroneous chip locations are reburned, The

105

number of refry passes and the burn times are determined by the initial
parameters entered by the user, If the chip still contains errors after the
final burn retry, the program prints the following message on the
system console device for each erroneous chip location:

ERROR AT chip-location CHIP = xxxx BUFFER = yyyy

where chip-location is an octal number (000-377) specifying what
chip location is in error.

xxxx is a four-digit binary number showing the current state
of the chip location,

yyyy is a four-digit binary number showing the current state
of the associated core memory locations.

The user then enters BURN or STOP, BURN causes the program to
burn the entire chip as described above. STOP terminates the Program-
mable ROM Writer run,

10-6

SECTION

HP BCS WCS INPUT/OUTPUT UTILITY ROUTINE 11

This is a library routine which makes it possible for FORTRAN and
ALGOL programs to move object microcode from core memory to a
Writable Control Store (WCS) module or from a WCS module to a core
memory buffer. The routine is designed to operate in a minimum Basic
Control System (BCS) environment.

CALLING SEQUENCES

In both FORTRAN and ALGOL there are two calling sequences: one
for moving object microcode from a core memory buffer to a WCS
module and one for moving object microcode from a WCS module to a
core memory buffer.

CORE MEMORY TO WCS MODULE

The FORTRAN calling sequence for moving object microcode from a
core memory buffer to a WCS module is:

CALL WWRIT (module buffer-name,#-of-words)

where module is a decimal number specifying the unit reference
number of the WCS module.

buffer-name is the array name of the core memory buffer.

#of-words is a decimal number specifying the number of words
to be moved. If #-of-words is positive, it specifies the number of
WCS words to be moved; if it is negative, it specifies the number
of core memory words to be moved.

11-1 March 1, 1973

Object microcode is stored in core memory such that each WCS word
requires two buffer words. Bits 0-7 of the first buffer word of each pair
contain three octal digits specifying the WCS location to be written
into. Bits 8-15 of the same buffer word contain bits 0-7 of the specified
WCS location. Bits 0-15 of the second buffer word of each pair contain
bits 8-23 of the specified WCS location. When the object microcode is
moved from the core memory buffer to the WCS module, only the
specified WCS locations are altered (all other WCS locations are left
unchanged).

The ALGOL calling sequence for moving object microcode from a core
memory buffer to a WCS module is:

PROCEDURE WWRIT (A,B,C);
INTEGER A,C; ARRAY B;

WWRIT (module,buffer-name,#-of-words);

where module buffer-name, and #of-words are described for
FORTRAN, above.

WCS MODULE TO CORE MEMORY

The FORTRAN calling sequence for moving object microcode from a
WCS module to a core memory buffer is:

CALL WREAD (module,buffer-name,#-of-words,wcs-address)

where module is a decimal number specifying the unit reference
number of the WCS module.

buffer-name is the array name of the core memory buffer.

#of-words is a decimal number specifying the number of words
to be moved. If #of-words is positive, it specifies the number of

March 1, 1973 11-2

WCS words to be moved; if it is negative, it specifies the number
of core memory words to be read into.

wcs-address is an octal number specifying the starting WCS
location of the object microcode to be moved.

Object microcode is read into the core memory buffer in the format
described earlier in this section. The WCS word residing at WCS
location wcs-address is read into the first two buffer words, the WCS
word residing at WCS location wcs-address + 1 is read into the next two
buffer words, and so forth.

The ALGOL calling sequence for moving object microcode from a WCS
module to a core memory buffer is:

PROCEDURE WREAD (A,B,C,D);
INTEGER A,C,D; ARRAY B;

WREAD (module,buffer-name,#-of-words,wes-address);

where module, buffer-name, #-of-words, and wcs-address are described
for FORTRAN, above.

11-3 March 1, 1973

INDEX

A Addressable Flip-flop 4-2, 4-3, 4-7, 4-21, 4-24, 4-29, 7-4
Accessing Core Memory 1-23
Accessing a Microprogram
From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14
Addressing, Symbolic 2-3
Assembler Control Statements 5-1
Assembly Options 2-4
Asterisk (*) as an Address 2-4

B Addressable Flip-flop 4-2, 4-3,4-7, 4-21, 4-24, 4-29, 7-4
“Block Move” Example 6-4

BREAK 9-10

BURN 104

Calling a Microprogram
From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14
CHANGE 9-10
Coding Form, Standard 3-6
Commands, HP Micro Debug Editor 9-3
Comments Field 3-7
Constants 1-7
Control Statements, Assembler 5-1
Core Memory Access 1-23
Counter
Hardware — 7-9
Program Location — 2-3
CREAD 10-4

INDEX {Continued)

$DEBUG 5-3
Debug Mode (HP Micro Debug Editor) 9-2
Debugging
— Small Microprograms 9-14
— Large Microprograms 9-16
DUMP 9-7

$END 5-3

Entry Module 1-7

Error Messages, HP Microassembler 2-2, 8-1
EXECUTE 9-11

SEXTERNALS 5-2

Facilities, Microprogramming 1-2
FINISH 9-9
Format
Microinstruction — 1-5
Object Tape — 2-9
Source Microprogram Listing — 2-6
Symbol Table Listing - 2-6
Symbolic Statement — 3-1
Function Field 1-6, 3-3, 4-8

Hardware Requirements
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

Initial Parameters, HP Programmable ROM Writer 10-1
Initialization Program, HP Micro Debug Editor 9-12
Input, Microprogram 1-20

$INPUT 5-1

Interrupting a Microprogram 7-1

Jump Tables 1-7
Jump Table Conventions 1-19

2

INDEX {(Continued)

Label Field 3.2

Labels, Statement 3-2

SLIST 5-2

Listing
Source Microprogram — 2-6
Symbol Table — 2-6

LOAD 94

Location Counter 2-3

Mask Tapes, HP Micro Debug Editor
Punching 9-8,9-18
Verifying 9-8,9-19

Memory Access 1-23

Microinstruction Format 1-5

Mnemonics, Valid Micro-Order 3-5

MODIFY 9-6

Modes of Operation, HP Micro Debug Editor
Debug Mode 9-2
Normal Mode 9-2

Normal Mode, HP Micro Debug Editor 9-2

Object Tape 2-5

Options, Assembly 2-4
$ORIGIN 5-3

Output, Microprogram 1-21
$OUTPUT 5-2

Parameter Passing
From Assembly Language 1-15
From FORTRAN 1-17
From ALGOL 1-19

INDEX (Continued)

Pass 1 Description 2-2

Pass 2 Description 2-2
$PASS2 5-2

Primary Jump Table 1-8
PREPARE 9-8

Program Location Counter 2-3

R-bus Field 1-5, 3-3, 4-1
READ 9-5
Read From Memory 1-23,7-4
“Register Save” Example 6-2
Requirements, Hardware and Software
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

“Save Registers” Example 6-2
Sample Microprograms 6-1
S-bus Field 1-5, 3-3, 4-4
Secondary Jump Tables 1-8
Shifting 1-25
Skip Field 1-6, 3-4, 4-25
SHOW 9-5
Software Requirements
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1
Source Microprogram Listing 2-6
Special Field 1-6, 3-4, 4-21
Statement Labels 3-2
Statements, Assembler Control 5-1
Store Field 1-6, 3-4, 4-18
STOP 104
$SUPPRESS 5-3

4

INDEX (Continued)

Symbol Table 2-3

Symbol Table Listing 2-6
Symbolic Addressing 2-3
Symbolic Statement Format 3-1

‘“Table Search’ Example 6-7
“Teleprinter Output Driver’’ Example 6-13

VCHIP 10-4
VERIFY 9-8
VTAPE 10-4

Warning Messages, HP Microassembler 2-2, 8-1
WCS Loading 9-19

WRITE 9-8

Write Into Memory 1-24, 7-5

POWERFUL HARDWARE
A proven architecture implemented by a micro-
processor in the heart of the control section.

EXPANDABLE MAINFRAME MEMORY

Lets you choose from 4K to 32K a// in mainframe.

STANDARD FEATURES
Includes extended arithmetic instructions, power fail
interrupt, memory parity check and memory protect.

FLEXIBLE INPUT/OUTPUT
14 internal 1/O channels, externally expandable to 45.

FULL INTERRUPT SYSTEM
Interrupt priority easily established
or changed for all devices.

COMPREHENSIVE SOFTWARE
Proven software packages for generating
and executing your programs.

2100 computer

The Hewlett-Packard 2100 is a general-purpose digital
computer designed for a wide range of small computer
applications.

Features built-in to the 2100 include extended arithmetic
instructions, power fail interrupt with automatic restart,
memory parity check with interrupt and memory protect.
Besides the standard built-in features, dual-channel Direct
Memory Access (DMA) and Floating Point Hardware are
also available. Under DMA control, data can be transferred
to or from computer memory at rates greater than one
million sixteen-bit words per second. Floating Point Hard-
ware provides a typical ten-fold speed increase for scientific,
computer bound algorithms.

A minimum 2100 provides 4096 words of core memory,
self-contained power supply and 14 input/output channels.

You can select a wide range of memory sizes up to 32K
words, all in mainframe. By including an HP 2155 Extender,
you add another 31 input/output channels and power
supply.

The 2100 automatically inherits a comprehensive range of
proven software packages, including assemblers, compilers,
operating systems and subroutines. A complete line of
standard computer peripherals and 1/0 interface kits are
also available, permitting complete systems to be tailored
around the 2100. Added to these capabilities, you can
also depend on the HP reputation for high quality and
world-wide customer support. The result is a cost-effective
computer that can meet your data processing problems
today and continue meeting them as your needs expand.

SALES & SERVICE OFFICES

Alup adAIaS,

'9A0QR palSI| ale $assalp

-pe 8jardwod 18yl

*s10u

‘IIHONS * * ° K3SJar MaN ‘Salksed

relwo
*te134099

‘BJuElY

e) 'poomKAIjOH UIJON
nok 3se

-1e3U 8D[3J0 [EUOIZRI ALY} JOBILOD

galsn
LON SV3HV 'S'N 404

2EZ1-89L (YOE) :la1L
uoyssjieyy
VINIDYIA 1S3IM-
€0€CELY-OT6 XML
1L6E-bSY (902) ‘181
»0086 anA3)jag

"I°N UISOT-EEY
NOLONIHSYM

£LGT0-956-014 XML
1eve-582 (€07) “1al
0€£ZET puowydIy
peoy Jaduads 1112
¥159 x0g ‘0'd
VINIDHIA

GZ00-662-01S XML
SSpy-859 (208) :lal
T0vS0 uojduing yinos
aA)Q Apauuay

£82C x0g “0'd
LNOWYH3IA

1895-626-016 XML
S1£0-£8v (108) :{81
SITy8 Ayo axet Jfes
193]S Ul UINOS 0682
HVYLN

0LTT-1£8-016 ‘XML
TLIYpEY (216) ‘181
92¢8L oluojuy ues
peoy 113ud Alllg €2

§792-188-016 XML
0009-184 (E14) ‘131
£20£L UDISMOK

001 AyInS

aANQ yledisam 00€9
60¢.2 x08 "0'd

€2LY-L98-016 XML
1019-1€Z (¥12) *181
0805/ uOspleysty
'py oyedely ‘3 102
02t xog '0'd
svxal

2LyL-vLe (106) “isL
siydwaw
IISSINNIL:

£2G4-18E-01L ‘XML
SESG-vEY (10D) 131
1620 aauapirold 1sel
"aAY LUBWIIIeM L8
ANVISI 3G0HY

0£92-099-01G ‘XML

000£-592 (S12) 131

90b61 eIsshid jo Sury

Yied JRLIISAPUY BISSRIg 4O BUIY
anuany yig 1201

059€-£6£-01L
veL0-1L2 (Z1y)
9YIST jj1Aa0Iu0N
plea2|nog apis SSOW 00SC
VINVATASNN3d

£019-9%-016 XML

1216-26Z (£0S) *13L

SZ¢L6 pueiod

peoy A1i34 SIOUIS "M'S SLvY
8ST AYNS ‘|1 S|lIYISaMm
NOD3H0

2989-0£8-016 ‘XML

1082-8v8 (S0%) “131

ZT1EL A11D RWOYEDO

pienaineg Siapunod Paliun 6162
VINOHVTIO

00£1-9v8 (P19) 131
62Z€Y Snqwn|o)
peoy asiop 0ZIL

SZ61-654°018 XML
15€0-862 (E15) ¢[al

6EVSY uojheq
1X!Q Yinos 09re

6216-L27-018 XML
00£0-5€8 (912) 13l
SyIpy PUEIaA3)

peoy afpry JaUaD GL65Z
OIHO

91G1-926-015 ‘XML
1018-588 (616) {31
29247 Wi0d yBIy
1924)S LIe YON £261
8815 x08 “0'd
VNITOHVD HLYON

1180-€22-01G ‘XML
00€0-126 (918) ‘121
L6411 Kingpoom

1SaM Nied SAemsS0Id T

7850- [6S-0LZ ‘XML
98bZ-ySp (G1€) 3L
T1ZET asndeiks

peoy o110l 1se3 8585

1865-€52-015 ‘XML
00S6-€LY (914) ‘|8l
£29v1 Jaisayooy
aALQ meu1des 6¢

Z100-852-01G “XML
0EEL-¥SY (PI6) (2L
109Z1 3rsdaayydnod

192J15 UDIBUNS R, T8

0630-252-015 XML
0500-452 (£09) “1a1
09LET Woatpul
peoy ajjiadwed 6121

0£z8-Ipp-01L XML
29v8-698 (81G) ‘|8l
50221 Aueqty
anuaay [enjuad zoLl
MNHOA M3N

0550-€86-016 ‘XML
S82-925 (50S) 131
10088 $83nig seq
anla Hekm 95T

ang

G99T1-686-016 XML
€1££-G92 (50S) ‘181
801/8 anbJanbnaly

*3°N pleA3|NOg Sewoq T0§9
3 uones

99¢g xog '0'd

021XaW M3N

SY6Y-C68-01L XML
000%-£99 (609) ‘(8L
PE08O HIIH KLiayg
AewmyB1H SBUIR "N 0901

156-066-0TL ‘XML
0005-59z (102) 1191
269/0 snweled
peoy Amuad 0Z1 "M
A3SYIr MAN

0€80-v9.-016 XML
SSYI-496 (bTE) f1a1
€v0E9 SIuBiaH pueihien
Kemyseq uopiam 8vT

£80Z-12£-016 ‘XML
0008-€9Z (918) ‘191
LETYY KD sesuey
"oy 0peJ0|0) TETTL
14NOSSIN

YELEEIG-016 ‘XML
19¢6-519 (219) H1aL
P116S Ined 1S

anuaAy A1IsIaAIUN 650
VLIOS3INNIN

288p°b2Z-018 ‘XML
0016-€5€ (ETE) 8L

SL08Y platiyInes

peoy 3! 2U!N ISaM OVBIZ
NVSOIHIIW

v069-92€-01L XML
0968-198 (£19) ‘|8l
€£120 unjduixay
‘any ||8mIIEH ZE
S11ISNHOVSSYN

$896-228-0TL ‘XMl
0££9-8y6 (10€) :1a1
0S80¢ 3l11r%0y
peoy AJiayg ayoud z
891 xog ‘0'd

£G16-298-01L ‘XML
00¥S-vv6 (T0E) 181
L0212 2iowi}jeg
Peoy 3u01saluM £0L9
ANVTAUYAN

$ZS5-556-018 XML
1029-124 (v0S) ‘2L
€900, J3uudy

Pleranog sweljjim Zv6l
958 x09 ‘0'd
YNVISINOT

£92€-TVE-OI8 ‘XML
168y-9vS (£1€) 191
S0z9Y siodeuelpu)
2AlIQ SMOPEDY HEBE
VNVIONI

£19€-€22-016 XML
00b0-£L9 (ZIE) “1al
92009 aptoxs
1921]S PJemOY 00SS
SIONIT

068%-99£-018 XML
1819-9E¢ (¢OP) 181
8CEOE BMENY

YlIoN Sjelsiajul oSy
¥€282 %08 "0'd
Yi94039

£110-058-018 XML
0062-658 (S0€) 3L
60382¢ ‘OpuEldQ

g Jouay|d aye £/19
0T6€1 %08 0'd

6600-656-015 XML
0z0Z°1€L (S0E) ‘121

LOEEE aleprapnel 34
‘PAIE WiBd PUBINEQ M 908C
012vZ X089 '0'd
valgod

6202-G90-01L ‘XML
1659-68€ (€02) ‘18l
GZG90 UdAeH maN
aALIQg Jeuny ZT
1NJILDINNOD

S0L0-GE6-016 XML
GSYE-12L (EOE) #18L
01108 poomajBul
201jua.d Ise3 596¢
0Qvy0102

0002-GEE-016 ‘XML
002€-6£Z (¥1£) “191
£2126 03210 es
3ALIG 013V 9096

2602°L9E-016 XML
€9v1-¢8Y (916) 3L
62856 Oluawesoes

‘any Hem 0222

08ZI-ELE-016 XML
0059-2ZE (STP) *191
£OEV6 Oy 0)ed

peoy oJapedseqwl 1011

0L12-66b°016 XML
2821-248 (E12) *18L

Y0916 POOMAIIOH YJJON
plead|nog wWiysiayue] GE6E

0001-0/8 (¥1£) 131

1£926 uojapIng

*any adioyjaduelp isel OEHT
VINYO4ITVD

Z911-256-016 ‘XM1
£1£2-862 (209) :id3L
91/58 wosany
Kempeoig 153 LELS

OEET-156°016 ‘XML
1905-¢52 (209) *|3L
€058 xiuaold

")s eljoudeiy '3 9£€L
YNOZI¥Y

v022-92.-018 ‘XML
165-188 (502) 7131

C08SE aj|IASIuUNH

"M’'S peOy Butids pIAg £00Z
£0Zy %08 "0'd

YNVaYiv

S3LVLS G3LlINN

€6¥8-Y€0 ‘00EH-VED :X3MIL
o}y ojed MJVdM3AH ‘3iqed
£921-€£6-016 ‘XML
T0ST-€6Y (STY) *(9L
YOEY6 elu1ojie) ‘03lY Ojed

‘a3LS17 LON SYadv HO4

MOVIMIH 9PTTZ x3|al

seoese) WIVAMIH 3/qed
0£'66°TL '69'88" 1L 'S0'88'1L 131
segete)d

€E605 Opeliedy

v

B|aNZ3UBA 30 PieYIed-133|MIH
VI3NZ3ANIA

03PIABILOW WNIOYY 31qeD
Z0TE-0p ‘191

09pIA3JUOW

0£€ 03110 3p e||1se)
1182 ®IEY Epluany
|el3snpu| 3 |EIJIWOD

“9AY M3IAIIIH 002E
TVININILINOOYILINI

pieyded-}3a|maH

1OVINOD

ewn a3iwi3 ‘aiqen
006€-2Z ¢jal
ew

0€0T eiised

0Ipis| ues

Z1€ jeneue) anbuug ey
V'S edIpaN o033

TIWVY :21qed

2429 ‘690G (131

fenZeigd ‘usiaunsy

efeg pju|d—elIO}OIA 0101413

S02Ipay
sodinb3 £ sojeiedy :UOISIAIQ
TY’S pawesiy "1z

endeuely NYY3L0Y 31980
26P€ 'TSPE (18L

endeuep

upia] o1d1)1p3

689 |eisod opejsedy

"9 upJa] 0}1aqoy
YNOVYYIIN

£0G-v£-£T0 :x3{a)

PLBT-E2S ‘TETY-EYS (1AL

‘4°q ‘2T 001XaW

F)1BA 18P 100

o13ld ojiopy ¢z9

‘A'D 3D

'Y'S "BUBJIXBN PleYIEd-113|MAH
02I1X3nW

K11 efewajeng

0}inD HIVAYOH ‘31qed

SRI-61Z ‘96¥-212 8l

0)inp

661€ Xog 32110 1s0d

9vZ1 Inbedeny a|jen
eli31uddu-0Ipey 3p $O1I0jel0qe]
yoavno3

9507 UeS ¥N9HIVY :ejqen
€1-98-12 *19)

9sof ueg

65101 opejredy

ug1pIng sogajen opalyy o
Vol Viso2

QOLSNI00bY “x3laL
ejodog Styvy :3[qed
9v-65-Gy ‘90-BL-SY (|3l
'3°q 1 ‘ejodog

1829 02J3y opejsedy
65-8Y 'ON ¢ eldLie)

0213Uef 3P O1Y HIVIMIH 3198
6162-9v2 ‘LTv-9vZ ‘191

49 ‘oM1auer ap oly

20-9Z 030)e30g

62 20| BP eny

"BpiY 09|

\ise1g 0Q Puieyded-}13|May
21331y 0310d NOVAMIH :3I9eD
049852 *131

lIsesg-(Sy) Ins 0p apuesy o1y
a1daly oOji0d

808/908 Seles

8¢ OuelDI34 WO EOBId
|Iseig 0Q Pieyded-}}a|MaH

oined 082S HJVdMIH 31qeD
868582 ‘TT1£-88Z ‘191
dS ‘c - ofned oes

6T1T eO3URD {314 eNY

'y¥'S Opuelsay ojqe, AVNODYuvd ¥ BUOZ ‘T0-Z eIA BS L “ep1 9971
v's u:M(.._uuLm_h ysadl V'S 4abi § yaeqadue) 'y yliuay |1Seig 0Q PIRYIEJ-}I3IMAH
eweued NOYLDITI :2iqed YIVNILYND uoreaWNISU| qNzvyd
ZEE 0SVE NOYLYS :Xajal 3uoz |eue) VIEWO102D
uenr ues SOINOYLYS 31qed ‘npunsng ‘c00T8YE ‘X3]3L $¥0313 3198 9V WOWEMIH :3iqe]
TYEE-CTL 'TYEE-GeL (608) 1AL £€80€T |3l LE-2E-€C '09-vh€2 131 03e1JUES INOYOTYD “3198D 6001-210 X33l
90600 uenr ues A1) eweueq 0Sld . p-6y9p UO|RIS] 03SEd 96 €2¥ “13L 1ep0-gE ‘/290-5€ ‘9EPO-GE HI9L
eii3]L ap Y1d-€ ‘epd eully "3pjg '¥'J Zopeajes |3 'iopeajes ues odenues sadly souang
PYGT UO3] 3P AJUGd (G-CT ‘ON ESOUIdST |anuey ‘3AY 2jued|9 |eRIAW0Y) onue) ZPEET Bj|isen o€ - TLIT affeae]
£916 xog "0'd 6267 X0d "0'd 2891 |R150d opeliedy 0sld Jag-ge6l ‘soysng 1'9°v's
2U| ‘s21u0}I3[uen[ues '¥'S ‘Bogieq 091u9110313 $91R120SSY I(UA1}03(3 "epiy ‘eld £ udeate) 10303 BUNUARIY PIBNIR4-1I2IMIN
0214 04¥3Nnd VWVYNVd ¥oavAalvs 13 ERIUE] VYNILNIDHY
Si.:N.AoSv o 6506-226-0T9 ‘XM
’ 8 -226-0T9 XML
oﬁ.wmq.osv”xﬁ_ rrsossy Nome___uh ETZ8-EEY (v09) ‘1L
1196-4L9 Gwv«uuum 90z 3}Ins 2 Aqeuing yysoN
oalg Geoie 08 PUSBENWIGSHL e epeued iy
“PAT (epeue]) PIEYORH-11AIMIH P (epeued) E%Mﬂﬁﬁn m a.mh:m_ow N.M_w__._zn
£0902-10 Xaja) viio
“anoqe Z20€-224-019 XML 2661-295-019 ‘XML TESE-TL90T9 ‘XML 1EVZ-TE8-0T9 XML

palsli ssaippe 3l3jdwod ay)
1B ‘alleyd ajulod ul py1 (epe
-ued) pleyoed-j1a|mMaH }aejuo)

1aaLstl
A1ON SY3¥V NVIAGYNYD ¥04

2€2Y-L69 (P1S) HI9L

3die] Iulod

piea3jnog smUAH G/Z

‘P11 (2PRUBY) DIEWIRd-113{M3Y
2383nd

0€G9-G52 ‘0819-G5Z (€19) 1L
€ emello

*iq PJempoopm G841

“PI (epeue)) PIeYIRd-113|MAY
OIYVINO

186£-98¢ (402) :laL

Fadiuuim

‘1 Amjuay e1§

‘P (ePRUBD) PiRY3Bd-)IBIMEH
VHOLINYW

0£9€-25¥ {€ov) 12l
uoyuowpy

aay Aems3uly gp/1T

‘P31 (epeued) piexded-}i3[mMaH
viyzdiv

VAVNVYJ

98'vZ°¢ 'x8|8l

BABUBY YSHIVAMIH ‘a1qed

00 S Tt (220) ‘18l
PUBI3ZIIMS

LAJUAY T ULABW LTZT-HD

68 x0g "0'd

[ue7-np-sicg np any

Y'S piejded-1aimMaHy

:LOVINOD S3IHINNOD

NV3IdOuN3 ¥3HLO 11V

e yedmay £26G/ :xalal
BUUIA %OVAMIH :3192)
60-90 99 €€ (2220) :lal
BLISNY ‘BUUBIA YOZI-Y

St Yoeyysod

2/£2 asseljsuu|

H'q'Wsay pieyoed-1ja|maH
1LOVINOD 3SVaTd
SAIMINNOD LSITVID0S

890899 :xa|aL

9298-826 (190) :[al
alysayy ‘weyautyy
peoy maN piojwels

. Suolesd ayl,,

P11 pieyIed-HaIMAH
A8z IREIET

y3no|s 31dmIH :a1qe
Tveee (€5£0) Y3noIs <1al
$4ong ‘sa v 11S ‘udnols
peoy Uieg 2z

"P1] PIEYIR-}JaIMaH
WOAONIX d3lINn

Inquels] NOILYW313L ‘3|qed
Oy Oy 6b ‘191

|nquejsy

Aoyesey

9/€ x08 "0'd

nesing 3ujiaaulFul Woyajal
ANl

Yo esdy £€£/2 :xa|aL

BA2UAYD YSHOVAMIH 31qeD

00 S Tt (220) 1al

£ARUAY Z ulKAW L121

68 xog '0'd

£ ue7-np-siog np any

9V (Z1aMy38) pJeyded-N3ImaH

EE6ES XB[AL

HO 9¥dH 8148
¥Z/12 81 86 (10) ‘181
NZ udJdIIYIS 2568-HI
9 x08 ‘0°d

0z asseJ}siayainz
9y (213MyD5) Pieyoed aIMaH
ANVIHIZLIMS

S [pulwdy 1€ Tz :xa|aL
10/00 89 £Z (1£0) 181
1EPUION Tt TEL-S

06 uejedstayedey

gV 33112AG pleyoed-113|MaH

12£01 :xa18l
wioyya0s
SINIWIENSYIW :3)1qe)
0S 2T 86 (80) f1aL
0z ewwouig 02 191-S
LELE]
£-1 uadeasjaysdwg
gy a31aAg pieyded-13aImaH
N3d3Ims

00 29 £02Z (€) :|al

L1 euojadteg-1

£2-1Z Opesaue|liy

'v'S ‘eloueds3 pieyoed-}iaImaH

ady STSET :xajal

00 92 8Sb {181

91 pLpeN

8 ON Z3J3r

'S ,m_o_u_mnmm pleylded-11a|MaH
NIVdS

8651 X8|aL

uogs!] vy193173L e19e)

2L 0989 (61) 191

1 uogsi1-d

€62 X08 '0'd

£0T edasuoq ep o3upoy eny

|I'erg 509143933
sojualwedinb3

ap edluoa) esaidwi-es}oa|a)

1vONLHOd

12991 ‘xalal

09 €8 £5-(20) :IaL

wniseq yYET-N

£1 uadlaAsay

6p1 x0g

S/y aBI0N pieYIed-}}3jMaH
AVMYON

|u eday 91Z €T :xajal
weplajswy N3QO1Vd :31qed
L4 L2 29020 i|aL

11 7 'wepiajswy

G284 xog '0'd

L1T Ul9}saprasm

‘A'N 'Xnjauag pieyoed-31a|may
SANVIHIHLAN

v6b €2 X321
sjassnig N3801vd 3Iqed
o¥ 2z z¢ (20/€0) :|aL
sjassnig 0/11-9

T 'MaA-10) Np anuaay
WN/YS

XNjauag pieyded-}}3ImaH
24Nanaxn

ue|liy elA 9p0ZE “xalaL

“yd'§ euelle)| pieyoed-31aIMaH

UBJIA B1A 9pOZE XdJAL

9 0y 99 (69) (I8l

eaoped 00TSE-|

€ ‘LI0Jsed 0]0dIA

'y'd'S euellel| pieyded-1iaimeH

PIST9 ‘Xalal
aW0Y LINDYdMIH :81aeD
Lb6ST66 ‘G/vPSTI66 (9) Hal
1n3 - aWoY vv100-T

JU0dIBlY B2ZRIg

'vd's eueljey| pieyaed-namay

9Y0ZE Xd|dL

Ue|lW LINOVAMIH :3tqe)
(sauif O1) 1629 (2) *I18L

ue|lW $2102-1

I _ooznwo> owEoE(BIA

.<dAm euelle]l| piejoed-}}ajmaH
ATVLI

ETPY8 x3|dL

Y3nois 31dmaH :siqen
TPEEE-EGL YBnols :jal
syong ‘sa v 118 ‘udnols
peoy yieq vz

"PY1 PAENIEL-HIIMIH
ANVI3H|

43 1eM1 29 66 12 ‘xalal
Su3YlY HYMYY :9Iqed
€0€-0€2€ 191

92T suauy

193235 now.3 ‘g1
m_:cu>m_ux SeIsoy
303349

P Ulqdy 50 € 8T X331
9Y0LETE (TTED) 3|31

2T "M W39 0001-a

PIT/ETT asses}S JajJopsiaw|im
HQWD-$Q3(1}18A PJeYIed-119IMaH
(u142g 153M)

UAUININ YSHOVIMIH :alqe]

68 67 2§ ‘X313l

£-190 €T 09 (1180)
uunigolo Z108-a

131ua) HySt

g¢ 9sseJ}s Jaduiyaeysajun
HQWD-SQ3113I9A pJeyied-1i3imMaH

P yydy Zg €5 12 x3faL
3inqueH ySHIYAMIH 219eD
26/15 SO ¥2 (TTp0) (1AL

T Sanquey Z-a

€7 'Jjsuspuam

HAWD-SA3IJIAA PaeyIed-11aImap

P ppdy €€ 98/58 X3|aL

SE/TE 08 €9 (1120) :19L
HOpIassng v-g

8¢ Som taduesjadop
HAWY-$q314119A pIeyIed-1121MaH

uqq 6£L S9 2L X319

uaduilqeg WvdIH :819ed

£8-98 2L 99 (1€0£0) :191
diaquajpinm ‘uaduliqed 0£0L-a
oT1 wwwu:w_mw_wncw:wx
HAWD-SqaLIAA pieyded-11almay

Yid 6v € Tt X?|a)

Hnpjueld YSHIVAMIH :d19ed
1-%0-05 (T190) ‘|81

95 Wy4/42eqyas3-1apalN 9-a
OPT 095 YdBHSOd

L1T 3ssen}s Jaulldag
HQWD-Sq3L1IaA pieyded-P3|maY
J178and3y

IVH3IA3d NVAYH3O

L5619 X381

6Z 28 58 (19) ‘|91
Jeudelg 1€

2189 Bj 3p 3NJ 62
99UeJd pIENIRd-113IMIH

L191€ xaja)

U0A7 YJvdMIH 3|98
S €9 v (84) ‘191
3G Uokl 69-4

5110413 5ap lenp ¢
aouely pieyoed-}1a|maH

84009 :xald)

Kes10 NOVdMIH :21qed
Sz 84 £06 (1) =181

Kesio 164

9 "ON 8]€)sod a)10g
JN20qepsn0) ap Jaljenp
aduelq pieyaed-}}a|may
IONVHA

13y €9GT-LT X2|aL
IYUIS|9H-AONIVdMIH :3IqeD
0EL-ET (188

TT 14uIS|3H 0ZT100-4S

S8T2T x08 "0'd

9Z |pieAajng

AQ pieyded-119|mMaH
ANVINIA

SYNOVAMIH :21qed
se dy 0v99T xa|aL
99-1/£-28+(90) :19L
810qay1s 0098-1a

6 J9Al0)

S/¥ Pleyoed-HaImaH

se dy 0p99T xa|aL
SY YOvdMm3IH :aiqed
0¥ 99 18 (10) 13l
PpoJayIlg 09YE-Ha
8¢ lanejeq

S/¥ Pieyded-11a|may
NHVWNIA

6 €2 :xajal

s|assnig N3a01vd :91qed
Ov 2Z 2L (20} “181
stassnig 0L11-6

1 ‘M3A-|0) Np 3nuany
AN/Y'S

IN|U3Q PieyIed-113IMaH
wnoia

€ yedmay £265L ‘X191
BUUIIA YYdMIH :31qe)

60 O} 90 99 €€ (2220) :laL
Buualp v0ZT-V

St yaeyisod

Z/€2 assedisuul

H'Q WIsay) pieyoed-118|MaH
viuisny

adoyun3a

alodeduls gWOJIN 21980
T19Z€9 ‘€-19€2Y9 (121
£ ‘alode3ns
ajels3 |ewysnpuf |14 pay
dueyiy uerer ‘s

‘P11 Auedwo?) Buysauiul
uojIsNquoy pue [edsueyds
JUOJVYONIS

BlIUBW X3IWIT3 919eD
££-9£-(8 '{8-81-98 |31
leziy ‘nexen

8201 %08 "0'd'J°'D

1eZ1y ‘1eNeN oAy eleAy
*3plg Jojuan

S123)1y24y 10034 UG
*9Uj X9Woi309i3
S3NIdITIHL

Ipuidiemey SNIW34 219eD
Y261V H31
fpuidemey

umo] ajlIlajes ‘a8E

"p37 ‘Auedwo) @ oyysny

fyoetey Yo1vy3idood 31qed
£2621S '£20T16 281

€ 1yesey

peoy UoOIeH ye|inpqy
SJaquey) Uewsoo

‘py1 ‘Auedwo) g oqysn
NVLSDIVd

PUBNINY ‘HIVJMIH ‘31qeD
££86-9G ‘91

e3uesmyng

26015 xog

‘P11 (CZ°N) PIENORd N13[M3H
uojBullIamM MOVdMIH 3|qed
665-9G ‘131

"Z'N ‘unjduliam

£yv6 xog "0°d

IS uosxtqg 966

‘P31 ('Z'N) pieyIed-NajmaH
ANV1V3z M3N

NO93N :9iqed

sanhJiey oduamnol

£01 xo9 "0'd

SINT °Q AV BT MY T°)

Y1 'SaA[eduoy N Y
INDIANWVZONW

andwny ejeny gwOIIW :8|qe
J03uejas ‘efer 3uiejad
£1_U03998

V9/€T 3uoi0n ¢

‘PI1 eisAeie BWODIW
VISAVIVA

{128 ¥YITINNOYLIATI (9|qed
9v80Z2 ‘[l

njeg

£12L x08 ‘0'd

13815 Neaduswal)

SIpIIBW "3 UpuUEISUO)
NONVEI1

IN03S DIVHLWY :21qed
L-V268-EL 181

|noas ‘ny-oi8uoy)

oy 3uolas £0T

‘3p|a 3undyaeq ‘00j3 yIg
€011 09 "0°d IN03S

*AlQ $}INpOId |el4snpu]
uo)jes0dio) oenjwy
vIdox

NOLOHd ‘919e)
92L45 (|3l
ekuay ‘1qoJteN
T1£81 xo8 "0'd
SIUJAUIN eAUdN
VAN

Ini1sg YY3I1INNOHLIITT 819R)
9v80ZZ ‘181

uoueqat ‘Jnaiag

€12 %08 "0'd

192J)S NR3JUBW?|)

SIpLIORIW "3 UNUBISUO)
Nvador

MOA dHA Y0CTE-Z8E X131
YOST-2EY-G10 :|al

227 Eweyoyox

NY-ny0Yoy

Bl1¥-eJeyoulys Z-4-2

“3pia ONIN

*PI1 PIEYORH-113|MIH-BMEEONOA

S120-15S (260) 131

A1 ekodeN ‘ny-e:nwejyeN
0y3-110J0y ‘6§ ‘ON

3uip|ing oyl

‘PY1 Pie)Oed-})a|MaH-emeONOA

YNYSO dHA S8E-ZEES XII3L
T¥91-€2 (92£0) *1aL

exNesg

1ys-13eseq|

ednsey 8-Z-2

-3p|g 13eseq| 1asIN

*PY1 pIeYIEd-}}3|MaH-EMEIONOA

v2L-E2 HOL LINYYWAHA :2Iqed
dHAPZ0Z-2E2 X9|9L
26/1822-0L€-€0 :|aL

okyoL 'ny-eAnqius

180404 1-66-1

3ulpiing 1yseyo

P v-nxu&m.«uo_‘so:.mimwcxo>
Nvdvr

T 110N x313)
AlAy-a1 131Sv8 ‘8]qed
(saull €) Ty69€ 131
AlAY-|3L
18a.)g Aepeujwy /1

P11 |9RJS| Bj0JOJOW §O "AlQ
Auysesuidul p $21U04}99|3
I3vis|
u} 39/AI3S 9/8Z Xala]
uesyal d40JLLINW ‘31qel
6€-GE 0T €8 ‘|31
uesayal
212l xog "0'd
0£T eAeiOS anuaay
P11 leuoneusaju| droangny
NVl

608-80 :x3|3]

N1l *91qe)

09STS ‘SI6% *1aL

Junpueg

62 eY3pJaN yejelq

‘AN *A09 3uipel] uojog yeg
VYISINOGNI

yy1s3nig ‘aiqel
0 8¢ ‘|3l

elpul ‘indpayswer
peoy !|putQ
molesung Jasiey g1
‘P11 ‘ielS enig

dy1$3N1g ‘@lqed
6LE ‘xd|3l
§G 6E ¢ 3l

elpu| ‘T seJpel
yoag 8ull pUodIS vZ/€C
P11 ey anig

150443n74 :8iqe)
€6EL L 'T6EIL 7|31
£ peqesapunaas
peoy 1aaq tuifoles
1974459594

PN ‘els enig

Y¥v1S3N1g :81qed

0ty x3l3l

€LP16 3l

G2 'asojedueg

peoy yjeseSey yYI1/11
asnoH 1eys an|g

‘P11 "1E3S Bnig

yv1s3Inig :8jqe]
€91 “x31al
9L ¢€ 29 :18l

elpu] ‘bz 141aq MaN
Jedey jedieq]

peoy 3uly pe
‘asnoy 1ey$ an|g
‘Pi1 1838 onig

¥v1sanig :a1qed
§S9 xalal
1E10-€2 “131
elpu| ‘T ennsed
905 x08 ‘0'd
1991 ey £
‘P11 els enig

yv1s3anig ‘91qed
28 889 i3l
elput ‘Jnduey
soul 1AL oY/ 41
“PI7 JRYS Bnig

¥visInia :aiqey
15L¢ iXala]

10 €£ b ‘9L

elpu] ‘gase Aequiog
1A9peyqeld

asnoH xog pueg
‘P11 Jejs anig

1S0443N18 :2|qed
1SL€ xa|aL

12 06 62 ‘131

elpu '4goz Aequiog
'PY_ejel Mpayswef
s3uipling umsey
‘PN Jeyg 8nig
VIGNI

3uoy 3uoH 0JLAIWHIS 2198
SEL2ET ‘89TOHZ *J2L

3uoy Buoy

peoy Jajey) ‘01

10014 WIST Butping 5,80uldd 'TIST

£62 X0g "0'd
"1 (Buoy 3uoH) "0) B Iplwyds
ONOX DNOH

eqeqesippy 0QVSY :319e)
68221 3l
eqeqy S|ppy
‘1S wey3ujuung 65/85
81 X08 "0 °d
0 “p11 2jeAlsd
Kouady g samodsales uestny
VYIdOIH13

IWYN-I-3H :3iqe)

8295£-2829 ‘181

BIS02IN

ZST1 x0g '0°d

peoy sojnodouay B $011033J9 61
$31U0IdAY

SNYdAD

0quo|o) INIOJL1OH *21qed
96¥S ‘191

7 ogquojo)

19aJ)$ sa|deys

Bulpling ejeyes

189 xog "0°d

‘P31 51821339313 payIun
NO1A3D

0S0-0L (|81

pue|suaanp 90 aiowauay
SET X089 "0'd

19aNS pleniey 9

P11 A

el|e)SNY pIeYIRd-}13MaH

vivuisny

1)V eslaque)d QUYJMIH 9(9eD
6186y (191
2092 "L'Y’Y uosyaiq
161 x08 "0'd
192435 43j100Mm 01
P Ad
Bl|BJISNY pleYIBY-})13|MIH

Y}i3d QUVdIM3IH :31qe)
0£€e-IT 19l
0009 'V'M ‘tliad
doela) dple|dpy 961
s3u)pling eduejgese)
€T ayng ‘Jooyy puz

‘M Ad
ellensny pieyoed 113|May

aple|apy quVdM3H :8lqed
99€2-99 ‘8L
el{RJ}SNY YINoS
2805 39adsold
PEOY 111UJnY] £6
‘P Ald
BIRIISNY PIBYIB4-}13IMIH

19612 :xaal
KaupAs QHVJM3H :81qeQ
998L-EY 18l
S3|BM YINoS MaIN
G907 153N smoJ)
190.]8 Jopuexs|y 19
‘M A
BI|RJISNY pleYIRY-}}3|MIH

+20 1€ x99l
2UINOqI3N QUYdM3H *3]qeDd
(saull 9) TLE1-02 191
BHIOWIA
9YIE ‘sp ualn
13948 J18m 92-22

P Ad
ejjeysny pieyoed-1a3|may
vivuisny

epuen] yy1)313l :91qed

sangupoy esoqieg ap eny
Vs
500399(3 SOjuawed|nby ap
ejudoy] esasdw3 e}a2}a)
V109NV

‘VISY ‘voludv

€6V8-E0 ‘00£8-PEQ *Xalal
O}V OJed WOVAMIH :diGed
L92T-ELEOT6 XML
(T081-86Y 1/ '3d)
000£-92€ (STH) :1aL
YOEY6 e1UI041[eD ‘011 oled
"aAYy MIANIH 00ZE
TYANINILNOOYILNI
pieyaed-1121MaH
{LOVINOD ‘03isi]
LON SVI¥V ¥3HIO

PIST9 *x3jal

WOy LIMIYdMIH 3[qed
62 Ob 65 (9) *|aL

Aley in3-3woy vv100-1

L '02004814 BIA

suoijesadg ise3

3|PPIN PUE Upauelia)ipaw
10} 301340 UOIIBUIPIO-0D
pIeyoed-113|MaH
:LOVINOD

3ASV3I1d NMOHS LON
S3IMLNNOD 1SY3 ITQAIN
QNV NV3INVHHILIOIN

eledwey QOWOJ ‘8198l

64245)2l
ejedwey
6vby x09 "0'd
P 09 211%2{3-alal epueldn
YANVYDN
yoN2ued YSIWINN 2I1qed
ovsLE
‘L0ETE ‘00ETE '956LE 3L
yoy8ueg
peoy IsBuomLIng 95
e)esny ‘JILAVIYY 31qeD Buip|ing asuloy3uoyn
€6LEL (|31 P11 09 YSIWINN
ealyY |eAjua) ‘eiquez ANVIIVHL
eyesn]
262 X08 '0'd ladiel MOVdM3H :21qed
*p17 {elquez) Aingill T ¥ HI¥dMIH Z8dL :x3|81
Lt: 174 6b2-0rZ "PX3
‘12154 ‘21'09168€ 131
2vZ NODIVS ‘VdIN3d :3|qed 1ade]
86€€6 '508-02 a1 10013 WY/ "3p|g 'dio)
=cu_um QJURINSU| SBASIBAQ
Buchp-usly 912 1 "9@S
€-H x08 ‘0'd pecy 1sapm oelys Junyy 6€
-ou| Buspes] Se[nsufuad uexie] piexaed 13aMoH
WYN1TIA NVMIVL

HOVdM3H :3|qed
¥G649G xaal
¢019-88 ‘{3l
{ejeN ‘140d1240
66 xog "'0'd
ueqsng ‘peoy 22piy 149
‘N Ad)
ROV YINOS Pieyded J12|M3H

9000-G xa|al
umoy aded YIYdMIH ‘3qed
GYS9-€ ‘6109-€ (12l
umol ade)
1eans 22.g8
SNOH 2|jsedsziq
A
B3|y 4INOS pieyORd H3IMIH
3:nqssuLRLOf YOVIMIH 21980
Hf 9220 :xa1dL
0€02-6ZL '0802-GZL ‘1oL
3ungsauueyor
122,15 J22g 30 0€
uopseullN
|eeASUBRI| Ul2JUDjweRlg
9T1£1€ o8 "0'd
M (Aad)
RIIJY Y3N0S pIEXORd 11AMSH
VIIlddY HLINOS

JHOdYINIS HOVdMIH :@iqe)
220EE9 (2L
¢ asodesuls

01440 1504 BIpURXI|Y

L8 xog "0'd

201440 B2y

1se3 teq pieyoRg-}}ajMay

(penunuo)) VITVHLSAVY ‘VISV ‘VOIHAV

i

-
.

02100-90133

P

e
o
B e

Y @ ¢

.

i

R

S
o s

B

