A Pocket Gunde to the

===r——-"-'——-— e

5 NN NS Ilﬁ Ha

" Emm f =

A Pocket Guide to the
Hewlett-Packard
2100 Computer

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Here is a range of computer capabilities with the power to solve
problems for a wide range of applications—at a cost that makes
them uniquely practical.

The Hewlett-Packard 2100 computer combines performance and
economy with small size. Achieved by simplicity of design—in
package, in hardware, in software. A package that’s easy to set up,
with peripherals interfaced through plug-in cards. All modular for
easy expansion. Straightforward machine organization and con-
soles that are easy to use. The 2100 uses a microprogrammed con-
trol section that utilizes the latest in integrated circuit design. A full
range of proven software packages permits your 2100 to go to work
right away. All designed for busy computer users who want to-
morrow’s answers today.

FEATURES

Low Cost
+ Proven software
+ 16-bit word size
* 980 nsec memory cycle time
+ Large 1024-word page size
+ Powerful instruction set of 80 basic instructions
Peripherals interface simply with plug-in cards
Multilevel priority interrupt for device servicing
+ Two accumulators, both addressable to simplify programming
+ Includes extended arithmetic instructions, power fail interrupt
with auto restart and memory parity check with interrupt
as standard features
+ Core storage expandable to 32,768 words
* Protected loader
* Multiplexed I/O available
- Optional high-speed Direct Memory Access
Floating point hardware option provides 5- to 20-fold perform-
ance increase of floating-point arithmetic functions
+ Writeable control store available for adding additional
instructions -
Modular I/O drivers—for device independent programming
FORTRAN 1II and IV, Assembly, ALGOL and HP Extended
BASIC
+ Modular Debug package—for on-line program debugging

A LOW COST COMPUTER WITH HIGH-PRICED PERFORMANCE

USER (PROGRAMMING TRAINING)

Hewlett-Packard provides a free user-programmer course for com-
puter customers. Training materials are provided at no charge. The
complete User Training Course assumes no knowledge of com-
puter programming or electronic systems operation. It covers in-
struction on programming languages and operating system. At least
two full days are devoted to hands-on experience.

REPAIR SERVICE

Help in maintaining your Hewlett-Packard equipment in first-rate
operating condition is as close as your telephone. Service and parts
assistance is available from over 140 HP field offices throughout
the free world. Local service facilities are backed up by Regional
Service Centers. Major parts warehouses are located in Mountain
View, California, and Rockaway, New Jersey. Board exchange pro-
grams for computers and other equipment enable systems to be
returned to normal operation with minimal downtime.

iv

CONTENTS

2100A Reference Manual

Assembler Reference Manual

Basic Control System Reference Manual

FORTRAN Reference Manual

BASIC Language Reference Manual

2100A Reference Manual

The 2120 Disc Operating System lets you combine
the 2100A Computer, the 7900A Disc and more than
a dozen peripherals to solve your particular proc-
essing problem.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

CHAPTER 2

CHAPTER 3

CHAPTER 4

1.1 Interfacing

1.2 Input/Output Devices

1.3 Software

1.4 System Expansion Features

1.5 Floating Point Hardware

1.6 Microprogramming

1.7 Physical Specifications

1.8 System Documentation

PROGRAMMING INFORMATION

2.1 Data Formats

2.2 Memory Addressing

2.2.1 Paging

2.2.2 Indirect Addressing

2.2.3 Reserved Locations

2.2.4 Nonexistent Memory

2.3 Hardware Registers

2. Instruction Formats

2.5 Interrupt System

2.5.1 Power Fail Interrupt

2.5.2 Parity Error Interrupt

2.5.3 Memory Protect Interrupt

2.5.4 DLA Interrupts

2.5.5 I/0 Interrupts

2.5.6 Central Interrupt Register

2.5.7 Interrupt System Control

INSTRUCTIONS

3.1 Instruction Timing

3.2 Memory Reference Instructions

3.3 Register Reference Instructions

34 Input/Output Instructions

3.5 Extended Arithmetic Memory
Reference Instructions

3.6 Extended Arithmetic Register
Reference Instructions

3.7 Floating Point Instructions

INPUT/OUTPUT SYSTEM

4.1 1/0 Addressing

4.2 I/0 Priority

2100A REFERENCE

O) L G g gy WUy
T
== O W31 0t =

w o

0

1O DO 6O B0 1D B0 DO B2 8O DD B DD 8O 0O 8O DO B
DO R b b b b i 1 D I D Gt Ot G GO =
RN OOOnw—

CAJCOCI&JCQ w
d
D~ Q3 = =
[ed

Interface Elements
Control Bit
Flag Bit
Buffer

1/0 Data Transfer
Input Transfer
Output Transfer
Non-Interrupt Transfers

Direct Memory Access
DMA Operation
DMA Initialization

CHAPTER 5 OPERATING CONTROLS AND INDICATORS

gt en o o r an o n
0O RO b b b e
[=

ar
-~
i

5.4.2
54.3
5.4.4
5.5

5.5.1
5.5.2

5.4.5

Figure

1.1
1.2
1.3
1.4
2.1
2.2
2.3
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2

i 2100A REFERENCE

Operator Panel
16-Bit Registers
Fault Indicators
Phase Status Indicators
1-Bit Registers
Operating Controls
Controller Panel
Internal Switches
Panel Operation
Loading with Basic Binary Loader
Loading with Disc Loader
Manual Loading
Running Programs
Operating Procedures for Controller Panel
Loading Programs
Running Programs

Running Programs

ILLUSTRATIONS
Title

HP 2100A Computer

HP 7900/7901

HP 2155

Internal Configuration

Data Formats and Octal Notation
Instruction Formats

Modules of BCS

Shift and Rotate Functions

Examples of Double word Shifts and Rotates
Input/Output System

1/0 Address Assignments

Priority Linkage

Interrupt Sequences

Input/Output Transfers (Part 1)
Input/Output Transfers (Part 2)

DMA Transfers

DMA Control Word Formats

Operator Panel Controls and Indicators
Controller Panel Controls and Indicators

M a s do Go GO Go -3

AAAAA»I&HL%AHLA

T 1 1 7 3 1

7

AR A AR

CrlCJ’lCJ\CnCJ’ICnCJ’IU’lC,J’ICJ’IQICJ’IU’IUIU’IUI [,
Pt e el e = D OO T U O R e

<
g

—

o

)
5
)
[

OSSO AN

mmhpphhhp%wwmmm»ﬂ»—u—u—a
NIRRT WRN N ON N O

TABLES
Table Title Page

1.1 General Specifications 1-2
1.2 2100 Peripheral 1-3
2.1 Memory Pages 2-4
2.2 P- and M-Register Indications 2-7
2.3 Interrupt Assignments 2-12
2.4 Sample Power Fail Subroutine 2-14
2.5 Sample Memory Protect/Parity

o]

Error Subroutine

Extended Arithmetic Execution Times
Shift-Rotate Combining Guide
Alter-Skip Combining Guide

Floating Point Instruction Specifications
Non-Interrupt Transfer Routines
Program to Initialize DMA

Loader Starting Address

U\##CDC:«JG\JOJN)
=== W 00 00 ND =

916200 0 00w G
= OO W N
=0 W =

APPENDIX

Appendix A Functional Block Diagram
Appendix B Processor Logic Elements

o >
[LACN

2100A REFERENCE iii

INTRODUCTION 1

The Hewlett-Packard 2100A Computer is a compact data processor
featuring a powerful, extended instruction set, plug-in interfaces,
and modular software. Standard features include memory parity
generation and checking, memory and I/O protect for executive
systems, extended arithmetic capability, and power fail interrupt
with automatic restart. Optional features include two-channel di-
rect memory access, multiplexed input/output, a controller panel,
and the IO interfaces. The controller panel, which provides a mini-
mum of controls and indicators, is available for applications where
the full complement of controls and indicators provided on the
operator panel is not necessary.

The logical design and software follow conventional standards of
computer usage and notation so that the 2100A may be used asa
free-standing device or in systems such as process control, media
conversion, data reduction, communications, or time-sharing.

Figure 1.1. Hewlett-Packard 2100A Computer

2100A REFERENCE 11

Memory

Magnetic core storage

980 nanosecond cycle time

Parity generation and checking is standard in all units

Six memory sizes available, 4,096 to 32,768 words; field-expandable
by plug-in cards

1024-word page size

Protected 64-word block for stored loader

Processor

80 basic instructions, including extended arithmetic

Up to eight instructions may be combined into one word (register
reference group)

Two accumulators, addressable as memory Jocations

Unlimited levels of indirect addressing allowed

Six working registers, may be selected for display and instant modifi-
cation (A, B, T,P, M, S)

Iluminated control pushbuttons allow simultaneous display and
control of internal functions

All instructions fully executed in 1.96 microseconds, except ISZ and
extended arithmetic {2.94 to 16.7 microseconds)

Only 980 nanoseconds added for each level of indirect addressing

Memory and 1/O protection is standard

Software

Inp

12

FORTRAN, FORTRAN IV, ALGOL, and BASIC languages
Extended Assembly language
Editor, subroutine library, Formatter, and Debug routine
Several operating systems, including:

Basic Control System

Magnetic Tape System

Disc Operating System

Time-Shared BASIC Systemn

ut/Output System

14 internal 1/O channels, externally expandable to 45

Optional multiplexed 1/O extends capabity to 56 channels; may be
plugged into any slot

All channels buffered and bi-directional

Multilevel priority interrupt for device servicing

Peripherals interfaced simply with plug-in cards

Optional dual-channel direct memory access, can transfer 1,020,400
words per second

General-purpose interface cards available

Table 1.1. 2100A General Specifications

2100A REFERENCE

Peripherals

* Magnetic Tape
Read and write 9-track 1BM-compatible magnetic tape, 800 and
1600 cpi, at speeds of 25, 37.5, or 45 inches per second; also read
and write 7-track 1BM-compatible magnetic tape at speeds of 25, 37.5,
or 45 inches per second with switch-selectable densities of 200, 556,
and 800 cpi.

* Disc Memory
Fixed head-per-track design for rapid access, capacities range from
262,144 to 1,048,576 words

* Cartridge Disc
Moving-head disc for low-cost mass storage; capacities from 2.5
million to 4,9 million bytes

* Disc File
Moving-head mass storage; 11.7 million words per drive, 8 drives
maximum

Card Reader
Reads punched 80-column cards, 12 bits in parallel, at 1000 cards per
minute

* Mark Reader
Reads punched and pencil-marked cards at 200 cards per minute

* Line Printers
Print 120 or 132 columns per line at 300 or 600 lines per minute;
ASCII 64-character set. Also from 356 lines per minute (80 columns)
to 1110 lines per minute {20 columns); 64-character set

Keyboard Display Terminal
CRT screen displays 25 lines, 72 characters per line; standard tele-
printer keyboard plus 10-key numerical keyboard; speeds of 10 to
200 characters per second, switch selectable

* Tape Readers
Read 5- and 8-level punched paper tape at up to 500 characters per
second; with or without automatic rerolier

* Tape Punch
Punches 5- and 8-level code at 120 characters per second; also 5- and
8-level code at 75 characters per second

Table 1.2, 2100A Peripherals

2100A REFERENCE 13

HP 7900

HP 7901

Figure 1.2. The HP 7900 and 7901 Cartridge Disc Drives allow the
2100 user to economically and efficiently add on-line mass storage
capability. The 7900 provides 4.9 million bytes of storage and an
average access time of 30 milliseconds.

14 2100A REFERENCE

1.1 INTERFACING

Interfacing of peripheral devices is accomplished by plug-in inter-
face cards. The computer mainframe can accommodate up to 14
interface cards, expandable to a total of 45 when the optional
2155A I/O Extender is used. Interrupt and addressing capabilities
are present for 56 channels so that, using multiplexed I/O and an
external controller, up to 56 devices can be handled. Interface cards
are available for a wide variety of peripheral devices, and virtually
all interfaces used in 2114/2115/2116-series computers may be
used with the 2100A Computer. No power supply extenders are
necessary for any combination of interfaces installed.

All 1/O channels are buffered and bi-directional, and are serviced
through a multilevel priority interrupt structure. The two optional

Figure 1.3. The HP 2155A Input/Output Extender adds 31 addi-
tional 1/O slots to the 2100, Full interrupt and addressing capabil-
ities are included, plus sufficient power for any combination of
interfaces.

2100A REFERENCE 15

direct memory access (DMA) channels are program-assignable to
any two of the 14 interface slots in the mainframe, expandable to
45 slots if DMA is also installed in the extender, and can be dynam-
ically reassigned. DMA transfers occur on a cycle-stealing basis, not
subject to the I1/O priority structure. The total bandwidth through
both DMA channels is more than one million words per second.

A unique channel identification and service priority intetrupt is
provided for every input/output channel used. Priority levels of the
peripheral equipment connected to the computer can be altered
simply by changing the positions of the interface cards in the I/O
slots. Virtually every Hewlett-Packard measurement instrument
provides a digital data output that can be interfaced to the 2100.

a. Digital voltmeters and associated signal converters for
measuring dc and ac voltages, currents, and resistances. With suit-
able transducers, physical quantities such as pressures, loads, tem-
peratures, and fluid flows can be measured with an HP computer.

b. Electronic counters for frequency or period measure-
ments from a few cycles per second into the microwave region.

c. Scaler timers for nuclear radiation measurements.

d. Digital test subsystems for measurement of integrated
circuits, p.c. cards, components or assembled equipment.

Analog input scanners are available for multiplexing signals into
these measuring instruments. Digital scanners are also available for
applications where it is desirable to multiplex the data outputs of
these instruments before entry into the computer. Complete
information on HP computer peripherals and measurement instru-
mentation are available from your local HP field sales office.

Off-the-shelf interface cards enable the customer to operate a wide
variety of devices of his own choosing with the 2100. These in-
clude 8- or 16.-Bit Duplex Register cards, Microcircuit Interface
card, a Relay Output card, a D-to-A Converter card, and Multi-
plexed Input/Output for connection of up to 56 devices to the
2100.

16 2100A REFERENCE

1.2 INPUT/OUTPUT DEVICES

Instructions or data may be entered on punched tape through a
teleprinter, keyboard-display terminal, high-speed photoelectric
tape reader or card reader. Data output devices include the tele-
printer, which provides typewritten and punched tape records, tape
punches, magnetic tape units (for IBM-compatible, 7- and 9-channel
recording) and line printers. Fixed-head disc or removable disc
storage units are available for on-line mass storage requirements.
Data can be entered on-ine from Hewlett-Packard data sources
and computed in real-time, or recorded on punched tape, magnetic
tape, or disc for subsequent computer processing. Data-Set inter-
faces are also available, which enable information to be transmitted
over the telephone system, into or out of the HP computer.

1.3 SOFTWARE

Software for the 2100 Computer includes four high-level pro-
gramming languages: HP FORTRAN, HP FORTRAN IV, HP
ALGOL, and HP BASIC, plus an efficient, extended assembler
which is callable by FORTRAN and ALGOL. Utility software in-
cludes a debugging routine, a symbolic editor, and a library of
commonly used computational procedures such as Boolean, trigo-
nometric, and plotting functions, real/integer conversions, natural
log, square root, etc.

Hewlett-Packard provides several systems built around BASIC in-
terpreters. The single-terminal BASIC system allows the user to
prepare and run BASIC language programs conversationally through
a teleprinter. Programs can also be entered through a tape reader
and punched out on tape punches. A memory of at least 8K words
is required. A similar system, Educational BASIC, allows BASIC
programs to be translated from marked cards.

Several operating systems are available, covering a wide range of
applications. The Basic Control System, which simplifies the con-
trol of input/output operations, also provides relocatable loading
and linking of user programs. The time-shared systems, using con-
versational BASIC language, permit 16 or 32 terminals to be con-
nected to the system, either directly or by telephone lines via
Dataphones. The Hewlett-Packard Real-Time Executive (RTE) sys-
tem permits several programs to run in real-time concurrently with

2100A REFERENCE LR

general-purpose background programs. This allows multiple data
processing capabilities where separate computers are not econom-
ically feasible. The user can write programs in HP Assembly.
FORTRAN, or ALGOL languages. A Magnetic Tape System and
a Disc Operating System are also available. These systems greatly
increase the speed and simplicity of assembling, compiling, loading,
and executing user programs.

1.4 SYSTEM EXPANSION FEATURES

Memory sizes for the 2100A Computer are available in six con-
figurations: 4K, 8K, 12K, 16K, 24K and 32K. All core memory is
accommodated in the computer main-frame and is field-installable.

Figure 1.4 illustrates the configuration of the basic 2100A Com-
puter and the expansion capabilities of memory and input/output.
This figure approximately represents the top view and layout of
the computer. For 4K or 8K memory, a card with the appropriate
stack configuration is installed in position A. For 12K or 16K

Cable to
Peripheral Cable To
Device or Peripheral

1/O Extender Device
4
Memory
[
B A [D
4K or 4K or BK 18

8K

CPUand
110 togic

1/D Interface Cards

Figure 1.4. Internal Configuration

18 2100A REFERENCE

memory, the appropriate combination of 4K and 8K stacks is in-
stalled in positions A and B. For 24K, positions A and B have 8K
stacks and an 8K stack is added in position C. For 32K, a final 8K
stack is added in position D.

Expansion of input/output beyond the capability of the mainframe
is accomplished by plugging an extender interface card into the
highest address I/O slot (represented by E in figure 1.4), in place
of an I/O interface card. This card is then cabled to an equivalent
card in the 2155A I/O Extender Unit. The address formerly as-
signed to slot E, and all higher addresses, are available in the
extender.

1.5 FLOATING POINT HARDWARE

The Floating Point Hardware option (12901A) supplies six addi-
tional arithmetic instructions in the 2100’s basic instruction set.
These instructions provide a 5- to 20-fold increase in the perform-
ance of floating point arithmetic functions. Firmware coding is
stored in bipolar Read-Only-Memories (ROM’s) contained in the
microprocessor of the 2100.

Floating Point Hardware may be used with the 2100 Basic Control
System, Magnetic Tape System, Disc Operating System or Real-
Time Executive System. It can be either field or factory installed
and includes an Assembler, Cross Reference Symbol Table Genera-
tor, Program Library, and a Diagnostic for the appropriate operat-
ing system and memory size.

1.6 MICROPROGRAMMING THE 2100A

Microprogramming allows the 2100’s basic instruction set to be
tailored to specific applications. Control storage in the 2100 con-
sists of 1024 24-bit words organized into four modules. Micropro-
grams for the basic 2100 instruction set are contained in the first
256-word module. A total of 768 words is available for extensions
to the basic instruction set. (Firmware for the 12901A Floating
Point option is stored in the first module and is reserved for this
purpose.)

2100A REFERENCE 19

The Writeable Control Store (WCS) option (129G8A) provides the
capability to microprogram the 2100 easily and conveniently. WCS
consists of a single card which plugs into a computer [/O slot
eliminating extensive cabling or additional power supply require-
ments. The card contains 256 24-bit words of Random-Access-
Memory, including all necessary address and read/write circuits.

WCS can be programmed and verified under computer control
using standard input/output instructions. WCS is read at full speed
via a flat cable connecting it to the control section of the com-
puter. Up to three WCS cards may be included for development
and execution of user microcode. Software supplied with WCS
includes a micro-assembler, utility and I/O routines, drivers and
diagnostics. The microassembler and utility routines require 8K
of core (12K for use with a disc-operating system). Once devel-
oped, microprograms will operate in any core size.

The 12909A PROM Writer allows a user to convert microprograms
developed with WCS to Read-Only-Memory, which can then be
added to the control section of the computer. Programmable
ROM’s provide an economical way to reproduce debugged instruec-
tion extensions once dynamic WCS is no longer required.

The PROM Writer is located on a single card which fits in a com-
puter I/O slot. This allows the PROM Writer to be implemented
without extensive cabling or additional power supply. A stand-
alone computer program, supplied with the PROM Writer, writes
and verifies PROM chips using a punched tape. An 8K memory is
required.

1.7 PHYSICAL SPECIFICATIONS
1.7.1 POWER REQUIREMENTS

a. Line Voltage: 115 Vac (¥10%), single phase 12A or
230 Vac (£10%), single phase 6A

b. Line Frequency: 47.5 to 66 Hz

c. Computer power consumption with internal supplies
loaded to capacity by plug-in options: 800 watts

1-10 2100A REFERENCE

d. Power Cable: 10 feet, NEMA Type 5-15P (115 Vac
operation) or NEMA Type 6-15P (230 Vac operation)

1.7.2 CURRENT AVAILABLE TO I/O

2100A 2155A
Voltage Mainframe Mainframe
+4.85 V 16.8 A 458 A
_av 7.0 A 195 A
12V 3.0 A 5.0 A
-12vV 3.0A 5.0 A

1.7.3 ENVIRONMENTAL LIMITS*
a. Operating Temperature: 0° to 55°C (+32° to +131F)

b. Relative Humidity: 50 to 95% at 25° to 40°C (+77°
to +104"F) without condensation

1.7.4 VENTILATION

a. Intake: Rear panel
b. Exhaust: Sides of front panel and cabinet
c. Air Flow: 400 cubic feet per minute

d. Heat Dissipation: 2300 BTU/hour maximum
1.7.5 ALTITUDE*

a. Operating: 15,000 feet

b. Non-operating: 25,000 feet
1.7.6 DIMENSIONS*

a. Width: 16% inches (42,5 em) with adapters for mount-
ing in 19 inch (48.3 c¢m) rack

2100A REFERENCE -1

b. Height: 12% inches (31,1 cm) (rack mounted)
c. Depth:

2100A 26 inches (66 cm), 23 inches (58,4 cm)
behind rack mounting ears

2155A 23% inches (59,6 cm), 23 inches (58,4 cm)
behind rack mounting ears

*Except as noted, specifications apply to both the 2100A and the
2155A 1I/0 Extender.

1.7.7 CLEARANCE REQUIRMENTS

a. Recommended Cable Clearance at Rear: 5 inches (127
mm) minimum

b. Recommended Air Exhaust at Top: 3 inches (76,2 mm)
minimum

c. Recommended Air Exhaust at Sides: 2 inches (50,8
mm) minimum

1.7.8 WEIGHT

a. Minimum: 92 pounds (41 Kg)

b. Maximum: 115 pounds (52,2 Kg) with 32K and all
I/O slots filled

1.7.9 SERVICE ACCESS

a. Top panel slides back and up permitting top access to
input/output connectors, test switches, plug-in circuit boards, and
wiring.

b. Bottom panel is removable for access to backplane
wiring.

112 2100A REFERENCE

1.8 SYSTEM DOCUMENTATION

Full hardware documentation is provided with each computer
shipped to a customer and consists of five volumes as follows:

a. 2100A Reference Manual. This manual describes the
specifications, operating instructions and programming information
for the computer. (The first section of this pocket manual includes
the information supplied in the reference manual.)

b. Installation and Maintenance Manual. The I and MM
contains instructions for installation, maintenance, troubleshooting
and repair, except as covered in the power supply manual.

c. Diagrams Manual. This manual provides interconnecting
information and schematic diagrams for all assemblies of the com-
puter except the power supply.

d. IPB Manual. Replaceable parts ordering information,
replaceable parts lists, exploded views, part location diagrams, and
numerical lists of parts for all assemblies of the computer except
the power supply are covered in the IPB manual.

e. Power Supply Manual. The power supply manual con-
tains information necessary to troubleshoot and repair the power
supply. This includes installation instructions, schematic diagrams,
and replaceable parts information.

Information on microprogramming the 2100 is contained in two
publications. A 2100 Microprogramming Guide (5951-3028) serves
as a complete reference on how to use the microprogramming
capability of the 2100. Microassembler documentation is also re-
quired in order to format and assemble microprograms correctly.
A software microprogramming guide (02100-90133) describes the
various aspects of microprogramming software.

All software supplied with HP computer systems is supported by
complete user documentation. General types of software manuals
include language manuals, operating system manuals, software
operating procedures, user manuals, applications manuals, and
small program manuals. A “Software Installation Record” supplied

2100A REFERENCE 113

with each system lists all software furnished with the original
equipment and provides an index to the software documentation.
Software manuals typically sent with a 2100 computer system are
listed below. (This pocket manual includes the first four of the
listed reference manuals.)

HP Assembler

Basic Control System

HP FORTRAN

HP BASIC

ALGOL

. Operating System Manual (Disc Operating System,

Real-Time Executive System, or Magnetic Tape System, etc.)
1. Symbolic Editor
8. Relocatable Subroutines

System Operating Procedures

Sk

In addition to the manuals shipped with each computer, a manual
titled “Preface to Programming” (5951-1354) is also available.
This manual is designed to provide a general introduction to the
types of languages, operating systems, and user aids available for
the 2100 computer line.

114 2100A REFERENCE

PROGRAMMING INFORMATION 2

2.1 DATA FORMATS

The basic data format for the 2100 Computer is a 16-bit word.
Bit positions are numbered from O through 15, in order of increas-
ing significance. Bit position 15 of the data format is used for the
sign bit; a “0” in this position indicates a positive number and a
“1” indicates a negative number. The data is assumed to be a whole
number, thus the binary point is assumed to be to the right of the
number.

The basic word, shown in figure 2.1, can also be divided into two
8-bit bytes or combined to form a 32-bit doubleword. The byte
format is used for character-oriented input/output devices. Packing
of the two bytes into one word is accomplished by the software
drivers. In I/O operations the higher order byte (Byte 1) is the
first to be transferred.

The integer doubleword format is used for extended precision arith-
metic in conjunction with the ten extended arithmetic instructions.
Bit 15 of the most significant word is the sign bit, and the binary
point is assumed to be to the right of the least significant word.

The floating point doubleword format is used with floating point
software. Bit 15 of the most significant word is the mantissa sign
bit and bit O of the least significant word is the exponent sign bit.
Bits 1 through 7 are used to express the exponent, and the remain-
ing bits (8 through 15 of the least significant word and 0 through
14 of the most significant word) are used to express the mantissa.
The mantissa is assumed to be a fractional value, thus the binary
point appears to the left of the mantissa. Software converts deci-
mal numbers to this binary form and normalizes the quantity ex-
pressed (sign and leading mantissa bit differ). If either the man-
tissa or the exponent is negative, that part is stored in two’s com-
plement form. The number must be in the approximate range of
10722 through 10*38 .

2100A REFERENCE 21

WORD FORMAT

Sign Bit Least significant data bit

HEERRERRNRRREEED

151413121110 98 76 54 32 10

Binary paint

PACKED BYTE FORMAT

Byte 1 Byte 0
CLITTT T

1514131211109 8 76 54 32 10

INTEGER DOUBLE WORD
Binary

IIIHHIIHIIHHIIHHHIHHHJ]

151413121110 98 76 54 32 10 151413121110 98 76 54 32 10
- J

integer

FLOATING POINT DOUBLE WORD 31 bits

/_ Mantissa sign Exponent sign —\
SUNIRERENINEEENIREERRRRRRRRNRRENY

1541413121110 98 76 54 32 10 151413121110 98 76 54 32 10
AL i

Binary Mantissa Exponent
Point 23 bits 7 bits

OCTAL NOTATION

WORD FORMAT

LTI TIITTd

151413121110 98 76 54 32 10

85 8t 8* 8? 8! 8

INTEGER DOUBLE WORD

UL T LTI

1514131211109 8 76 54 32 10 151413121110 98 76 54 32 10

g'® 8° 88 87 8° 8

Figure 2.1. Data Formats and Octal Notation

22 2100A REFERENCE

Figure 2.1 also illustrates the octal notation of data for both single-
length and double-length words. Each group of three bits, begin-
ning at the right, is combined to form an octal digit. Each digit to
the left increases in significance. A single-length 16-bit word can
therefore be fully expressed by six octal digits and a double-length
32-bit word can be fully expressed by 11 octal digits. Octal nota-
tion is not shown for byte or floating point formats, since bytes
normally represent characters and floating point numbers are given
in decimal form.

For single-word data, the range of representable numbers is
+32,767 to -32,768 (decimal), or +77,777 to -100,000 (octal).
For doubleword integer data, the range is +2,147,483,647 to
-2,147,483,648 (decimal), or +17,777,777,777 to -20,000,000,000
(octal).

2.2 MEMORY ADDRESSING

The 2100A Computer can be equipped with any one of six mem-
ory configurations, from 4K to 32K (K = 1024 words). The avail-
able configurations, which determine the addressing range, are:
4K, 8K, 12K, 16K, 24K, and 32K.

2.2.1 PAGING

The computer memory is logically divided into pages of 1024
words each. A page is defined as the largest block of memory
which can be directly addressed by the memory address bits of
a memory reference instruction (single-length). These memory ref-
erence instructions have 10 bits to specify a memory address, and
thus the page size is 1024 locations (2000 in octal notation). Octal
addresses for each page, up to the maximum memory size, are given
in table 2.1.

Provision is made to address directly one of two pages: page zero
(the base page, consisting of locations 00000 through 01777), and
the current page (the page in which the instruction itself is located.)
Memory reference instructions include a bit (bit 10) reserved to
specify one or the other of these two pages. To address locations

2100A REFERENCE 23

24

MEMORY OCTAL
SIZE PAGE ADDRESSES

0 00000 to 01777

1 02000 to 03777

2 04000 to 05777

K ¥ 3 06000 to 07777

4 10000 to 11777

5 12000 to 13777

6 14000 to 15777

8K v 7 16000 to 17777

8 20000 to 21777

9 22000 to 23777

10 24000 to 25777

12K ¥ 1 26000 to 27777

12 30000 to 31777

13 32000 to 33777

14 34000 to 35777

16K & 15 36000 to 37777

16 40000 to 41777

17 42000 to 43777

18 44000 to 45777

19 46000 to 47777

20 50000 to 51777

21 52000 to 53777

22 54000 to 55777

2K ¢ 23 56000 to 57777

24 60000 to 61777

25 62000 to 63777

26 64000 to 65777

27 66000 to 67777

28 70000 to 71777

29 72000 to 73777

30 74000 to 75777

32K ¥ 31 76000 to 77777

2100A REFERENCE

Table 2.1. Memory Pages

in any other page, indirect addressing is used. Page references are
specified by bit 10 as follows:

Logic 0 = Page Zero (Z)
Logic 1 = Current Page (C)

2.2.2 INDIRECT ADDRESSING

All memory reference instructions reserve a bit to specify direct
or indirect addressing. For single-length memory reference instruc-
tions, bit 15 of the instruction word is used; for extended arith-
metic memory reference instructions, bit 15 of the address word
is used. Indirect addressing uses the address part of the instruction
to access another word in memory, which is taken as a new memory
reference for the same instruction. This new address word is a full
16 bits long, 15 bits of address plus another direct-indirect bit. The
15-bit length of the address permits access to any location in mem-
ory. If bit 15 again specifies indirect addressing, still another ad-
dress is obtained; this multiple-step indirect addressing may be
done to any number of levels. The first address obtained in the
indirect phase which does not specify another indirect level be-
comes the effective address for the instruction. Direct or indirect
addressing is specified by bit 15 as follows:

Logic 0 = Direct
Logic 1 = Indirect

2.2.3 RESERVED LOCATIONS

The first 64 memory locations of the base page (octal addresses
00000 through 00077) are reserved as listed below. The first two
addresses are the A and B flip-flop register addresses and are not
considered as core storage locations. (The actual corresponding core
locations can, however, be loaded and read via the operator panel.)
Locations 4 through 77 are reserved in the sense that interrupt
wiring is present for the priority order given. As long as the loca-
tions do not have actual interrupt assignments (as determined by
the input/output devices included in the user’s system), these loca-
tions may be used for program purposes.

2100A REFERENCE 25

00000 Address of A-register
00001 Address of Bregister

00002 For exit sequence if A and B contents are used as
00003 executable words

Interrupt location, highest priority (reserved for
00004 L
power fail interrupts)

00005 Reserved for memory parity and memory protect

interrupts
00006 Reserved for direct memory access
00007 Reserved for direct memory access
00010
thru Interrupt locations in decreasing order of priority
00077

The last 64 locations of memory (any size) are reserved for the
basic binary loader. The basic binary loader is a permanently resi-
dent program to permit loading of binary information from
punched paper tape (or disc, etc.) into memory. Unless specifically
enabled by a panel switch, the loader locations are protected so
they may not be altered or used in any way.

2.2.4 NONEXISTENT MEMORY

Nonexistent memory is defined as those memory locations not
physically implemented in the machine (up to the maximum of
32K) and the last 64 locations of implemented memory when
not enabled from the front panel. Any attempt to write into non-
existent memory will be ignored (no operation). Any attempt to
read from a non-existent memory location will return an all-zero
word; no parity error occurs.

26 2100A REFERENCE

2.3 HARDWARE REGISTERS

The 2100A Computer has six 16-bit working registers, two one-
bit registers, and (on the operator panel) one 16-bit display regis-
ter. The functions of these registers are described as follows:

M-REGISTER. The M-register holds the address of the memory
cell currently being read from or written into.

T-REGISTER (MEMORY DATA). All data transferred into or out
of memory is routed through the memory data register. When dis-
played, the display indicates the contents of the memory location
currently pointed to by the M-register. The displayed data will go
back into that location when any other action is taken (such as dis-
playing some other register or beginning a run operation).

P-REGISTER. The P-register holds the address of the next instruc-
tion to be fetched out of memory. Since this is a “look-ahead”
register, the P-register value will frequently differ from the M-
register value. Table 2.2 lists P- and M-register contents for each of
five different computer states, assuming the computer is halted.

A-REGISTER. The A-register is an accumulator, holding the results
of arithmetic and logical operations performed by programmed
instructions. This register may be addressed by any memory refer-
ence instruction as location 00000, thus permitting inter-register
operation such as “add B to A,” “compare B with A,” etc., using
a single-word instruction.

COMPUTER STATUS

P-REGISTER
contains address of

M-REGISTER
contains address of

FETCH

INDIRECT (after FETCH)
INDIRECT ({after INDIRECT)
EXECUTE (after FETCH)
EXECUTE (after INDIRECT)

Current instruction
Current instruction
Currentinstruction
Next instruction
Next instruction

Last memory access
Current instruction
Last memory access
Currentinstruction
Last memory access

Table 2.2. P- and M-Register Indications

2100A REFERENCE 27

B-REGISTER. The B-register is a second accumulator, which can
hold the results of arithmetic operations completely independent
of the A-register. The B-register may be addressed by any memory
reference instruction as location 00001 for inter-register operation
with A.

S-REGISTER. The switch (S) register is a 16-bit utility register.
In the halt mode, it may be manually loaded via the display reg-
ister. In the run mode it may be addressed as in I/O device
(select code 01) and receive and read back data to and from the
accumulators.

EXTEND. The extend bit (E) is a one-bit register, and is used to
link the A- and B-registers by rotate instructions or to indicate
a carry from bit 15 of the A- or B-registers by an add instruction
(ADA, ADB) or increment instruction (INA or INB, but not ISZ)
which references these registers. This is of significance primarily
for multiple-precision arithmetic. If already set, the extend bit is
not complemented by a carry. It may be set, cleared, comple-
mented, or tested by program instruction. The extend bit is set
when the EXTEND light is on (‘1) and clear when off (“0”).

OVERFLOW. The overflow bit is a one-bit register which indicates
that an add instruction (ADA, ADB), divide instruction (DIV),
or an increment instruction (INA or INB, but not ISZ) referenc-
ing the A- and B-registers has caused (or will cause) the accumu-
lators to exceed the maximum positive or negative number which
they can contain. By program instructions, the overflow bit may
be cleared, set, or tested. The OVF light remains on until the bit
is cleared by an instruction and is not complemented if a second
overflow occurs before being cleared. It will not be set by any shift
or rotate instructions, except ASL (refer to definition in Section
II). :

DISPLAY REGISTER. The display register is included on the
standard operator panel. It provides a means of displaying and
modifying the contents of any of the six 16-bit working registers
when the computer is in the halt mode. Each pushbutton is illumi-
nated to indicate a content of “1,” and is non-illuminated to indi-
cate a content of “0.” Each time a pushbutton is pressed, the
content changes state. When the computer is in the run mode,
the display register permanently displays the S-register contents.

28 2100A REFERENCE

2.4 INSTRUCTION FORMATS

Instructions for the 2100A Computer are classified according to
format. The five formats used are illustrated in figure 2.2 and are
described as follows. In all cases where a single bit is used to select
one of two cases (e.g., D/I), the choice is made by coding a logic 0
or 1 respectively (i.e., O/1).

MEMORY REFERENCE. This class of instructions combines an
instruction code and a memory address into one word. This type
of instruction is therefore used to execute some function involving
data in a specific memory location. Examples are storing, retriev-
ing, and combining memory data to or from the accumulators,
or causing the program to jump to the specified location.

The cell referenced (i.e., the absolute address) is determined by a
combination of the ten memory address bits in the instruction
word (0 through 9) and five bits (10 through 14) assumed from
the current condition of the P-register. This means that memory
reference instructions can directly address any word in the current
page; additionally, if the instruction is given in some location other
than the base page (page zero), bit 10 of the instruction word
doubles the addressing range to 2048 words by allowing selection
of either page zero or current page. (This causes bits 10 through 14
of the address in the M-register to be reset to zero, instead of
assuming the current indication of the P-register.) This feature
provides a convenient linkage between all pages of memory, since
page zero can be reached directly from any other page.

As discussed earlier, bit 15 is used to specify direct or indirect
addressing. Also note that since the A- and B-registers can be ad-
dressed, any single-word memory reference instruction can apply
to either of these registers as well as to memory cells. For example,
ADA 0001 means add the contents of the B-register (its address
being 0001) to the A-register; specify page zero for these opera-
tions, since the A- and B-register addresses are on page zero.

REGISTER REFERENCE. These instructions, in general, manipu-
late bits in the A-, B-, and E-registers. There is no reference to
memory. This type includes 39 basic instructions, which are com-
binable to form a one-word multiple instruction that can operate
in various ways on the contents of the A-, B- or E-registers. The

2100A REFERENCE 29

[15'14|13|12]11]1o[9 B s! 5|43]I 2|1 o]
I \ : X |
I :) : |
{ T | !
RE&ERNE?V’ZZ Instruction I I Memory Address —l
D/||] ' | |
| | | |
I | ! | 1
: | | | ,
) ' ' I I
! ! t | |
| | : | |
| |
: ABS/A | ! |
RERFEEGR':LE': l Class Microinstructions]
] i T |
| ! | : :
I i
: | i | |
l | | | |
: I I : i
| { |
‘ i | |
: 'A/B) | i
INPUT/OUTPUTI Class I] Instruction I Channel No.
X ' ! [[
i ! [l | |
: Class : : Instruct'ion :
! ! | ' |
| ' | |
| : ! I i
| | ' !
EXTENDED [] l | (Zeros) |
ARITHMETIC
MEMORY
REFERENCE Memory Address]
o1
! .
: Class : : Instruction :
! I I I !
| | |
: ' ! | l
EXTENDED | : : ! |
AR&EZ’:’;ET";(R: No. of Shifts
REFERENCE

Figure 2.2 Instruction Formats

210 2100A REFERENCE

39 instructions are divided into two subgroups, the shift-rotate
group (SRG) and the alter-skip group (ASG). These subgroups
are specified by bit 10. Typical operations are clear and/or com-
plement a register, conditional skips, and register increment.

INPUT/OUTPUT. The input/output class of instructions uses bits 6
through 11 for a variety of I/O instructions, and bits 0 through 5
to apply the instruction to a specific I/O channel. This provides a
means of controlling all devices connected to the I/O channels,
and for transferring data in or out. Also included in this group
are instructions to control the interrupt system, overflow bit, and
computer halt.

EXTENDED ARITHMETIC MEMORY REFERENCE. Like the
single-word memory reference instruction above, the complete in-
struction includes an instruction code and a memory address. In
this case, however, two words are required. The first word specifies
the extended arithmetic class (bits 12 through 15 and 10) and the
instruction code bits 4 through 9 and 11). Bits 0 through 3 are not
needed and are coded with zeros. The second word specifies the
memory address of the operand. Since a full 15 bits are used for
the address, this type of instruction may directly address any lo-
cation in memory. As with all memory reference instructions, bit
15 may be used to specify indirect addressing. Operations pro-
vided by this class of instructions are integer multiply and divide
(using double-length product and dividend), and double load and
double store.

EXTENDED ARITHMETIC REGISTER REFERENCE. This class
of instructions provides long shifts and rotates on the combined
A- and B-registers. Bits 12 through 15 and 10 identify the extended
arithmetic class, and bits 4 through 9 and 11 specify the direction
and type of shift. Bits O through 3 are used to specify the number
of shifts, which can range from 1 to 16 places.

2.5 INTERRUPT SYSTEM

The computer interrupt system has 60 distinct interrupt levels.
Each level has a unique priority assigned to it, and is associated
with a numerically corresponding interrupt location in core
memory.

2100A REFERENCE 211

As an example of the simplicity of this system: a service request
from I/O channel 13 will cause an interrupt to core location 00013.
The request for service will be granted on a priority basis higher
than channel 14 but lower than channel 12. Thus a transfer in
progress via channel 14 would be suspended to let channel 13
proceed, but a transfer via channel 12 could not be interrupted
by channel 13.

Under program control, any device may be selectively enabled or
disabled, thus switching the device in or out of the interrupt struc-
ture. In addition the entire interrupt system may be enabled or
disabled under program control using a single instruction (except-
ing power fail and parity error interrupts).

Of the 60 interrupt levels, the two highest priority levels are re-
served for hardware faults (power fail and parity error), the next
two are reserved for DMA completion interrupts, and the remain-
ing 56 are available for the I/O device channels. Table 2.3 lists
interrupt levels in order of priority. Note that interrupt facilities
for I/O channels above 25 (octal) are available through use of
an I/O extender or multiplexer.

CHANNEL INTERRUPT
{Octal) LOCATION ASSIGNMENT
04 00004 Power Fail Interrupt
05 00005 Memory Parity/Protect Interrupt
06 00006 DMA Channel 1 Completion
Interrupt
07 00007 DMA Channel 2 Completion
Interrupt
10 00010 1/0 Device, highest priority
thru 25 00025 /O Device (Mainframe)
thru 65 00065 1/O Device (Extender)
thru 77 00077 1/O Device {Multiplexer)

Table 2.3. Interrupt Assignments

212 2100A REFERENCE

Interrupt requests received while the computer is in halt mode
will be processed, in order of priority, when the computer is put
into run mode or is stepped single cycle.

2.5.1 POWER FAIL INTERRUPT

The computer is equipped with power sensing circuits. When pri-
mary power to the computer fails or drops below a safe operating
level while the computer is running, an interrupt to memory loca-
tion 00004 is automatically generated. This interrupt is given the
highest priority in the system, and cannot be turned off or disabled.
Location 00004 is intended to contain a jump-to-subroutine in-
struction referencing the entry point of a shut-down program, but
it may alternatively contain a HLT instruction. Interrupt capability
for lower-priority functions is automatically inhibited while a
power fail routine is in progress. Sufficient time is available be-
tween the detection of power failure and the loss of usable internal
power to execute about 100 instructions. The shut-down program
should be written to save the current state of the computer system
in memory, and then must halt the computer. A sample program
is given in table 2.4,

Since the restoration of power might be unattended by an opera-
tor, the user is given a switch-selectable option of what action the
computer should take. With the switch set to the halt position,
the computer will halt when power is restored, whether the com-
puter was running or halted when the failure occurred. (No panel
indication is given.) With the switch in the restart position, the
automatic restart feature is enabled. After a built-in delay of about
a second following return to normal power levels, another inter-
rupt is generated, again to location 00004. This time the shut-down
portion of the subroutine is skipped (see sample subroutine) and
the power-up portion begins. If the computer was not running
when the power failure occurred, the computer is halted. If the
computer was running, the system conditions are restored and the
computer continues operation from the point of interruption. Al-
ternatively, if location 00004 contains a HLT instead of a jump
to a subroutine, the computer will halt at this time and EXTERNAL
PRESET (or PRESET on the controller panel) will light.

To allow for the possibility of a second power failure occurring
while the power-up routine is in progress, the user should limit the
combined total of instructions (for both shut-down and power-up)

2100A REFERENCE 213

LABEL | OPCODE OPERAND COMMENTS
PFAR NOP Power fail/Auto Restart Subroutine
SFC 4B Skip if interrupt was caused by a power
failure
JMP UP Power is being restored, reset state of
computer system
DOWN STA SAVA Save A-register contents
CCA Set switch indicating that the com-
STA SAVR puter was running when power
failed
STB SAVB Save B-register contents
ERA,ALS Transfer E-register content to A-
register bit 15
sOC Increment A-register if Overflow
INA is set ’
STA SAVEO Save E- and O-register contents
LDA PFAR Save contents of P-register at time of
STA SAvVP power failure
LIA 1B Save contents of
STA SAVS S-register
Insert user-written routine to save
: 1/0 device states
CLC 4B Turn on restart logic so computer will
restart when power is restored
after momentary power faiture
HLT Shutdown
upP LA SAVR Was computer running when
SZA,RSS power failed?
JMP HALT No
CLA Yes, reset computer Run switch to
STA SAVR initial state
LDA FENCE Restore the memory protect
OTA 5B fence register contents
. Insert user-written routine to restore
: 1/0 device states
LDA SAVEO Restore the contents
CLO of the
SLAELA E-register and
STF 18 O-register
LDA SAVS Restore the contents of the
OTA 1B S-register
LDA SAVA Restore A-register contents
LDB SAVB Restore B-register contents
STC 4B Reset power fail logic for next power
failure
STC 58 Turn on memory protect
JMP SAVP,| Transfer control to program in execu-
tion at time of power failure
HALT HLT Return computer to halt mode
FENCE | OCT 20008 Fence address storage (mustbe updated
each time fence is changed)
SAVEO| OCT 0 Storage for E and O
SAVA OoCT 0 Storage for A
SAVB OoCT 4] Storage for B
SAVS oCT (4] Storage for S
SAVP oCT 4] Storage for P
SAVR OCT 0 Storage for Run switch

Table 2.4. Sample Power Fail Subroutine

214 21DDA REFERENCE

to less than 100. If the computer memory does not contain a sub-
routine to service the interrupt, location 00004 should contain a
HLT 04 instruction (octal 102004).

A set control command (STC 04) must be given at the end of any
restart routine. This command re-initializes the power fail logic
and restores interrupt capability to lower priority functions. The
EXTERNAL PRESET switch, when pressed, issues a similar
command.

2.5.2 PARITY ERROR INTERRUPT

Parity checking of memory is a standard feature of the 2100A
Computer. The parity logic continuously generates correct parity
for all words written into memory and monitors the parity of all
words read out of memory. Correct parity is defined as having
the total number of “1” bits in a 17-bit memory word equal to
odd value, If a “1” bit (or any odd number of “1” bits) is either
dropped or added in the transfer process, a parity error signal is
generated when the word is read out. Unless the error logic is spe-
cifically disabled by a CLF 05 instruction, the error signhal causes
an interrupt to location 00005.

Optionally (switch-selectable) the error signal may cause a halt,
rather than an interrupt. The lighting of the HALT and PARITY
indicators signals the fact that the halt was caused by a parity
error. The PARITY light stays on until INTERNAL PRESET is
pressed.

Assuming that the interrupt option is selected, the interrupt to
location 00005 directs the computer to the entry point of a parity
error subroutine, It is the user’s decision as to what to do about
a parity error; for example, he may want to record the address
of the error location, or abort a critical operation. In any case, the
PARITY lightis turned off as soon as the interrupt is acknowledged
and normal operation may be resumed on exit from the subroutine.
An STF 05 instruction should be given at the end of the subrou-
tine to re-initialize the logic.

In conjunction with the memory protect feature, it is possible to
determine the address of the error location. The error address will
automatically be loaded into the violation register of the memory

2100A REFERENCE 2-15

protect logic, and from there it is accessible to the programmer.
(See following discussion of memory protect interrupt.)

It is recommended on discovery of a parity error, that the entire
program or set of data containing the error location be reloaded.
However, knowing the address and contents of the error location,
the user may be able to determine what operations have taken
place as a result of reading the erroneous word. For example, if the
word was an instruction, several other locations may be affected.
By individually checking and correcting the contents of all affected
locations, the user may resume running his program without a
complete reload. If software is being generated, this may also need
to be corrected.

2.5.3 MEMORY PROTECT INTERRUPT

Memory protect for the 2100A Computer is a standard feature.
With this capability a selected block of memory of any size, from a
settable fence address downward, is protected against alteration by
memory reference instructions (excluding A- and B-register ad-
dresses, which.may be freely addressed by any memory reference
instruction except JMP). Also, when enabled, it prohibits the exe-
cution of all I/O instructions except those referencing I/O address
01 switch and overflow registers. This second feature limits the
control of input/output operations to interrupt control only. Then,
by programming the system to direct all I/O interrupts to an execu-
tive program in protected memory, the executive program can have
exclusive control of the I/0 system.

The memory protect logic is disabled by any interrupt (except if
the interrupt location contains an input/output group instruction)
and is re-enabled by an STC 05 instruction at the end of each
interrupt subroutine. In the halt mode, memory protect is also
disabled by the INTERNAL PRESET switch.

Programming rules pertaining to the use of memory protect, assum-
ing the logic is enabled, are as follows:

a. Location 00002 is the lower boundary of protected
memory. (Locations 00000 and 00001 are the A- and B-register
addresses.)

216 2100A REFERENCE

b. JMP instructions may not reference the A- or B-
registers. JSB, however, may do so.

c. The upper boundary is loaded into the fence register
from the A- or B-registers by an OTA or OTB instruction with
select code 05. Memory locations below (but not including) this
address are protected.

d. Execution will be inhibited and an interrupt to loca-
tion 00005 will occur if a JMP, JSB, ISZ, STA, STB, or DST in-
struction directly or indirectly addresses a location in protected
memory, or if any I/O instruction is attempted (including halt,
but excluding those addressing select code 01, the S- and overflow
registers).

e. Any instruction not mentioned in “d” is legal, even
if it does reference protected memory. In addition, indirect ad-
dressing through protected memory by those memory reference
instructions listed in “d” is legal, provided the final effective ad-
dress is outside protected memory.

Following a memory protect interrupt, the address of the illegal
instruction will be present in the violation register. This address
is made accessible to the programmer by an LIA 05 or LIB 05
instruction, which loads the address into the A- or B-register.

Since parity error and memory protect share the same interrupt
locations, it is necessary to distinguish which type of error is re-
sponsible for the interrupt. If, after the LIA/B 05 instruction (pre-
ceding paragraph), bit 15 of the A-/B-register is a 1, parity error
is indicated; if bit 15 is a “0,” memory protect violation is indi-
cated. In either case, the remaining bits of the register give the
address of the error location.

Table 2.5 illustrates a sample memory protect and parity error sub-
routine. An assumption made for this example is that the location
following the error location is an appropriate return point. This
may not always be the case; for example, it may be advisable to
abort the program in progress and return to a supetvisory program.

2100A REFERENCE 217

LABEL| OPCODE | OPERAND COMMENTS

MPPE NOP Memory Protect/Parity Error Sub-
routine
CLF 0 Turn off interrupt system to inhibit
{/O devices
CLF 5 Turn off P.E. interrupt during sub-
routine
STA SVA Save A-register contents
STB svB Save B-register contents
LIA 5 Get contents of violation register
in MP logic
SSA Check bit 15 to determine kind of
error
JMP PERR If a 1, go to parity error routine
JMP MPTR If a 0, go to memory protect
routine
MPTR - User’s routine in case of memory

protect violation

etc
LDA SVA Restore A-register
LDB sSvB Restore B-register
STF 0 Enable interrupt system
STF 5 Turn on parity error interrupt
STC 5 Turn on memory protect interrupt
JMP MPPE, | Exit the subroutine
PERR - User's routine in case of parity error
etc
JMP PERR-6 Restore accumulators, turn on

interrupts, exit

Table 2.5. Sample Memory Protect/Parity Error Subroutine

218 2100A REFERENCE

2.5.4 INTERRUPTS

The direct memory access (DMA) option provides high speed block
transfers of data between I/O devices and memory. For the most
part, DMA operates independently of the interrupt system. (Refer
to the description of DMA operation in the Input/Output Section
of this manual.)

The only time that DM A generates an interrupt is when it has com-
pleted transferring a specified block of data. Since there are two
DMA channels, two interrupt locations are reserved for this option:
location 00006 (interrupt from DMA channel 1) and location
00007 (interrupt from DMA channel 2). The channel 1 interrupt
has priority over the channel 2 interrupt. Since these interrupts
are primarily completion signals to the programmer and are there-
fore application dependent, no subroutine example is given.

2.5.5 1/O INTERRUPTS

The remaining interrupt locations (octal 00010 through 00077)
are available to I/O devices. This represents a total of 56 (decimal)
locations, one for each of 56 I/0 channels.

In typical input/output operation, the computer issues a program-
med command (e.g., set control/clear flag instruction STC,C) to
one or more external devices, causing these devices to begin their
read or write operation. Each device will put data into (input) or
take data from (output) the input/output buffer on each individual
interface card. During this time, the computer may continue run-
ning a program or may be programmed into a waiting loop to wait
for a specific device. On completion of the read or write operation,
each device returns an operation completed signal (flag) to the
computer. The flags are passed through a priority network which
allows only one device to be serviced regardless of the number of
flags simultaneously present. The flag with the highest priority
generates an interrupt signal at the end of the current machine
cycle, except under any of the following circumstances.

a. Interrupt system disabled or device interrupt disabled.

b. JMP indirect or JSB indirect not sufficiently executed.
These instructions inhibit all interrupts, except memory protect,

2100A REFERENCE 2-18

until the instruction (plus one phase of the succeeding instruction

is completed, or until at least three indirect references have occur-
red. The memory protect interrupt for a jump violation will occur
on completion of the execute phase, but the jump itself will be
inhibited.

c. Instruction in an interrupt location not sufficiently ex-
ecuted, even if of lower priority. Any interrupt inhibits the entire
interrupt system until at least two phases have been completed.
(JMP indirect and JSB indirect will be fully executed.)

d. Direct memory access option in process of transferring
data.

e. The current instruction is one which may affect the
priorities of input/output devices (STC, CLC, STF, CLF). The
interrupt in this case must wait until the end of the succeeding
machine cycle.

A set flag flip-flop inhibits all interrupt requests below it on the
priority string (provided that the control flip-flop is also set). Once
the flag flip-flop is cleared the next lower device can then interrupt.
A service subroutine for any device can be interrupted only by a
higher priority device; then, after the higher device is serviced, the
interrupted subroutine may continue. In this way, it is possible for
several service subroutines to be in a state of interruption at one
time; each will be permitted to continue when the higher priority
device is serviced. All service subroutines normally end with a
JMP indirect instruction to return the computer to the point of
interrupt.

For the programmer, communication with I/O devices is simplified
by the availability of standard driver routines. Hewlett-Packard
furnishes an I/O driver as an accessory to each standard peripheral
device supplied by HP. The drivers supplied by HP conform to the
design specifications of the HP Basic Control System and are sub-
sequently referred to as BCS drivers. BCS drivers can be integrated
into an existing basic control system simply by adding the addi-
tional driver to the system in a simple configuration process. BCS
drivers generally have the following characteristics:

a. I/O is overlapped with processing using the computer
priority interrupt system.

220 2100A REFERENCE

b. Each driver may operate identical devices occupying
different I/O locations.

c. Provide status and error information to user and system
I/0 requests.

d. Compatible with other modules of HP software such as
the Input/Qutput Control (I0C) program and the FORTRAN I/O
program called the Formatter.

e. The object code for a BCS driver is relocatable binary.

The modularity of the basic control system provides the user with
a very flexible operating system. The functions of the modules
can be illustrated by following the sequence of events through
a series of I/O transfers. An input transfer is used as an example.
See Figure 2.3.

The user or system I/O request is made to a unique entry point in
the I0C program. After checking the request for validity, I0C ob-
tains the memory address of the BCS driver for the requested de-
vice. Control is transferred to the BCS driver and the input opera-
tion is initiated. After initiation the BCS driver transfers control
back to the user or system program. The program continues pro-
cessing until the I/O device completes a single operation. At that
time an interrupt request is generated, which forces transfer of
control to the BCS driver once again. The data is transferred be-
tween the device and a specified memory buffer and the I/O device
is commanded to do another operation. This process continues
until all data has been transferred and the user or system input
request is satisfied.

The equipment table (EQT) is a memory table created at configu-
ration time to describe the hardware I/O channel of the device,
the name and address of the I/O driver to be used, a status word,
and a transmission log to be used by the I/O driver. Each physical
I/O device (or, sometimes, I/O subsystem consisting of two or
more devices) in the system is defined by an entry in the EQT. The
EQT provides the interface between I0C and the BCS driver and
in addition provides for device independent programming.

2100A REFERENCE 221

Entry

INPUT/OUTPUT
CONTROL
{toc)

1/0 DRIVER #1

1/0 DEVICE #1

1/O DRIVER #2

1/0 DEVICE #2

1/0 DRIVER #3

Figure 2.3. Modules of BCS

2.5.6 INTERRUPT REGISTER

Each time an interrupt occurs, the address of the interrupt location
is stored in the central interrupt register. The contents of this
register is accessible at any time with an LIA 04 or LIB 04 instruc-
tion. This puts the address of the most recent interrupt into the
a- or B-register,

2.5.7 INTERRUPT SYSTEM CONTROL

1/O address 00 is a master control address for the interrupt sys-
tem. An STF 00 instruction enables the entire interrupt system,
and a CLF 00 instruction disables the interrupt system. The two

222 2100A REFERENCE

exceptions are the power fail interrupt, which cannot be disabled,
and parity error interrupt, which can only be selectively enabled
or disabled by STF 05 or CLF 05, respectively.

Whenever power is turned on, a clear signal to I/O address 00 auto-
matically disables the interrupt system. The INTERRUPT SYSTEM
pushbutton on the operator panel may be used to switch the inter-
rupt system on or off manually. However, programs dependent on
interrupt operation should include an STF 00 instruction to ensure
that the interrupt system is enabled in the run mode.

2100A REFERENCE 2-23

INSTRUCTIONS 3

This section defines each of the 80 machine instructions of the
2100A Computer. Definitions are grouped according to instruction
type: memory reference, register reference, input/output, extended
arithmetic memory reference, and extended arithmetic register
reference,

With each definition is a diagram showing the machine coding of
the instruction. The light shaded bits code the instruction type and
the dark shaded bits code the specific instruction. Unshaded bits
are further described under the introduction to each instruction
type. The mnemonic code and instruction name are given above
each diagram.

In all cases where an additional bit is used to specify a secondary
function (D/I, Z/C, or H/C), the choice is made by coding a logic
0 or 1 respectively. That is, a logic 0 codes D, Z, and H, and a
logic 1 codes I, C, and C. These abbreviations are defined as

follows:
D = Direct addressing
I = Indirect addressing
Z = Zero page
C = Current page
H = Hold flag
C = Clear flag

3.1 INSTRUCTION TIMING

All instructions except ISZ and the extended arithmetic instruc-
tions are fully executed in 1.96 microseconds. ISZ is executed in
2.94 microseconds, and the extended arithmetic instructions are
executed in the times shown in table 3.1. The Divide instruction
executes faster than shown if the divisor is positive (15.68 micro-
seconds) or if overflow occurs (11.76 microseconds). If indirect
addressing is used with any of the single-word memory reference
instructions, 0.98 microsecond is added for each level of indirect

2100A REFERENCE 31

addressing used; 1.96 microseconds are added for each level of
indirect addressing with extended arithmetic memory reference
instructions.

Instructions are executed in two or more phases. The first phase
is the fetch phase, which obtains an instruction from memory and
transfers it into the central processor’s instruction register, Next,
there can be one or more indirect phases. The indirect phase, which
applies only to single-length memory reference instructions, ob-
tains a new operand address for the same (current) instruction.

TIME
INSTRUCTION (usec)
MPY (Multiply) 10.78
DIV (Divide) Max 16.66
DLD (Double Load) 5.88
DST (Double Store) 5.88
Number of Shifts
ASR 1,2,3 2,94
(Arithmetic 4,5,6,7,8 3.92
Shift 9,610, 11,12, 13 4.90
Right) 14,15, 16 5.88
ASL 1,2,3,4,5 4.90
{Arithmetic 6,7,8,9,10 5.88
Shift 11,12,13, 14,156 6.86
Left) 16 7.84
LSR, RRR 1,2 2.94
(Logical 3,4,5,6,7 3.92
Shift Right, 8,9, 10, 11,12 4.90
Rotate Right) 13, 14, 15, 16 5.88
LSL, RRL 1,2,3,4 4,90
(Logical 56,7,8,9 5.88
Shift Left, 10, 11,12, 13,14 6.86
Rotate Left) 15, 16 7.84

Table 3.1. Extended Arithmetic Execution Times

32 2100A REFERENCE

Lastly, there is an execute phase, which accomplishes actual exe-
cution of the instruction. For extended arithmetic memory refer-
ence instructions, indirect addressing is also accomplished in the
execute phase. Although the duration of a phase varies considera-
bly (from 588 nanoseconds to an indeterminate time in the case
of extended arithmetic indirect addressing), synchronization with
memory or input/output operations results in overall execution
times as specified in the preceding paragraph.

3.2 MEMORY REFERENCE INSTRUCTIONS

The 14 memory reference instructions execute a function involving
data in memory. Bits O through 9 specify the affected memory
location on a given memory page or, if indirect addressing is used,
the next address to be referenced. Indirect addressing may be con-
tinued to any number of levels; when the D/I bit is “0” (specify-
ing direct addressing), that location will be taken as the effective
address. The A- and B-registers may be addressed as locations 00000
and 00001 (octal) respectively.

In bit 10 (Z/C) is a “0,” the memory address is on page zero; if
bit 10 is a *“1,” the memory address is on the current page. If the
A- or B-register is addressed, bit 10 must be a “0” to specify page
zero, unless the current page is page zero.

AND “AND"”“ TO A
1514131211109 8 7 6154 3121 0
Plofolsfold [[TTT T[]
\ J
\4

Memory Address

The contents of the addressed location is logically “anded” to the
contents of the A-register. The contents of the memory is left
unaltered.

I JUMP TO SUBROUTINE
1514 1312]1110 9]8 7 65 4 3]2 1 0
Photolafied I [[T T[]]
\ J
A\

Memory Address

2100A REFERENCE 33

This instruction, executed in location P, causes computer control
to jump unconditionally to the memory location (m) specified in
the address portion of the JSB instruction word. The contents of
the P-register plus one (return address) is stored in location m, and
the next instruction to be executed will be that contained in the
next location (m + 1). A return to the main program sequence at
P + 1 may be effected by a jump indirect through location m.

XOR “EXCLUSIVE OR” TO A

1514 13 12f1110 98 7 6]5 4 3]2 1 0

Pojofoiofold {1 [11 [][]
\

v
Memaory Address

The contents of the addressed location is combined with the con-
tents of the A-register as an “‘exclusive or” logic operation. The
contents of the memory is left unaltered.

JMP JUMP
14 131211110 9|8 7 615 4 3|2 1 O

15
Plolsleprize [T T T 11T 1

\,)
v
Memory Address

The instruction transfers control to the addressed location. That
is, JMP causes the P-register to be set according to the memory
address portion of the instruction word, so that the next instruc-
tion will be read from that location.

I0R “INCLUSIVE OR" TO A

15[14 1312|1110 9]8 7 6]5 4 3|2 1 0

Sfafrfaforsd | [P T[]
\ v /

Memory Address
The contents of the addressed location is combined with the con-

tents of the A-register as an “inclusive or” logic operation. The
contents of the memory cell is left unaltered.

34 2100A REFERENCE

182 INCREMENT AND SKIP IF ZERO
15014 131211110 998 7 615 4 312 1 0

SEEEEEERRE

\| J
Y
Memory Address

An ISZ instruction adds one to the contents of the addressed mem-
ory location. If the result of this operation is zero, the next instruc-
tion is skipped; i.e., the Pregister is advanced by two instead of
one. Otherwise, the program proceeds normally to the next instruc-
tion in sequence. The incremented value is written back into the
memory cell in either case. An ISZ instruction referencing loca-
tions zero or one (A- or B-register) cannot cause setting of the
extend or overflow bits (unlike INA and INB).

ADA ADDTO A
15114 13121110 918 7 6]5 4 3]2 1 0

Plifolofol 1T 1 T[]

\—
Memory Address

)

The contents of the addressed memory location is added to the
contents of the A-register, and the sum remains in the A-register.
The result of the addition may set the extend or overflow bits.
The contents of the memory cell is unaltered.

ADB ADD TO B
15J1a1312[1110 98 7 65 4 3[2 1 0
Pftlojofoel 1T T 11111

N—

Ve
Memory Address

The contents of the addressed memory location is added to the
contents of the B-register, and the sum remains in the B-register.
Extend or overflow bits may be set, as for ADA. The contents of
the memory cell is unaltered.

2100A REFERENCE 35

CPA COMPARE TO A
15014 131211110 948 7 6}5 4 3}{2 1 0

Llafofefoiel 1T 1T 111/

\ /
SV
Memory Address

The contents of the addressed location is compared with the con-
tents of the A-register. If the two 16-bit words are unequal, the
next instruction is skipped; i.e., the P-register is advanced by two
instead of one. If the words are identical, the program proceeds
normally to the next instruction in sequence. The contents of
neither the A-register nor the memory cell is altered.

CPB COMPARETO B
15114 131211110 9]8 7 65 4 32 1 0

Poafoitfefee 11 111 1]

\'4
Memory Address

Same as CPA, except comparison is made with the B-register.

LDA LOAD A
15114 1312)1110 9|8 7 6]5 4 3]2 1 0

Pofefefofefed § 1 [T T[] [1

A /
\'
Memory Address

The A-register is loaded with the contents of the addressed loca-
tion. The contents of the memory cell is unaltered.

LDB LOAD B
14131211110 9|8 7 6]5 4 3|2 1 0

BLLOFd LTI TLITITL

\)
Y
Memory Address

The B-register is loaded with the contents of the addressed loca-
tion. The contents of the memory cell is unaltered.

36 2100A REFERENCE

STA STORE A
15114 13121110 98 7 6 4 31210

PLEOPd LT LTI

\'4
Memory Address

The contents of the A-register is stored in the addressed location.
The previous contents of the memory cell is lost; the A-register is
unaltered.

STB STOREB
14 13121110 9|8 7 65 4 32 1 0

15
PO [TTITTLT

A4
Memory Address

The contents of the B-register is stored in the addressed location.
The previous contents of the memory cell is lost; the B-register is
unaltered.

3.3 REGISTER REFERENCE INSTRUCTIONS

The 39 register reference instructions execute various functions on
data contained in the A-, B-, and E-registers. The instructions are
divided into two groups: the shift-rotate group and the alter-skip
group. In each group, several instructions may be combined into
one word and are thus individually termed microinstructions. Since
the two groups are separate and distinct, microinstructions from
the two groups cannot be mixed. Unshaded bits in the coding dia-
grams are available for combining other microinstructions.

SHIFT-ROTATE GROUP, The 20 instructions of the shift-rotate
group are defined first. A comparison of shift and rotate functions
is given in figure 3.1, Rules for combining microinstructions are as
follows. (Refer to table 3.2.)

a. Only one microinstruction can be chosen from the
multiple-choice columns.

2100A REFERENCE 317

b. Referencesto A- and B-registers cannot be mixed.

¢. The sequence of execution is left to right.

d. In machine code, use zeros to exclude unwanted micro-
instruction bits.

e. Use a “1” bit in bit 9 to enable shifts or rotates in the
first position, and a ““1” bit in bit 4 to enable shifts or rotates in
the second position.

f. The extend bit is not affected unless specifically stated.
However, if a rotate-with-E instruction (ERA/B, ELA/B) is coded
but disabled by a “0” in bit 9 or 4, the E-register will be updated
even though the A- or B-register is not affected; code a NOP (three
zeros) to avoid this situation.

-
ALS ALS]
ARS ARS
RAL RAL
RAR RAR
ALR [.CLE] (.SLA] ALR
ALF ALF
ERA ERA

\VELA / \ ELA

L L

. - N
BLS BLS
BRS BRS
RBL RBL
RBR A | [CLE] Lsws] | RBR
BLR BLR
BLF BLF
ERB ERB

\ ELB L ELB

Table 3.2. Shift-Rotate Combining Guide

NOP NO OPERATION
1514 131211110 9

An all-zero instruction word causes a no-operation cycle.

38 2100A REFERENCE

ALS
BLS

ARS
BRS

RAL
RBL

RAR
RBR

ALR
BLR

ERA
ERB

ELA
ELB

ALF
BLF

HlLHIIIHHHII

G o
CHEERNERENRENEND

(LT)
(cunans lmu}

0

A
IHIIIIIIIHHIM

iﬁ?ﬁmuumfl‘m

="

(F AR
lfllll]llmlllllllm
el efrofo] o s 7lﬁlsl4lslelloj

—

—~

Figure 3.1. Shift and Rotate Functioﬁs

2100A REFERENCE

39

CLE CLEARE
1514 131211110 9|8 7 6|5 4 3|2 1 0

HEEEEEE

Clear E-register (extend bit).

SLA SKIP IF LSB OF A 1S ZERO
8 7 6154 312 10

HEEEIEN

The next instruction is skipped if the least significant bit of the
A-register is ““0.”

SLB SKIP IF LSB OF B IS ZERO
15|14 131241110 9]8 7 6]5 4 3]2 1 0

HE R RN

The next instruction is skipped if the least significant bit of the
B-register is “0.”

ALS A LEFT SHIFT
151413 12]1110 98 7 6]5 4 3]2 1 0
My 0ifi1} Bi-fls?ﬁs]'u* I ;15:1 0 Iﬂi g

B O

1st Position 2nd Position

The A-register isarithmetically shifted left one place, 15 magnitude
bits only. Bit 15 (sign bit) is not affected; bit shifted out of bit 14
is lost. A ““0” replaces vacated bit 0.

310 2100A REFERENCE

BLS B LEFT SHIFT

15]14 13 12]11 10 _9 876 5 4 3 21 0
: ojolo] 1] Jolnlo

L

1st Position 2nd Position

The B-register is arithmetically shifted left one place, 15 magnitude
bits only. Bit 15 (sign bit) is not affected; bit shifted out of bit 14
is lost. A “0” replaces vacated bit 0.

A RIGHT SHIFT

[8 7 6]5 4 3]2 1 0
vfolal] [l Jeleld
1st Position 2nd Position

The A-register is arithmetically shifted right one place, 15 magni-
tude bits only. Bit 15 (sign bit) is not affected; copy of sign bit
is shifted into bit 14. Bit shifted out of bit 0 is lost.

BRS B RIGHT SHIFT

15]1413 12]1110 9|8 7 6)5 4 32 1 0
folojt] 1] Jofois

> L

1st Position 2nd Position

The B-register is arithmetically shifted right one place, 15 magni-
tude bits only. Bit 15 (sign bit) is not affected; copy of sign bit is
shifted into bit 14. Bit shifted out of bit O is lost.

2100A REFERENCE 1

RAL ROTATE A LEFT

1514131211109_8 7 615 4 312 1 8

1st Position 2nd Position

Rotate A-register left one place, all 16 bits. Bit 15 is rotated around
to bit 0.

RBL ROTATE B LEFT
1st Position 2nd Position

Rotate B-register left one place, all 16 bits. Bit 15 is rotated around
to bit 0.

RAR ROTATE A RIGHT
1501413 12]1110 9|8 7 6[5 4 3]2 1 0
et e ol [1] (1] Joln

1st Position 2nd Position

Rotate A-register right one place, all 16 bits. Bit 0 is rotated around
to bit 15.

312 2100A REFERENCE

RBR ROTATE B RIGHT
s a3]2 10

[1]

1st Position 2nd Position

Rotate B-register right one place, all 16 bits. Bit 0 is rotated around
to bit 15,

ALR A LEFT SHIFT, CLEAR SIGN
1511413 12411110 9]8 7 6]5 4 3|2 1 0

DRG] [1] 1]

A

1st Position 2nd Position

Shift A-register left one place, same as ALS, but clear sign bit after
shift.

B LEFT SHIFT,CLEAR SIGN
10 918 7 615 4 3

BT fi]

¥ LT

1st Position 2nd Position

Shift B-register left one place, same as BLS, but clear sign bit after
shift.

2100A REFERENCE 313

ERA ROTATE E RIGHT WITH A
1511413 1211110 98 7 6 5 4 312 1 0

1st Position 2nd Position

Rotate E-register right with A-register, one place (17 bits). Bit 0 is
rotated into extend register; extend contents is rotated into bit 15.
ERB ROTATE E RIGHT WITH B
151413 12j1110 9§18 7 6]5 4 3|2 1 0

dafefr] Ja] Jileln
R

1st Position 2nd Position

Rotate E-register right with B-register, one place (17 bits). Bit 0 is
rotated into extend register; extend contents is rotated into bit 15.

ELA ROTATE E LEFT WITH A
15113 12]1110 ofs 7 6Js 4 3]z 10
piadeigindrnje] 1] Jrlafo

1st Position 2nd Position

Rotate E-register left with A-register, one place (17 bits). Bit 15 is
rotated into extend register; extend contents is rotated into bit 0.

314 2100A REFERENCE

ELB ROTATE E LEFTWITH B
15114 13 1211 9|8 7 6]5 4 312 10

il lie] il Bifaio

L U

1st Position 2nd Position

Rotate E-register left with B-register, one place (17 bits). Bit 15 is
rotated into extend register; extend contents is rotated into bit 0.

ALF ROTATE A LEFT FOUR
9]8 7 6]5 4 3)2 10

1st Position 2nd Position

Rotate A-register left four places, all 16 bits. Bits 15, 14, 13, 12 are
rotated around to bits 3, 2, 1, 0 respectively. Equivalent to four
successive RAL instructions.

BLF ROTATE B LEFT FOUR
15]1413 12J1110 918 7 6]5 4 3

2 10
pfefe] o] fefols

1st Position 2nd Position

Rotate B-register left four places, all 16 bits. Bits 15, 14,13, 12 are
rotated around to bits 3, 2, 1, O respectively. Equivalent to four
successive RBL instructions.

ALTER-SKIP GROUP. The 19 instructions of the alter-skip group
are defined next. This group is specified by a “1” bit in bit 10.

2100A REFERENCE 315

Rules for combining microinstructions are as follows. (Refer to
table 3.3).

a. Only one microinstruction can be chosen from the
multi-choice columns,

b. References to A- and B-registers cannot be mixed.
¢. The sequence of execution is left to right.

d. If two or more skip functions are combined, the skip
will occur if either or both conditions are met. One exception
exists: refer to RSS instruction.

e. In machine code, use zeros to exclude unwanted micro
instruction bits.

CLA i CLE
CMA; | {,SEZ] CME (,SSA] [,SLA] [LINA] {,SZA] [,RSS]
L

cLB CLE) |
CmMB; | [,SEZ] CME [.ssB} [.SLB] [,INB] [,5ZB] [,RSSI

Table 3.3. Alter-Skip Combining Guide

CLA CLEAR A
15014 13121110 98 7 6§15 4 3}2 1 0

a1 ofgfoel [P [11T

Clear the A-register

316 2100A REFERENCE

CLB

CLEARB

15114 13 12 1110 9

54 31210

HEEE

CMA

COMPLEMENT A

54 31210

HEEN

Complement the A-register (One’s complement.)

CMB

COMPLEMENT B

15114 131211110 9

54 3|2 10

HEN

Complement the B-register (One’s complement.)

CCA CLEAR AND COMPLEMENT A

54 31210

15 14 1312 11 10 9

[T]

Clear, then complement the A-register. Puts 16 one’s in the A-
register; this is the two’s complement form of -1.

ccB CLEAR AND COMPLEMENT B

54 3|12 10

15 14 131211110 9

HEEE

Clear, then complement the B-register. Puts 16 one’s in the B-
register; this is the two’s complement form of -1.

2100A REFERENCE

317

CLE CLEARE
15114 131211110 98 7 65 4 3|2 1 0

ol T

Clear the E-register (extend bit).

CME COMPLEMENT E

1514131211109876543210

jafef T[T 1]

Complement the E-register (extend bit).

CCE CLEAR AND COMPLEMENT E
15114 131211110 9|8 7 6|5 4 3{12 1 0

Dl T

Clear, then complement the E-register (extend bit). Sets the extend
bit to “1.”

SEZ SKIP |F E IS ZERO

1514131211109876543210

HECEERE

Skip the next instruction if the E-register (extend bit) is zero.

SSA SKIP IF SIGN OF A IS ZERO

1514131211109876543210

HEREEEN

Skip next instruction if the sign bit (bit 15) of the A-register is
zero; i.e., skip if the contents of A is positive.

318 2100A REFERENCE

SSB SKIP IF SIGN OF B IS ZERO

8 7 6154 31210

EEEEIEEN

Skip next instruction if the sign bit (bit 15) of the B-register is
zero; i.e., skip if the contents of B is positive.

SLA SKIP IF LSB OF A IS ZERO
15414 131211110 918 7 615 4 312 1 0

[L [af [

Skip next instruction if the least significant bit of the A-register is
zero; i.e., skip if an even number is in A,

SLB SKIP IF LSB OF B IS ZERO

1514131211109 8 7 6154 312 10

[IE Ll]

Skip next instruction if the least significant bit of the B-register is
zero; i.e, skip if an even number is in B.

INA INCREMENT A
15014 131211110 98 7 6)5 4 3]2 1 0

RN

Increment the A-register by one. Can cause setting of extend or
overflow bits.

INB INCREMENT B
15141312 1110 98 7 6]5 4 3]2 10

HEEENCE

Increment the B-register by one. Can cause setting of extend or
overflow bits.

2100A REFERENCE 319

SKIP IF AIS ZERO
8 7 6]5 4 31210

EEEEEE

Skip next instruction if the A-register is zero (16 zeros).

SZB SKIP IF B IS ZERO
15114 13121110 9|8 7 6|5 4 3|2 1 0

INNENENG

Skip next instruction if B-register is zero (16 zeros).

RSS REVERSE SKIP SENSE
1514131211109 8 7 6|54 312160

HEEEEEE

Skip occurs for any of the preceding skip instructions, if present,
when the non-zero condition is met. RSS without a skip instruction
in the word causes an unconditional skip. If a word with RSS also
includes both SSA/B and SLA/B bits 15 and 0 must both be one
for skip to occur. In all other cases the skip occurs if one or more
skip condition is met.

3.4 INPUT/OUTPUT INSTRUCTIONS

The 17 input/output instructions provide the capability to set or
clear the 1/O flag and control bits and the overflow bit, to test the
state of the overflow and 1/O flag bits, and to transfer data between
an I/O channel and the A- and B-registers. In addition, specific
instructions in this group control the interrupt system and can
cause a programmed halt.

Bit 11, where relevant, specifies the A- or B-register or distinguishes
between set control and clear control; otherwise it may be “1” or
“0” without affecting the instruction (although the assembler will
assign zeros, as shown}. Bit 9, where not specified, offers the choice

320 2100A REFERENCE

of holding (0) or clearing (1) the device flag after execution of the
instruction. (Exception: the H/C bit associated with the last two
instructions in this list holds or clears the overflow bit instead of a
flag bit.) Bits 8, 7, and 6 identify the instruction. Bits 5 through 0
(unshaded) form select codes to make the instruction apply to one
of up to 64 input/output devices or functions.

HLT HALT
15]14 131211110 918 7 6)5 4 3|2 1 0

B0 H/C:M::Bilfﬂ”\ BE RN

Y
Select Code

Halts the computer and holds or clears the flag (according to bit 9)
of any desired input/output device (bits 5 through 0). The HLT
instruction has the same effect as the HALT pushbutton: the HALT
switch lights, and the front-panel control switches are enabled.
the HLT instruction will be displayed (MEMORY DATA is auto-
matically selected when computer halts), and the P-register will
normally indicate the halt location plus one.

STF SET FLAG

15]14 1312|1110 98 7 6]5 4 3|2

10
ojojofr] [[] 1]

Y
Select Code

Sets the flag of the selected I/O channel or function. An STF 00
instruction enables the interrupt system for all select codes (ex-
cept power fail and parity error, which are always enabled).

CLF CLEAR FLAG

15]14 1312|1110 9|8 7 6]5 4 3|2 1 0

Select Code

Clears the flag of the selected I/O channel or function. A CLF 00

2100A REFERENCE 2

instruction disables the interrupt system for all select codes (ex-
cept power fail and parity error, which are always enabled); this
does not affect the status of the individual channel flags.

SFC SKIP IF FLAG CLEAR
1514131211109 8 7 6154 3|2 10
oftjef T J T[]
\ J
\'4
Select Code

Skip next instruction if the flag of the selected channel is clear
(device busy).

SFS SKIP IF FLAG SET
15141312 1110 9]8 7>‘B‘5 4 312 10
oo [[T
\ J
\4
Select Code

Skip next instruction if the flag of the selected channel is set
(device ready).

MIA MERGE INTO A
1514131211109 8 7 6“5 4 312 10
- afejef T[]
\ J
\
Select Code

The contents of the input/output buffer associated with the selec-
ted device is merged (‘“inclusive or”) into the A-register.

322 2100A REFERENCE

MiB MERGE INTO B
1514 1312|1110 9|8 7 6|5 4 3|2 1 0

tjofoj [[} 1]

Y
Seilect Code

The contents of the input/output buffer associated with the selec-
ted device is merged (“‘inclusive or’’) into the B-register.

LIA LOAD INTO A
15114 13 121110 9)8 7 6]5 4 3]2 1 0

Jofa] [[T [

\ -/
—

Select Code

The contents of the input/output buffer associated with the selec-
ted device is loaded into the A-register.

LiB LOAD INTO B
15114 131211110 98 7 6]5 4 3|2 1 0

] ;11;3;['}5;\ HEER

A4
Select Code

The contents of the input/output buffer associated with the selec-
ted device is loaded into the B-register.

0TA OUTPUT A
15114 131211110 9|8 7 6|5 4 3

2 10
,171,119:\ HEBE

Y
Sefect Code

The contents of the A-register is loaded into the input/output
buffer associated with the selected device. If the buffer is less than
16 bits in length, the least significant bits of the A-register normally

2100A REFERENCE 323

are loaded. (Some exceptions exist, depending on the type of out-
put device.) A-register contents is not altered.

0TB OUTPUT B
1514131211109875543210
. 1ejag Jrijnjod 111
\Q v
vV
Select Code

The contents of the B-register is loaded into the input/output
buffer associated with the selected device.

STC SET CONTROL
1514131211109 8 7 6]5 4 312 10

LI TT11T]

\'
Select Code

Sets the control bit of the selected I/O channel or function.

CLC CLEAR CONTROL

15]141312]1110 9|8 7 6]5 4 312 1 0
el T
\

Select Code

Clears the control bit of the selected I/O channel or function. This
turns off a device channel and prevents it from interrupting. A CLC
00 instruction clears all control bits from select code 06 and up,
effectively turning off all I/O devices.

STO SET OVERFLOW
t5J1a 13 1201110 818 7 65 a 3f2 1 0

Sets the overflow bit.

324 2100A REFERENCE

cLo CLEAR OVERFLOW
1514 1312|1110 9]8 7 6]5 4 3|2 1 0

Flareiel 5]

Clears the overflow bit.

S0S SKIP IF OVERFLOW SET

15114 1312|1110 8 7 6|54 31210
5 3 e

If the overflow register is set, the next instruction of the program
is skipped. Use of the H/C bit will hold or clear the overflow bit
following execution of this instruction (whether the skip is taken
or not).

SOC SKIP IF OVERFLOW CLEAR
1514 131211110 9 8_7 6 2‘1 0
o0 A DR

If the overflow register is clear, the next instruction of the program
is skipped. Use of the H/C bit will hold or clear the overflow bit
following execution of this instruction (whether the skip is taken
or not).

3.5 EXTENDED ARITHMETIC MEMORY REFERENCE
INSTRUCTIONS

The four extended arithmetic memory reference instructions pro-
vide for integer multiply and divide, and for loading and storing
double-length words to and from the accumulators. The complete
instruction requires two words: one for the instruction code, and
one for the address. When stored in memory the instruction word
is the first to be fetched; the address word is in the next higher
location.

2100A REFERENCE 325

Since 15 bits are available for the address, these instructions may
directly address any location in memory. As for all memory refer-
ence instructions, indirect addressing to any number of levels may
also be used. A “0” in the D/I bit specifies direct addressing; a “1”’
specifies indirect addressing.

MPY ULTIPLY

M
3j2 10
0jof{0,0

131241110 9

i
o w

v~
Memory Address

Multiplies a 16-bit integer in the A-register by a 16-bit integer in
the addressed memory location. The resulting double-length integer
product resides in the B- and A-registers, with the B-register con-
taining the sign bit and most significant 15 bits of the quantity.
The A-register may be used as an operand (i.e., memory address 0),
resulting in an arithmetic square. Overflow cannot occur; the in-
struction clears the overflow bit.

DIV DIVIDE

15 1413 1211 10 9 _8 7 »ﬁ_ 5 4 31210

FEfaTaE | o801 [o[o[o[o[o [0 o]0

\— J
A4

Memory Address

Divides a doubleword integer in the combined B- and A-registers
by a 16-bit integer in the addressed memory location. The result
is a 16-bit integer quotient in the A-register and a 16-bit integer
remainder in the B-register. Overflow can result from an attempt
to divide by zero, or from an attempt to divide by a number too
small for the dividend. In the former case (divide by zero) execu-
tion will be attempted with unpredictable results left in the B- and
A-registers. In the latter case (divisor too small) the division will
not be attempted and the B- and A-register contents will be un-
changed, except that a negative quantity will be made positive. If
there is no divide error, the overflow bit is cleared.

326 2100A REFERENCE

DLD DOUBLE LOAD
1501413 12}1110 9 5 4 3[]2 10
siofofofo]o

-~ RN ~=-]
b] ~d

S o

v
Memory Address

Loads the contents of addressed memory location m (and m+1)
into the A- and B-registers, respectively.

DST DOUBLE STORE
514131211109_ ”6‘54321(]
: o] 1To]e]e]0]o[0 o]0
h 4
Memory Address

Stores the doubleword quantity in the A- and B-registers into ad-
dressed memory locations m (and m+1), respectively.

3.6 EXTENDED ARITHMETIC REGISTER REFERENCE
INSTRUCTIONS

The six extended arithmetic register reference instructions provide
various types of shifting operations on the combined contents of
the B- and A-registers. The B-register is considered to be on the
left (most significant word) and the A-register is considered to be
on the right (least significant word). An example of each type of
shift operation is illustrated in figure 3.2.

The complete instruction is given in one word and includes four
bits (unshaded) to specify the number of shifts, from 1 to 16. By
viewing the four bits as a binary-coded number, the number of
shifts is easily expressed; e.g., binary-coded 1 for one shift, binary-
coded 2 for two shifts, etc. The maximum of 16 shifts is coded
with four zeros; this essentially exchanges the B- and A-register
contents.

The extend bit is not affected by any of the following instructions.
Except for the arithmetic shifts, overflow also is not affected.

2100A REFERENCE 327

B-REGISTER l A-REGISTER
i Bits lost
| »
.
ASR 5 [1011 000 101 000 101 | 0 101 101 011100 111J
T T
[Arithmetic Shift Right ‘I !
5 places)) i
* [
1111110110011 010 : 0010101011010 111]
_____ = y
|

Extended sign

Bits lost 4—“L

ASL 5 0000000 111101000 , 1101101000110 1‘1J
T

(Arithmetic Shift Left)

S places) :
¥

0011110 100011011 , 0100017 011100 000J4———— Zeros Filted

_r“b Bits lost

0101101011100 111 |

1011 000 101 000 101

LSR5
(Logical Shift Right |
5 places))
)
)
Zeros filled —| 0000010 110001010 | 0010 101011010 111
,
1
|
Bits I094—1 ,
:
0101000 1111071000 ! 1101101000110 111
LSL 5 (o : 1]
{Logical Shift Left '
5 places) i
i
0011110100011 011 : 0100011 011 100 000 Zeros filled
(oo -
|
.
! _
:
1 111000010 , 01
RAR 8 [0 101170 131000010 | 0100010 110000 111 |

/

[000011 101011 101
=

1100 007 001000 101 |

(Rotate Right {\ (
8 places) I‘
Y |

T

.

b

)

L

'
|
RRL 7 0110011 101 111000: 0110011010000111J

(Rotate Left
7 places)

N\

L

r10‘|11|0000110011 0 100 001 110110 011

Figure 3.2. Examples of Doubleword Shifts and Rotates

328 2100A REFERENCE

ASR ARITHMETIC SHIFT RIGHT

a3 5431210
ojois] 1 |
\— e’

Number of Shifts

15114 13 1211110 9

Arithmetically shifts the combined contents of the B- and A-
registers right, n places. The value of n may be any number from 1
through 16. The sign bit is unchanged and is extended into bit
positions vacated by the right shift. Data bits shifted out of the
least significant end of the A-register are lost. Overflow cannot
occur; the instruction clears the overflow bit.

ASL ARITHMETIC SHIFT LEFT

‘ 11109_876543210

1§t olejofofolr] |]
W

Number of Shifts

Arithmetically shifts the combined contents of the B- and A-
registers left, n places. The value of n may be any number from 1
through 16. Zeros are filled into vacated low order positions of the
A-register. The sign bit is unchanged, and data bits are lost out of
bit 14 of the B-register. If one of the bits lost is a significant data
bit (“1” for positive numbers, “0’’ for negative numbers), over-
flow will be set; otherwise, overflow will be cleared during execu-
tion. See ASL example in figure 3.2. (Note that two additional
shifts in this example would cause an error by losing a significant
“1‘,7

LSR LOGICAL SHIFT RIGHT
15114 13 1211110 98 7 6]5 4 312 1 0
11 ol 1 Jolofofnfo] | [

\— e’

Number of Shifts

Logically shifts the combined contents of the B- and A-registers
right, n places. The value of n may be any number from 1 through

2100A REFERENCE 329

16. Zeros are filled into vacated high order bit positions of the B-
register, and data bits are lost out of the low order bit positions of
the B-register.

LSL LOGICAL SHIFT LEFT
1514131211110 98 7 615 4 32 1 0
joigiolofolofajo] | 1

\— e’

Number of Shifts

Logically shifts the combined contents of the B- and A-registers
left, n places. The value of n may be any number from 1 through
16. Zeros are filled into vacated low order bit positions of the A-
register, and data bits are lost out of the high order bit positions of
the B-register.

RRR ROTATE RIGHT
15[14 13 12]1110 98 7 6[5 4 3]2 1 0

foTelrfofol [T]
e

Number of Shifts

Rotates the combined contents of the B- and A-registers right,
n places. The value of n may be any number from 1 through 16.
No bits are lost or filled in. Data bits shifted out of the low order
end of the A-register are rotated around to enter the high order end
of the B-register.

ROTATE LEFT
543121190

ool |]
\— e’

Number of Shifts

Rotates the combined contents of the B- and A-registers left,
n places. The value of n may be any number from 1 through 16.
No bits are lost or filled in. Data bits shifted out of the high order
end of the B-register are rotated around to enter the low order end
of the A-register.

330 2100A REFERENCE

3.7 FLOATING POINT INSTRUCTIONS (Optional)

Each of the six floating point instructions has a unique machine
code associated with it. When a floating point instruction is assem-
bled, the assembler places the appropriate machine code in the
program. FORTRAN and ALGOL Compilers generate a subroutine
call to the Program Library. The Library replaces the subroutine
call with the appropriate machine code. Thus the Library is used
only once. Execution of floating point machine code calls the ap-
propriate firmware routine which allows the micro processor to
execute the instruction. A complete summary of 2100 floating
point instructions is given in table 3.4.

DATA FORMAT

15 14 0 15 14 o 15 8 7 10
SUTCUR i E— T —
Sign Integer mag magnitude Exponent Exp
sign Sign
INSTRUCTION: ADD SUBTRACT MULTIPLY DIVIDE FiX FLOAT
PURPOSE 10 add two 10 subtract the 1 multiply two 10 divide the o convert the Lo convert the
floating point f1oating point fioating point floauing point 1oating point integer 1 10
numbers, x number y from numbers, x number x by the number x to floating point
andy the lloating andy floating point integer format (prmat
point number x number y
MACHINE CODE 1050008 1050208 1050408 1050608 1051008 1051208
CALLING FAD FsB FMP FDV FIX FLT
SEQUENCE DEF Y[1] DEF Y[1] DEF Y|, DEF Y[1] liis assumed
10 be (n the
{X 13 assumed 10 be in the A, B registers! A register}
ASSEMBLY FADY FSB Y FMP Y FDV Y FIX FLT
LANGUAGE i is assumed
to be in the
(X it assumed 10 be in the A, B registers) A register}
RETURN Floating point (esult is left in the A, B registers Integer resullis Floating point
lef1 in A register. tasultis lefl in
Any fractional the A, B reg-
part s truncated. isters
8 register con-
tentis
meaningless,
MINIMUM EXE- 2352 usec 24.50 pusec 3332 usec 51.94 usec 5.88 ysec 9.80 psec
CUTION TIME
{including Fetchi
MAXIMUM EXE- 59.78 usec 60.76 usec 4116 usec 55.86 usec 8.82 usec 24.50 psec
CUTION TIME
linctuding Fetch)
EXECUTION
TIME FOR EACH 98 psec .98 usec 98 usec 98 usec -—= -
LEVEL OF
INDIRECT
ERROR If the result is outside the range af representable floating point numbers, 1f the magni None
CONDITION -2'77 2177 (12273}, the averflow flag is set and the result rude of the

27 (1270 s

11 an underflow accurs, [result within the range |-2- %7 (142772),2:12%),
the averflow llag is set and the result O is returned

returned,

ticating point
number 1s

2" the
integer 32767
(0777778) is
relurned and
ovtio flag is sel.

H the magn
tude of the
floating point
number is
9, the
integer O is
returned

Table 3.4. Floating Point Instruction Specifications

2100A REFERENCE

N

INPUT/OUTPUT SYSTEM 4

The purpose of the input/output system is to transfer data between
the computer and external devices.

Normally, data is transferred through the A- or B-register. Refer to
figure 4.1. This type of transfer occurs in three distinet steps:

a. between external device and its interface card in the
computer;

b. between the interface card and the A- or B-register; and

c. between the A- or B-register and memory.

This three-step process applies to both the “in” direction (as above)
and the ‘“out” direction (reverse order). This type of transfer,
which is executed under program control, allows the computer
logic to manipulate the data during the transfer process.

Data may also be transferred automatically under control of the
direct memory access (DMA) option. Once the DMA option has
been initialized, no programming is involved, and the transfer is
reduced to a two-step process: the transfer between the device and
its interface, and the transfer between the interface and memory.
Two DMA channels are provided and are assignable to operate with
any two device interfaces.

Since the DMA transfer eliminates programmed loading and storing
via the accumulators, the time involved is very short. Thus DMA is
used with high-speed devices capable of transferring data at rates
up to 1,020,400 sixteen-bit words per second. Further information
on the direct memory access option is given later in this section.

4.1 1/0 ADDRESSING

As shown in figure 4.2, an external device is connected by a cable
directly to an interface card located inside the computer. The

2100A REFERENCE 4

In some cases, certain devices may require two I/O slots and two
select codes. This requirement is fully explained in documentation
supplied with the applicable interface.

4.2 1/0 PRIORITY

When a device isready to be serviced (refer to *“I/O Data Transfer”),
it causes its interface to request an interrupt so that the computer
will interrupt the current program and service the device. Since
many device interfaces will be requesting service at random times,
it is necessary to establish an orderly sequence for granting inter-
rupts. Secondly, it is desirable that high-speed devices should not
have to wait for low-speed device transfers.

Both of these requirements are met by a series-linked priority
structure, illustrated in simplified form in figure 4.3. The bold
line, representing a priority enabling signal, is routed in series
through each card which is capable of causing an interrupt. The
card may not interrupt unless this enabling signal is present at its
input.

Each device (or other interrupt function) can break the enabling
line when it requests an interrupt. If two devices simultaneously
request an interrupt, obviously the device with the lowest select
code number will be the first one which can interrupt, since it
has broken the enable line for the higher select codes. The other
device cannot begin its service routine until the first device is
finished; however, a still higher priority device (lower select code)
may interrupt the service routine of the first device.

Figure 4.4 illustrates a hypothetical case in which several devices
require servicing by interrupting a CPU program. Both simultane-
ous and time-separate interrupt requests are considered.

Assume that the computer is running a CPU program when an in-
terrupt from I/O channel 12 occurs (at reference time t1). A JSB
instruction in the interrupt location for select code 12 causes a
program jump to the service routine for the channel 12 device.
The JSB instruction automatically saves the return address (in a
location which the programmer must reserve in his routine) for
a later return to the CPU program.

44 2100A REFERENEE

Computer
Logic

PRIORITY

Power Fail ENABLE
Signal o
Power
Fail
Error
Signal
—>—
Parity
Ervor/and
Memary
Protect
Compl
Signal I
>—
»
DMA
Chan 1
Completion
Signal
»>-
DMA
Chan 2
- /0
il Device

Interface
Card

Interface
Card

Interface
Card

Interface
Card

/o
Device

o

Device

[He]

I
=

Device

SELECT
CODE

04

05

06

07

Figure 4.3. Priority Linkage

2100A REFERENCE

INTERRUPTING

SiLECT CODE

COMPUTER SERVICING

shaded channel

TIME

11 |2
13

2 14

t3 |10

CPU
Program

} Together —]

r__h__

@ End of service subroutine

4.6

Figure 4.4. Interrupt Sequences

2100A REFERENCE

The routine for channel 12 is not completed when several other
devices request service (set flag). First, channels 13 and 14 request
simultaneously at t2; however, neither has priority over channel 12,
so their flags are ignored and channel 12 continues its transfer. But
at t3, a higher priority device on channel 10 requests service. This
request interrupts the channel 12 transfer and causes the channel 10
transfer to begin. The JSB instruction saves the return address for
return to the channel 12 routine.

During the channel 10 transfer, device 11 sets the channel 11
flag (t4). Since it has lower priority than channel 10, device 11
must wait until the end of the channel 10 routine. And since
channel 10, when it ends, contains a return address to the channel
12 routine, program control temporarily returns to channel 12
(even though the waiting channel 11 has higher priority). The
JMP.1 instruction used for the return inhibits all interrupts until
fully executed (plus one phase of the next instruction). At the end
of this short interval, the channel 11 interrupt request is granted.

When channel 11 has finished its routine, it returns control to
channel 12, which at last has sufficient priority to complete its
routine. Since channel 12 has been saving a return address in the
main CPU program, it returns control to this point.

The two waiting interrupt requests from channels 13 and 14 are
now enabled. Since channel 13 has higher priority, it goes first. At
the end of its routine, it temporarily returns control to the CPU
program. Then the lowest priority channel, 14, interrupts and com-
pletes its transfer. Finally, control is returned to the CPU pro-
gram, which continues processing.

4.3 INTERFACE ELEMENTS

The interface card provides a communication link between the
computer and an external device. There are three basic elements
on the interface card which either the computer or device can
control in order to effect the necessary communication. These
elements are as follows:

4.3.1 CONTROL BIT

This is a one-bit flip-flop register used by the computer to turn on
the device channel. When set, the control bit generates a start

2100A REFERENCE 47

command to the device, telling it to begin one operation cycle
(e.g., read or write one character or word). The interface cannot
interrupt unless the control bit is set. The control bit is set by an
STC (set control) instruction and cleared by a CLS (clear control)
instruction, with a specific select code (e.g., STC 12 or CLC 12).
The device cannot affect the control bit.

4.3.2 FLAG BIT

This is a one-bit flip-flop register primarily used by the device to
indicate, when set, that transmission between the device and the
interface buffer has been completed. Computer instructions can
also set the flag (STF), clear the flag (CLF), test if it is set (SFS),
and test if it is clear (SFC). The device cannot clear the flag bit.
If the corresponding control bit is set, priority is high, and the
interrupt system is enabled. Setting the flag bit will cause an inter-
rupt to the location corresponding to the device’s select code.

4.3.3 BUFFER

This is a flip-flop register for intermediate storage of data. Typically
the data capacity is 8 or 16 bits, but this is entirely dependent on
the type of device.

4.4 1/0O DATA TRANSFER

The preceding paragraphs of this section have discussed the individ-
ual features of the I/O system. The following paragraphs show
how data is actually transferred under interrupt control. The se-
quences are highly simplified in order to present an overall view,
without the involvement of software operating systems and device
drivers. For more detailed information refer to the documentation
supplied with the appropriate software system or interface kit.

4.4.1 INPUT TRANSFER

The upper part of figure 4.5 illustrates the sequence of operations
for an input transfer. Note that some of the operations are under
control of the computer program (programmer’s responsibility)

438 2100A REFERENCE

and some of the operations are automatic. The sequence is as
follows:

The operation begins with a programmed instruction to set control
and clear flag on the addressed interface card (1). In this example
it is assumed that the interface card is installed in the slot for
select code 12; thus the instruction is STC 12,C. Since the next
few operations are under automatic control of the hardware, the
computer program may continue executing other instructions.

Setting the control bit causes the interface card to issue a start
command (2) to the external device. The device then proceeds with
its electromechanical process of reading a character. When it has
done so, it sends a signal (done) back to the interface card, along
with the data character (3).

At the interface card the “done” signals sets the flag bit. The flag,
in turn, generates an interrupt (4)—provided the interrupt condi-
tions previously mentioned are met. That is, the interrupt system
must be on (STF 00 previously given), no higher priority interrupt
may be requesting, and the control bit must be set (done in step 1).

The interrupt causes the current computer program to be sus-
pended, and control is transferred to a service subroutine (5). It is
the programmer’s responsibility to provide the linkage between the
interrupt location (00012 in this case) and the service subroutine.
Also, it is the programmer’s responsibility to include in his service
subroutine the instructions for processing of the data (loading into
an accumulator, manipulating if necessary, and storing into
memory).

The subroutine may then issue further STC 12,C commands to
transfer additional characters. One of the final instructions in the
service subroutine must be a clear control (CLC 12 in this case).
This step (6) allows lower priority devices to interrupt (equivalent
to re-enabling a gate in figure 4.3) and restores the channel to its
static “ready” condition—control cleared and flag set. This condi-
tion is initially established by the computer at turn-on, and it is
the programmer’s responsibility to return the channel to the same
condition on the completion of each transfer.

2100A REFERENCE 49

At the end of the subroutine, control is returned to the interrupt
program via previously established linkages.

4.4.2 OUTPUT TRANSFER

The lower part of figure 4.5 illustrates the sequence of operations
for an output transfer. Again note the distinction between pro-
grammed and automatic operations.

It is assumed that the data to be transferred has been loaded into
A-register and is in a form suitable for output. The interface card
is assumed to be installed in the slot for select code 13.

The operation begins with a programmed instruction to transfer
the data from the A-register to the interface buffer (1). The in-
struction in this example is OTA 13. This is followed (2) by an
instruction to set control and clear flag; i.e., STC 13,C. Since
the next few operations are under automatic control of the hard-
ware, the computer program may continue executing other
instructions.

Setting the control bit causes the interface card to read out the
buffer data to the device and to issue a start command (3). The de-
vice proceeds to write the data, and when it has finished the de-
vice sends a signal (done) back to the interface card (4).

At the interface card the ‘““‘done” signal sets the flag bit. The flag,
in turn, generates an interrupt (5)—provided the interrupt system
is on, priority is high, and the control bit is still set (from step 2).

The interrupt causes the current computer program to be suspended,
and control is transferred to a service subroutine (6). It is the pro-
grammer’s responsibility to provide the linkage between the inter-
rupt location (00013 in this case) and the service subroutine. The
detailed contents of the subroutine is also the programmer’s re-
sponsibility, and will vary with the type of device.

The subroutine may then output further data to the interface card
and re-issue the STC 13,C command for additional character trans-
fers. One of the final instructions in the service subroutine must
be a clear control (CLC 13). This step (7) allows lower priority

4-10 2100A REFERENCE

d¥3d44Nn8

aunnouqns
ESITVET

1013U0) 1e3|)

auoQg Beiy 195
nels
be|g4 1e8)
33tA30 {043UG) 135
1NdNI

Z1 9poD 10885
ayvd 30V4HILNI

4.

1dnaiaiu|

221 018

WYHOOYd
H31N4dWO0D

Y3IJdSNVHL 1NdNI

Input/Output Transfers (Part 1)

Figure 4.5.

an

2100A REFERENCE

suohjeredQ dnewoiny

Ayjiqisuodsas s, 13wwesbory t

auoQ

nes

301A3Q
indino

joiuo0) Jeaj)

Beyy 198

fejy Jeary
1013u03 18§

434408

£1 3p0J 193198
QYvd IDVIYILNI

aunnoiqns
ERITVEL

1dnisaju)

WVHOO0Hd
d431NdNOD

HIISNVHL 1NdLNO

{Output Transfers (Part 2)

Input

Figure 4.5.

2100A REFERENCE

442

devices to interrupt, and restores the channel to its static “ready”
condition—control cleared and flag set. At the end of the subrou-
tine, control is returned to the interrupted program via previously
established linkages.

4.4.3 NON-INTERRUPT TRANSFERS

It is also possible to transfer data without using the interrupt sys-
tem. This involves a “wait-for-flag” method, in which the computer
commands the device to operate and then waits for the completion
response. It is therefore assumed that computer time is relatively
unimportant. The programming is very simple, consisting of only
four words of in-line coding, as shown in table 4.1. Each of these
routines will transfer one word or character of data. It is assumed
that the interrupt system is turned off (STF 00 not previously
given).

INPUT
INSTRUCTIONS COMMENTS
STC 12,C Start device
SFS 12 Is input ready?
JMP *-1 No, repeat previous instruction
LIA 12 Yes, load input into A-register
ouUTPUT
INSTRUCTIONS COMMENTS
OTA 13 Qutput A-register to buffer
STC13,C Start device
SFS 13 Has device accepted the data?
JMP *-1 No, repeat previous instruction
NOP Yes, proceed

Table 4.1. Non-Interrupt Transfer Routines

2t00A REFERENCE 413

INPUT. As before, an STC 12,C instruction begins the operation
by commanding the device to read one word or character. The
computer then goes into a waiting loop, repeatedly checking the
status of the flag bit. If the flag is not set, the JMP *-1 instruction
causes a jump back to the SFS instruction. (The *-1 operand is
assembler notation for “this location minus one.”) When the flag
is set, the skip condition for SFS is met and the JMP instruction
is skipped. The computer thus exits from the waiting loop, and
the LIA 12 instruction loads the device’s input data into the A-
register.

OUTPUT. The first step of output is to transfer the data to the
interface buffer; the OTA 13 instruction does this. Then STC 13,C
commands the device to operate and accept the data. The computer
then goes into its waiting loop, the same as described in the pre-
ceding paragraph. When the flag is received, indicating that the
device has accepted the output data, the computer exits from the
loop. (The final NOP is for illustration purposes only.)

4.5 DIRECT MEMORY ACCESS

As indicated earlier in figure 4.1, the purpose of the direct memory
access (DMA) option is to provide a direct data path, software
assignable, between memory and a high-speed peripheral device.

DMA accomplishes this purpose by stealing a memory cycle instead
of interrupting to a service subroutine. The DMA option for the
2100A Computer is capable of stealing every consecutive memory
cycle, and thus can transfer data at rates up to 1,020,400 words
per second.

There are two DMA channels, each of which may be separately
assigned to operate with any I/O interface, including those in an
HP 2155A I/O Extender. When both DMA channels are in simul-
taneous operation, channel 1 has priority over channel 2. The
combined maximum transfer rate for both channels operating to-
gether is 1,020,400 words per second; the rate available to channel
2 is then the rate difference between 1,020,400 and channel 1’s
actual rate.

When DMA is accessing memory, it has priority over CPU access
of memory. Thus the rate available to the CPU when DMA is

414 2100A REFERENCE -

operating is the difference between 1,020,400 words per second
and the actual transfer rate of DMA channels 1 and 2 combined.

DMA transfers are on a full-word basis; hardware packing and un-
packing of characters is not provided. The word count register is a
full 16 bits in length.

DMA transfers are accomplished in blocks. The transfer is initiated
by an initialization routine, and from then on operation is under
automatic control of the hardware. The initialization routine tells
DMA which direction to transfer the data (in or out), where in
memory to put or take data, which I/O channel to use, and how
much data to transfer. Completion of the block transfer is signalled
by an interrupt to location 00006 (for channel 1) or location 00007
(for channel 2) if the interrupt system is enabled. It is also possible
to check for completion by testing the status of the flag for select
code (for channel 1) or select code 03 (for channel 2). A block
transfer can be aborted with an STF 06 or 07 instruction.

4.5.1 DMA OPERATION

Figure 4.6 illustrates the sequence of operations for a DMA trans-
fer. Comparison with conventional transfers (figure 4.5) shows
that much more of the operation is automatic. Remember that the
procedures in figure 4.5 must be repeated for each word or char-
acter. In figure 4.6 the automatic DMA operations will transfer
a block of data of any size, limited only by the availability of
memory space.

The sequence of events is as follows. (Input transfer is illustrated;
the minor differences for output are explained in text.)

The initialization routine sets up the control registers on the DMA
card (1) and issues the first start command (STC 12,C) directly
to the interface card. (If the operation is output, the buffer is
also loaded at this time.) The DMA option is then turned on and
the computer program continues with other instructions.

Setting control and clearing flag on the interface card (2) causes
a start command (3) to the external device (with data if output).
The device goes through its read or write cycle and returns a
“done” signal (4), with data if input. The set flag, regardless of

2100A REFERENCE 415

suoljesadQ snewoliny

Aupdisuodsas s, sawwesboly '

L EEETgt:! X

auog Bel4 195

EIT |01U0) 1e3)D
301A3a fieyy teay)
1NdNI joa1u0) 18g

Z1 apo) 192195
QyvI 3OVIHIINI

{ Axowaw

aulnoy
uonapdwo)d

1dnasiug

aunnoy
uonezijeniu]

WvHdO0ud
H34NdWOD

DMA Transfers

Figure 4.6.

2100A REFERENCE

416

priority, immediately requests DMA to steal a memory cycle (5)
and a word is transferred into (or out of) memory (6). The pro-
cess now repeats back to the beginning of this paragraph to trans-
fer the next word.

After the specified number of words has been transferred, the
control bit is cleared (7). Then DMA generates an interrupt (8),
and program control is forced to a completion routine (9), the
contents of which is the programmer’s responsibility.

4.5.2 DMA INITIALIZATION

The information required to initialize DMA (direction, memory
allocation, I/O channel assingment, and block length) are given by
three control words. These three words must be addressed specifi-
cally to the DMA card. Figure 4.7 shows the format of the three
control words.

CONTROL WORD 1 {Device Control)
sl n]w]e[s]7]6]sJals]2]1]0
1 Li:« c_—_L_E (Not used) Device Select Code
0 {sTC CLC
CONTROL WORD 2 {Memory Control)
5wl nfofe]s[[es]sTals]2]1]0
l ._i . Memory Address
0 lout
CONTROL WORD 3 IBlock Length Control)
wTels s s s s e s 1= Lo

Word Count

Figure 4.7, DMA Control Word Formats

2100A REFERENCE 417

Control Word 1 (CW1) identifies the I/O channel to be used, and
provides for two options, selectable by the programmer as follows:

Bit 15
1: give STC (in addition to CLF) to I/O channel at
end of each DMA cycle (except on last cycle, if

input)
0: noSTC
Bit 13
1: give CLC to I/O channel at end of block transfer
0: noCLC

Control Word 2 (CW2) gives the starting memory address for the
block transfer and Bit 15 determines whether data is to go into
memory (1) or out of memory (0).

Control Word 3 (CW3) is the 2’s complement of the number of
words to be transferred into or out of memory; i.e., the length of
block. This number can be from -1 to -32,768, although it is
limited in the practical case by available memory.

Table 4.2 gives the basic program sequence for outputting the
control words to DMA. As shown in this table, CLC 2 and STC 2
perform switching functions to prepare the logic for either CW2
or CW3. The device is assumed to be in I/O channel 10, and it is
also assumed that its start command is STC 10B,C. The sample
values of CW1, CW2, CW3 will read a block of 50 words and
store these in locations 200 through 261 (octal). STC 6,C starts
the DMA operation. A flag-status method for detecting end-of-
transfer is used in this example; an interrupt to location 00006
could be substituted for this test.

The program in table 4.2 could easily be changed to operate on
channel 2 by changing select codes 2 to 3, and 6 to 7.

One important difference should be noted when doing a DMA
input operation from a disc or drum. Due to the asynchronous
nature of disec or drum memories and the design of the interface,
the order of starting must be reversed from the order given; i.e.,
start DMA first, then the dise.

4138 2100A REFERENCE

LABEL | OPCODE OPERAND COMMENTS

ASGN1 | LDA CW1 Fetches contro! word 1 (CW1} from
memory and loads it in A-register.
OTA 6 Outputs CW1 to DMA Channel 1.
MAR1 CcLC 2 Prepares Memory Address Register
to receive control word 2 (CW2).
LDA CW2 Fetches CW2 from memory and
loads it in A-register.
OTA 2 Outputs CW2 to DMA Channel 1.
WCR1 STC 2 Prepares Word Count Register to
receive control word 3 (CW3).
LDA CW3 Fetches CW3 from memory and
loads it in A-register.
OTA 2 Outputs CW3 to DMA Channef 1.
STRT1 | STC 108,C Start input device.
STC 6B,C Activate DMA Channel 1.
SFS 6 Wait while data transfer takes
JMP *-1 place or, if interrupt processing

is used, continue program.

HLT Halt

CW1 oCT 120010 Assignment for DMA Channel 1
(ASGN1); specifies 1/0O Channel
select code address (10g), STC
after each word is transferred, and
CLC after final word is transferred.

CW2 oCT 100200 Memory Address Register control.
DMA Channel 1 (MAR1)}; specifies
memory input operation and
starting memory address (200g}.

CW3 DEC -50 Word Count Register control.
DMA Channel 1 (WCR1); specifies
the 2's complement of the number
of character words in the block of
data to be transferred (50,¢).

Table 4.2. Program to Initialize DMA

2100A REFERENCE 419

The front panel of the 2100A Computer is available in two con-
figurations: an operator panel (standard) and a controller panel
(optionatl).

The operator panel provides display and control of the working
registers, phase status and fault indicators, and operating controls.

The controller panel may be used in applications where an operator
panel is seldom required. The panels are easily interchangeable so
that, if desired, installations having more than one 2100A Com-
puter may share an operator panel among several units.

This section describes the functions of the controls and indicators
on both versions of the panel, plus basic operating procedures.

420 2100A REFERENCE

OPERATING CONTROLS AND
INDICATORS S

5.1 OPERATOR PANEL

Figure 5.1 illustrates the operator panel and briefly describes the
function of each control and indicator. The following paragraphs
provide additional explanatory information. Functions are grouped
according to the type of operation.

5.1.1 16-BIT REGISTERS

The DISPLAY REGISTER displays the contents of any one of the
six 16-bit working registers when in the half mode. (Only the
S-register is displayed in the run mode.) An illuminated bit push-
button is a ““1”’; a non-illuminated bit pushbutton is a ““0.” The bit
content changes state each time the pushbutton is pressed, and
the entire display may be cleared by pressing CLEAR DISPLAY.

When power is initially turned on, the S-register is automatically
selected. Thereafter, while in half mode, any of the six registers
may be selected by pressing the appropriate select switch: A, B,
P, M, S, or MEMORY DATA. The register currently selected for
display is indicated by lighting of the pushbutton.

After a programmed or manual halt, MEMORY DATA is auto-
matically selected. This causes the contents of the last accessed
memory cell to be displayed—which will be the halt instruction
code in the case of programmed halts.

As long as a register is being displayed, the original contents of
that register may be redisplayed, if altered by pressing DISPLAY
REGISTER pushbuttons, simply by pressing the same select push-
button again (A, B, P, M. S. or MEMORY DATA). However, when
any other select pushbutton is pressed (or if the computer is run
or stepped) the last indicated display becomes the new contents
for that register, and the old contents is lost.

2100A REFERENCE 51

Jonuo) pue Aejdsiq

1023u0D) pue Aedsig dOL1vOtdNn| SHOLVIIANI SY31S1934 STOHLINOD HOLVvIOIANI
SHILSIDIY 11991 1INv4 SNLVLS ISVYHJ 11g-L ONILvH3d0 1anv4a
\ \ \ /
\ \u. . ya

>>>>>>
uuuuuuuuuuuuuuuuuuuuu

......

..............

zzzzzzzzz

uuuuu

............
aaaaaa

Figure 5.1. Operator Panel Controls and Indicators (Part 1)

2100A REFERENCE

52

16-BiT REGISTERS
DISPLAY REGISTER. Bit light on = 1, off = 0. Press switch to com-
plement any bit.
MEMORY DATA. Press to display contents of location referenced by
M. Lit when selected. Can press again to redisplay unmodified contents.
selected when computer is halted.
INCREMENT M. Press to increment M, If memory data selected, display
is updated.
M. Press to display M-register. Can press again to redisplay unmodified
contents.
P. Press to display P-register and set Fetch phase. Can press again to redis-
play unmodified contents,
B. Press to display B-register. Can press again to redisplay unmodified
contents.
A. Press to display A-register. Can press again to redisplay unmodified
contents,
S. Press to display S-register. Can press again to redisplay unmodified con-
tents. Automatically selected in run mode.
CLEAR DISPLAY. Press to clear display register.

1-BIT REGISTERS
OVF. Overflow register. Light on = 1, off = 0. Press to complement.
EXTEND. Extend register. Light on = 1, off = Q. Press to complement.

OPERATING CONTROLS
INTERRUPT SYSTEM. Light on indicates interrupt system enabled. Press
to complement,
INSTR STEP. Press to execute single instruction,
EXTERNAL PRESET. Press to clear 1/O channels.
INTERNAL PRESET. Set Fetch phase, clear parity error indication and
overflow, disable interrupt system and memory protect.
HALT/CYCLE. Halt computer or perform one instruction phase.
LOADER ENABLE. Press to enable/disable loader.
RUN. Start execution, disable panel.
POWER OFF/POWER ON/LOCK ON. Key-operated power switch, Panel
disabled in LOCK ON position.

PHASE STATUS INDICATORS
FETCH. Indicates Fetch phase is next.

IND. Indicates Indirect phase is next.
EXECUTE. Indicates Execute phase is next.

FAULT INDICATORS

PARITY. Light on indicates that a memory parity error has occurred
(if P.E. HALT mode selected).

EXTERNAL PRESET. Light on indicates a power failure occurred (if lo-
cation 04 contains HLT).

2100A REFERENCE 53

Note that pressing the M pushbutton displays the address of a
memory location, and pressing MEMORY DATA displays the con-
tents of that location. Depending on which of these is selected,
consecutive addresses or consecutive contents for adjacent memory
cells (either higher or lower) may be displayed by repetitively
pressing INCREMENT M or DECREMENT M. These two push-
buttons are only momentarily illuminated when pressed. Pressing
the P pushbutton also sets the fetch phase, so that execution may
begin (at the location indicated by the P-register) simply by press-
ing RUN,

5.1.2 FAULT INDICATORS

Provision is made to indicate two possible hardware faults. One is
a parity error as a result of reading from memory. If the PARITY
light is on, a parity error has occurred. In the halt mode, the light
may be turned off by pressing INTERNAL PRESET. In the run
mode, the light is turned off by a parity error interrupt, and thus
is not ordinarily on long enough to be visible.

The other indicated hardware fault is power failure. If the ARS/
ARS switch is set to ARS (auto-restart) and location 04 contains
a HLT instruction, the EXTERNAL PRE-SET pushbutton will light
on restoration of power, and the machine will halt. The light is
turned off by pressing the EXTERNAL PRESET pushbutton. (In
a restart routine the light would be turned off by the CLC 04
instruction.)

5.1.3 PHASE STATUS INDICATORS

There are three indicators which signal the state of the computer:
FETCH, IND (for indirect), and EXECUTE. The next phase to
occur if the computer is run or stepped is the phase indicated by
the lighted status indicator. Thus if the FETCH light is on, the
computer will fetch an instruction from the address currently
pointed to by the P-register when the computer is run or stepped.
(It should be noted that indirect references for the extended arith-
meticinstructions are obtained in an Execute phase, not an Indirect
phase.) The indicators are also operative in the run mode.

54 2100A REFERENCE

5.1.4 1-BIT REGISTERS

The contents of the Extend and Overflow registers are continu-
ously displayed by the EXTEND and OVF pushbutton lights (in
both halt and run modes). If the pushbutton light is on, the regis-
ter contents is a “1’’; if not on, the register contents is a “0.” In
the halt mode, the content changes state each time the pushbutton
is pressed.

5.1.5 OPERATING CONTROLS

The eight pushbuttons grouped together as operating controls gen-
erally control start/stop and other related functions. Since the
effects of each pushbutton differ one from another, they are dis-
cussed separately below.

INTERRUPT SYSTEM. This pushbutton indicates and controls
the state of the interrupt system. When the pushbutton light is on,
the interrupt system is enabled (flag set). When the light is off, the
interrupt system is disabled (flag clear). Each time the pushbutton
is pressed, while the computer is halted, the flag changes state.

INSTR STEP. This pushbutton is used to advance program execu-
tion by instruction. The program advances one instruction each
time the pushbutton is pressed. If the RUN light stays on, an in-
finite indirect loop is indicated; press HALT to terminate the loop.

EXTERNAL PRESET. This pushbutton disables the input/output
channels. From I/O address 06 and up, all Control flip-flops are
cleared and flag flip-flops are set. If the EXTERNAL PRESET
pushbutton lights, a power failure has occurred (see description
under Fault indicators).

INTERNAL PRESET. This pushbutton presets the computer to
the fetch phase, clears the PARITY indicator, clears overflow, and
disables both the interrupt system and the memory protect logic.

HALT/CYCLE. In the run mode, this pushbutton is used to halt
the computer at the end of the current phase. The pushbutton

2100A REFERENCE 55

lights when the computer halts, and all other panel controls be-
come enabled. In the halt mode, the pushbutton may be used
to advance program execution by phase. One phase occurs (and
the light goes off momentarily) each time the pushbutton is
pressed.

LOADER ENABLE. This pushbutton enables access to the basic
binary loader (last 64 locations of memory) for the purpose of
loading binary programs. When the push button is pressed the
light goes on, and stays on as long as the loader is enabled.
After a programmed or manual halt, the light goes off and the
loader is again disabled. (The loader can also be disabled by press-
ing the pushbutton again.)

RUN. Pressing RUN starts the computer in the current state. The
RUN pushbutton light is on while the computer is in the run
mode, and all panel controls are disabled except HALT/CYCLE,
DISPLAY REGISTER, and CLEAR DISPLAY. Pressing RUN
automatically causes the S-register contents to be displayed, and
no other register may be selected while the computer is in the run
mode. Thus, to the operator, the DISPLAY REGISTER effectively
becomes the S-register. This register may be addressed as select
code 01 by programmed instructions, and may be manually altered
by the operator.

POWER OFF/POWER ON/LOCK ON. This is a three-position, key-
operated switch controlling primary power to the computer. The
key is removable only in the horizontal POWER OFF and LOCK
ON positions. In the LOCK ON position the panel controls are
enabled and the key may not be removed.

If it is desired to inhibit the operation of the automatic restart
logic when turning power on, the EXTERNAL PRESET pushbut-
ton may be held depressed while turning the power switch.

5.2 CONTROLLER PANEL

Figure 5.2 illustrates the optional controller panel and briefly des-
cribes the function of each control and indicator. The following
paragraphs provide additional explanatory information.,

5-6 2100A REFERENCE

OPERATING CONTROLS

N

bl

5.

LOAD. After preset, press to load program. Light on during load.
PRESET, Press to set Fetch phase, turn off [/Q channels, interrupt sys-
tem, memory protect, and indications for parity error and power fail.
Also clears A-, B-, and P-registers.

RUN. Press to start program execution. Light on in run mode.

HALT. Press to halt execution at end of current phase. Light on when
halted.

POWER OFF/POWER ON/LOCK ON. Key-operated power switch. Panel
disabled in LOCK ON position.

FAULT INDICATORS

2.
6.

PRESET. Light on indicates power faiture occurred. (Refer to text.)

PARITY. Light on indicates a memory parity error has occurred, with
P.E. INT/HALT switch set to HALT.

Figure 5.2. Controller Panel Controls and Indicators

2100A REFERENCE 57

PARITY. If the PARITY light is on, a parity error has occurred
as a result of reading from memory. In the halt mode, the light
may be turned off by pressing the PRESET pushbutton. In the run
mode, the light is turned off by a parity error interrupt.

RUN. Pressing RUN starts the computer in the current state. The
RUN pushbutton light is on while the computer is in the run mode,
and the PRESET pushbutton is disabled.

HALT. This pushbutton is used to halt the computer at the end
of the current phase. The pushbutton lights when the computer
halts, and the PRESET pushbutton becomes enabled.

PRESET. This pushbutton disables the input/output channels
clears Control flip-flops and sets flag flip-flops from I/O address
06 and up) turns off the interrupt system, clears the Overflow,
A-, B-, and P-registers, clears the PARITY indicator, disables the
memory protect logic, and presets the computer to the fetch phase.
Pressing the PRESET pushbutton also clears a power failure indi-
cation (PRESET pushbutton light on) if power has failed and is
restored. Note that PRESET will light only if the internal ARS/
ARS switch is set to ARS and location 04 contains a HLT
instruction.

If the RUN pushbutton is pressed after PRESE?T, the computer
will begin program execution from location 0 (P-register = 0). The
first two instructions executed will be NOP’s (A- and B-registers =
0), and the computer will then begin executing at location 00002,
This provides a convenient cold-start linkage in the absence of an
operator panel.

LOAD. This pushbutton is used to load a program from a tape
reader or disc. In the half mode, pressing the LOAD pushbutton
causes the loader starting address to be loaded into the P-register,
enables the loader locations, and starts the run mode. The push-
button light remains on until a programmed or manual halt occurs.
The halt disables the loader and turns off the light.

POWER OFF/POWER ON/LOCK ON. The power control switch
is not replaced when panels are interchanged. Refer to the des-
cription given previously.

58 2100A REFERENCE

5.3 INTERNAL SWITCHES

Although most of the internal switches are intended for checkout
or maintenance purposes, two of these are of interest to the user.
The following paragraphs describe the functions of these switches.
Access to the switches is obtained by removing the computer top
cover; each switch is mounted near the top edge of a printed-circuit
card, the location of which is specified in the following text.

ARS/ARS

The ARS/ARS switch is used to specify the action"Wnich the
computer should take on recovery from a power failure. With
the switch in the ARS position, the computer will interrupt to
location 00004 when power returns to normal operating levels;
this permits entry to a restart program. With the switch in the
ARS position, the computer will halt on recovery of power. The
ARS/ARS switch is located on the I/O control card in slot 7.

INT/HALT

The P.E. INT/HALT switch is used to specify the action which the
computer should take on detection of a memory parity error.
With the switch in the INT position, the computer will interrupt
to location 00005 for entry to a parity error subroutine. With
the switch in the HALT position, the computer will halt. The
P.E. INT/HALT switch is located on the I/O buffer card in slot 8.

5.4 PANEL OPERATION

The following procedures describe, in general, the basic load and
run operations for the 2100A Computer. Depending on whether
or not a disc is present in the system, loading is accomplished
by means of the basic binary loader (BBL) or basic binary disc
loader (BBDL). All procedures require that the power-switch key
be in the vertical POWER ON position (panel enabled).

5.4.1 LOADING WITH BASIC BINARY LOADER

It is assumed that the basic binary loader program is present in
memory, and is properly configured for the channel number of

2100A REFERENCE 59

the input device and for the size of memory. Refer to the soft-
ware operating manual for the procedure required to configure
the loader. Loading is accomplished as follows:

a. Turn on the input device and prepare for reading
(e.g, load tape in tape reader). The input program must be in
binary form, containing absolute addresses.

b. Press S to select the S-register. This will cause the S-
register contents to be displayed in the DISPLAY REGISTER.

c. Clear bits 0 and 15 of the display. (These bits are to
be set only for certain nonloading check operations; refer to soft-
ware operating manual.) The status of the remaining bits is not
significant.

d. Press P to select the P-register. This will cause the P-
register contents to be displayed in the DISPLAY REGISTER.

e. Set the display to the starting address of the basic
binary loader, according to table 5-1.

f. Press EXTERNAL PRESET and INTERNAL PRESET,
This initializes the external hardware (I/O channels) and the inter-
nal hardware (central processor).

g. Press LOADER ENABLE, and then press RUN. The
lights for both switches will remain on while the input operation
is in progress.

h. When the input device stops, the HALT light will go
on, RUN and LOADER ENABLE lights will go off, and the DIS-
PLAY REGISTER should indicate 102077 (octal), with MEMORY
DATA automatically selected. The load is complete.

If the halt code is not 102077 when the device stops, there has
been an error in the loading process. Two possible error condi-
tions are indicated by the loader, which changes the halt code to
identify the type of error. A halt code of 102055 indicates an
address error; check if the proper tape is being read, or if it is in

510 2100A REFERENCE

backwards. A halt code of 102011 indicates a checksum error;
check for possible bad tape, or dirty tape reader or tape.

MEMORY STARTING ADDRESS OF LOADER
SIZE For Paper Tape For Disc
4K 07700
8K 17700 17760
12K 27700 27760
16K 37700 37760
24K 57700 57760
32K 77700 77760

Table 5.1. Loader Starting Addresses

2100A REFERENCE

511

5.4.2 LOADING WITH DISC LOADER

If a disc is present in the system, the basic binary disc loader
(rather than the basic binary loader) occupies the protected loader
locations. This loader allows loading from either disc or paper
tape. The choice is made by selecting one of two possible starting
addresses, as indicated in table 5.1, For paper tapes the procedure
is the same as described above for the basic binary loader; steps
“b” and “¢” can be omitted.

The following procedures for disc loading assume that the basic
binary disc loader is present in memory, and is properly configured
for the I/ O channel numbers being used and for the size of memory.
The input program on disc must be in binary form, containing
absolute addresses.

a, Press P to select the P-register. This will cause the P-
register contents to be displayed in the DISPLAY REGISTER.

b. Set the display to the starting address in the loader
which is appropriate to the input source (disc) and memory size,
as indicated in table 5.1.

c¢. Press EXTERNAL PRESET and INTERNAL PRESET.
This initializes the external hardware (I/O channels) and the in-
ternal hardware (central processor).

d. Press LOADER ENABLE, and then press RUN. "

In the case of disc loading, the load may occur too quickly to
detect visually from the panel lights. However, a correct load is
indicated (for either tape or disc) by a display of 102077 (octal),
with MEMORY DATA automatically selected. (The P-register con-
tents could also be checked. With tape loading, the address should
have changed from the first to the last address, plus one, of the
loader. With disc loading, the P-register should contain octal 10.)

If the displayed halt code is not 102077 when the load is complete,
there has been an error. For disc loading, the error indications are
undefinable. For paper tape loading, the loader will alter the halt
code to identify the type of error, as described above for basic
binary loader operation.

612 2100A REFERENCE

5.4.3 MANUAL LOADING

Short programs may also be loaded manually from the front panel.

a. Press M to select the M-register. This will cause the M-
register contents to be displayed in the DISPLAY REGISTER.

b. Set the display to indicate the desired starting address
for the program.

c¢. Press MEMORY DATA. This will cause the current
contents of the memory location to be displayed in the DISPLAY
REGISTER.

d. Change the displayed contents to the binary instruc-
tion code for the first instruction of the program to be loaded.
(It may be faster to press CLEAR DISPLAY and begin coding
from an all-zero display.)

e. Press INCREMENT M. The contents of the next mem-
ory location will be displayed, and the M-register, although not
displayed, will be incremented.

f. Enter the next instruction into the DISPLAY
REGISTER.

g. Repeat steps “e” and “f” until the entire program
has been loaded. To check which location is being displayed, M
can be pressed at any time in the procedure to display the current
address.

5.4.4 RUNNING PROGRAMS
To run a program after it has been loaded:
a. PressP to select the P-register.

b. Set the display to the starting address of the program.

2100A REFERENCE 513

c. Press EXTERNAL PRESET and INTERNAL PRESET.
d. Press RUN.

The RUN light will be on as long as the program is running. All
panel controls except HALT/CYCLE, DISPLAY REGISTER, and
CLEAR DISPLAY are disabled. The S-register is automatically
selected, and may be manually changed via the DISPLAY
REGISTER.

Additionally, if desired, the display and halt controls may also be
disabled by turning the power-switch key to the horizontal LOCK
ON position. The key may be removed in this position, and thus
protect the state of the computer from accidental tampering.

5.5 OPERATION

5.5.1 LOADING PROGRAMS

It is assumed that the loader program is present in memory, and
that the loader and the panel are properly configured from the
type of loader (paper tape or disc), the channel number of the
input device, and the applicable memory size. Refer to the 2100A
Installation and Maintenance manual for the procedure required
to configure the panel, and to the software operating manual for
procedure required to configure the loader. Loading is accomplished
as follows:

a. Turn on the input device and prepare for reading (e.g.,
load tape in tape reader). The input program must be in binary
form, containing absolute addresses.

b. Press PRESET. This initializes both the external hard-
ware (I/O channels) and the internal hardware (central processor).

c. Press LOAD. The LOAD light will be on and will re-
main on during the load (or until the pushbutton is released in the
case of disc loading). No error checking is provided.

514 2100A REFERENCE

5.5.2 RUNNING PROGRAMS
To run the loaded program, press PRESET and then press RUN.

The PRESET switch causes the A-, B-, and P-registers to be cleared,
thus causing execution to begin at location 00000 (A-register).
The computer executes the NOP instruction contained in the A-
register (all-zero word), and also the NOP in the B-register. Then,
in location 00002, a JMP instruction causes a jump to the starting
instruction of the program.

The RUN light will be on as long as the program is running. Only
the HALT switch is enabled. However, even this switch may be
disabled by turning the power-switch key to the horizontal LOCK
ON position. The key may be removed in this position, and thus
protect the state of the computer from accidental tampering.

2100A REFERENCE 515

FUNCTIONAL BLOCK DIAGRAM A

FUNCTIONAL BLOCK DIAGRAM

MEMORY SECTION ARITHMETIC LOGIC SECTION

Orivers

Progister
CONTROL SECTION L‘jD—— 51 Regimer
5P2 Register

instruction Register
SP3 Register
L—D_‘ 5P Reginier

Control
Logi

INPUT/QUTPUT SECTION

0

S-register Cemeal Int Reg.

ROM Address
Mappec

SBus .

ROM Address Reg

ROM
24 x 1024

AOM insrueion Register

1/0 tostruction
Decuder

1 "
I Addressing Display Register

l l and Control
Misceltaneous

1/0 Bus

Interface Cards

PERIPHERAL DEVICES

2100A REFERENCE A4

PROCESSOR LOGIC ELEMENTS

MEMORY SECTION

M-Register. Contains binary address of memory cell being
accessed. Contents gated to or from S-bus by S and STOR
fields (respectively) of ROM instruction word.

X-Y Drivers. Current drivers which strobe all 17 cores.in a
given memory location, one direction for reading, the
opposite direction for writing.

Core Memory. Array of magnetic cores for data storage.
Magnetization direction of each core indicates “1” bit or
“0” bit. (17 bits per location.)

Sense Amplifiers, Pulse amplifiers to detect which of the 17
cores change state when reading the contents of one loca-
tion. Resulting signals cause duplication of the bit pattern
into the T-register. (17th bit goes to parity checking logic,
not shown.)

Inhibit Drivers. Current drivers which prevent certain cores
from changing state (according to the bit pattern in the T-
register) when writing into memory. Causes duplication of
T-register contents into the memory location.

T-register. 16-bit register to receive data from memory, and
hold data for storage into memory. Contents can be gated
to or from S-bus by ROM S or STOR fields.

CONTROL SECTION
Instruction Register. 16-bit register to receive instruction
word from T-register in fetch phase. Loaded from S-bus by

ROM STOR field.

2100A REFERENCE

B-1

SRG/ASG Decoder. Register reference instructions are par-
tially decoded separate from ROM. Resulting control
signals directly affect A-, B-, or P-registers.

Phase Control Logic. Causes ROM address mapper to set up
a ROM address corresponding to the current instruction
phase.

ROM Address Mapper. Uses the instruction register code to
find the ROM starting address for an instruction, and the
address for each phase of that instruction.

ROM Address Register. Contains the binary address of the
ROM location being read out.

ROM. (Read-only memory.) A matrix of permanently
stored instruction codes, addressable to read out any stored
code on command. (24 bits per location.)

ROM Instruction Register. 24-bit register to receive ROM
instruction words.

ROM Decoder. Decodes ROM instruction codes into con-
trol signals, to select which register to read onto the R- and

S-buses, as well as where to store S-bus data; also numerous
other functions.

ARITHMETIC LOGIC SECTION

A-register. 16-bit accumulator. Loaded from T-bus by ROM
STOR field, read to R-bus by R field.

B-register. Second accumulator, same as A-register.

Extend. One-bit register used to extend the A- or B- register
to 17 bits. Can also be used independently.

OVF. (Overflow.) One-bit register used to signify an arith-
metic overflow due to arithmetic operations with the A- or
B-registers. Can also be used independently.

B-2 2100A REFERENCE

Q-register. 16-bit left-shifting register, used to accumulate
quotient in arithmetic division. Not externally accessible.

F-register, Same as Q-register, except accumulates division
remainder.

R-bus. 16-bit data bus, one of two data inputs to the func-
tion generator. ROM R field reads 1 of 4 registers onto this
bus. Can be gated to S-bus by S field.

Function Generator. Performs a specified function (FN) on
one or both of the R- and S-bus inputs, and puts the result
onto the T-bus. Functions include: addition, subtraction,
boolean operations, increment, decrement, ete.

T-Bus. 16-bit data bus to transfer data modified by the
function generator to any of nine registers.

P-register. 16-bit register used to hold the address of the
current program instruction.

SP(1-4) Registers. 16-bit temporary storage registers used
by ROM only.

INPUT/OUTPUT SECTION

1/0 lInstruction Decoder. Input/output instructions are par-
tially decoded separate from ROM. Resulting signals pro-
vide addressing and control functions to the I/O system.

S-register. 16-bit data register. Can be loaded via display
register in halt mode, In run mode, S-register is locked to
display register; is addressable by select code 01.

Display Register. In halt mode, provides manual loading
facility for other registers. In run mode, may be gated via
1/O bus to or from S-bus, using select code 01 with S and
STOR fields.

2100A REFERENCE

B-3

Central Interrupt Register. Six-bit register, holds the ad-
dress of the most recently interrupting function or device.

1/0 Bus. 16-bit data bus accessible to all I/O interface cards.
Can be gated to or from the S-bus by ROM S and STOR
fields.

Interface Cards. One card per I/O channel, allows direct
cable connection of peripheral devices to the input/output
section of the computer.

B-4 2100A REFERENCE

Assembler Reference Manvual

Writeable Control Store (left) is used to develop
microprograms that extend the 2100A Computer’s
instruction set. Microprograms are then committed
to read-only memories and installed on the micro-
processor board (right).

CONTENTS

INTRODUCTIO|

CHAPTER 1

CHAPTER 2

CHAPTER 3

GENERAL DESCRIPTION

1.1 Assembly Processing

.2 Symbolic Addressing

.3 Program Relocation

.4 Program Location Counters
.5 Assembly Options

[

INSTRUCTION FORMAT

2.1 Statement Characteristics
Field Delimiters
Character Set
Statement Length

2.2 Label Field
Label Symbol
Asterisk

2.3 Upcode Field

2.4 Operand Field
Symbolic Terms
Numeric Terms
Asterisk
Expression Operators
Evaluation of Expressions
Expression Terms
Absolute and Relocatable

Expressions
Literals
Indirect Addressing
Base Page Addressing
Clear Flag Indicator
2.5 Comments Field

MACHINE INSTRUCTIONS

3.1 Memory Reference
Jump and Increment-Skip
Add, Load, and Store
Logical Operations

3.2 Register Reference
Shift-Rotate Group
No-Operation Instructions
Alter-Skip Group

vi

212
2-13
213
213

Assembler i

CHAPTER 4

CHAPTER 5

il Assembler

3.3 Input/Output, Overflow and Halt
Input/Output
Overflow
Halt

3.4 Extended Arithmetic Unit

3.5 Floating-Point Instructions

PSEUDO INSTRUCTIONS
4.1 Assembler Control

NAM ORG
ORR
ORB
IFN IFZ
REP
END
4.2 Object Program Linkage
COM
ENT EXT
4.3 Address and Symbol Definition
DEF
ABS EQU
4.4 Constant Definition
ASC
DEC
DEX
OCT
4.5 Storage Allocation
BSS
4.6 Assembly Listing Control
UNL
LST SUp UNS
SKP SpC HED

4.7 Arithmetic Subroutine Calls
MPY DIV FMP FDV
FAD FSB DLD DST

ASSEMBLER INPUT AND OUTPUT

5.1 Control Statement
A R B L
T H Z F
5.2 Source Program
5.3 Binary Output
5.4 List Output

3-7

39

3-10
3-11
3-13

4-1
41

4-2
4-3

46
4.7
4-8
4-8
410
411

4-23
4-24
4-25

4-26
4-27

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

HP CHARACTER SET

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCII —
BCD Conversion

HP 2020A/B ASCII —
BCD Conversion

ASSEMBLER INSTRUCTIONS

MACHINE INSTRUCTIONS

Memory Reference

Register Reference

Input/Output, Overflow, and Halt

Extended Arithmetic Unit
PSEUDO INSTRUCTIONS

Assembler Control

Object Program Linkage

Address and Symbol Definition

Constant Definition

Storage Allocation

Arithmetic Subroutine Calls Requests

Assembly Listing Control

ALPHABETIC LIST OF INSTRUCTIONS

SAMPLE PROGRAMS

File Parts Update
Sample Assembler Symbol
Table Output
Sample Assembler List Output
Calculating Distance

SYSTEM INPUT/OUTPUT SUBROUTINES

Memory Allocation
Operation and Calling Sequence:
Paper Tape Devices
Register Contents

C-1

D-1
D-1
D-3

D-4
D-9

E-1
E-1

E-2
E-2

Assembler iii

Operation and Calling Sequence:
Magnetic Tape Driver
Register Contents
Linkage Address
Magnetic Tape Operations
Read
Write
Write End-of-File
Rewind
Position
Rewind/Standby
Gap
Status
Additional Linkage Addresses
Buffer Storage Area
Record Formats
2020 7-Level Tape
3030 9-Level Tape
Operating and Calling Sequence:
Mark Sense Card Reader
Register Contents

APPENDIX F FORMATTER

APPENDIX G

APPENDIX H

iv Assembler

Calling Sequences
Format Specifications
Example

ASSEMBLY ERROR MESSAGES

CONSOLIDATED CODING SHEET

E-3
E-4
E-4
E4

E-6
E-6
E-6
E-7

E-7

E-10
E-10
E-10
E-12
E-12

E-13
E-13

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic
source language instructions into an object program for execution
on the computer. The source language provides mnemonic machine
operation codes, assembler directing pseudo codes, and symbolic
addressing. The assembled program may be absolute or relo-
catable.

The source program may be assembled as a complete entity or it
may be subdivided into several subprograms (or a main program
and several subroutines), each of whichmay be assembled separ-
ately. The relocating loader loads the program and Links the
subprograms as required. The Basic Binary Loader or Basic
Binary Disc Loader loads absolute programs.

Input for the Assembler is prepared on paper tape or cards; the Assem-
bler punches the binary program on paper tape in a format acceptable
to the loader.

Assembler v

GENERAL DESCRIPTION 1

1.1 ASSEMBLY PROCESSING

The Assembler is a two pass system, or, if both punch and
list output are requested, a three pass system on a minimum
configuration. A pass is defined as a processing cycle of the
source program input.

In the first pass, the Assembler creates a symbol table from
the names used in the source statements. It also checks for
certain possible error conditions and generates diagnostic
messages if necessary.

During pass two, the Assembler again examines each state-
ment in the source program along with the symbol table and
produces the binary program and aprogram listing. Additional
diagnostic messages may also be produced.

If only one output device is available and if both the binary
output and the list output are requested, the listing function is
deferred and performed as pass three.

When using the Assembler with a mass storage device the source
program is written on the device during the first pass; the second pass
of the source is read from the mass storage.

1.2 SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions,
data, constants, and certain other pseudo operations. A sym-
bol represents the address for a computer word in memory.
A symbol is defined when it is used as a label for a location in
the program, a name of a common storage segment, the label
of a data storage area or constant, the label of an absolute or
relocatable value, or a location external to the program.

Through use of simple arithmetic operators, symbols may be
combined with other Symbols or numbers to form an expres-
sion which may identify a location other than that specifically
named by a symbol. Symbols appearing in operand expres-
sions, but not specifically defined, and symbols that are
defined more than once are considered to be in error by the
Assembler.

Assembler 1-1

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLER
PASS 1

o — — ——

ASSEMBLY
LANGUAGE
SQURCE PROGRAM

ASSEMBLER
PASS 2

SYMBOL
TABLE
LISTING

RELOCATABLE
OR ABSOLUTE
OBJECT PROGRAM

ASSEMBLER
PASS 3

ADDITIONAL OR
ALTERNATE
OBJECT
PROGRAM LISTIN

PROGRAM

LISTING

HP ASSEMBLER PROCESSING

1-2 Assembler.

1.3 PROGRAM RELOCATION

Relocatable programs may be relocated in core by the relocating
loader; the location of the program origin and all subsequent
instructions is determined at the time the program is loaded.

A relocatable program is assembled assuming a starting
location of zero. All other instructions and data areas are
assembled relative to this zero base. When the program is
loaded, the relocatable operands are adjusted to correspond
with the actual locations assigned by the loader.

The starting locations of the common storage area and the
base page portion of the program are always established by
the loader. References to the common area are common re-
locatable. References to the base page portion of the program
are base page relocatable. If a program refers to the common
area or makes use of the base page via the ORB pseudo in-
struction, the program must also be relocatable.

If a program is to be relocatable, all subprograms comprising
the program must be relocatable; all memory reference
operands must be relocatable expressions or literals, or have
an absolute value of less than 100g.

1.4 PROGRAM LOCATION COUNTERS

The Assembler maintains a counter, called the program loca-
tion counter, that assigns consecutive memory addresses to

source statements.

The initial value of the program location counter is estab-
lished according to the use of either the NAM or ORG pseudo
operation at the start of the program. The NAM operation
causes the program location counter to be set to zero for a
relocatable program; the ORG operation specifies the absolute
starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable pro-
gram may specify that certain operations or data areas be
allocated to the base page. If so, a separate counter, called
the base page location counter, is used in assigning these
locations.

Assembiler 1-3

1.5 ASSEMBLY OPTIONS

Parameters specified with the first statement, the control
statement, define the output to be produced by the Assembler:t

Absolute — The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity; external symbols,
common storage references, and entry points are not
permitted.

Relocatable — The program may be located anywhere in
memory. All operands which refer to memory locations
are adjusted as the program is loaded. Operands, other
than those referring to the first 64 locations, must be re-
locatable expressions. Subprograms may contain external
symbols and entry points, and may refer to common
storage.

Binary output — An absolute or relocatable program is
to be punched on paper tape.

List output — A program listing is produced either during
pass two or pass three.

Table print — List the symbol table at the end of the first
pass.

Selective assembly - Sections of the program may be
included or excluded at assembly time depending on the
option used.

t See Chapter 5 for complete details.

14 Assembler

INSTRUCTION FORMAT 2

A source language statement consists of a label, an operation
code, an operand, and comments. The label is used when needed
as a reference by other statements. The operation code may
be a mnemonic machine operation or an assembly directing
pseudo code. An operand may be an expression consisting of
an alphanumeric symbol, a number, a special character, or
any of these combined by arithmetic operations. (For the
Extended Assembler, an operand may also be a literal.)
Indicators may be appended to the operand to specify certain
functions such as indirect addressing. The comments portion
of the statement is optional.

2.1 STATEMENT CHARACTERISTICS
The fields of the source statement appear in the following

order:
Label
Opcode
Operand
Comments
Field Delimiters

One or more spaces separate the fields of a statement. An
end-of-statement mark terminates the entire statement. On
paper tape this mark is a return, , and line feed, @ .1
A single space following the end-of-statement mark from the
previous source statement is the null field indicator of the
label field.

Character Set

The characters that may appear in a statement are as follows:

A through Z
0 through 9
(period)

* (asterisk)

T A circled symbol (e.g.,)represents an ASCI code or
Teleprinter key.

Assembler 2-1

410 HOAM INGANY A¥ O 1 T
LG N0 NINLT A QYNNI NN

o - o s x s

2wmaovex
Vvway -

omiez

o =100

T T T T T T OO
; ; ; RN EERRAAN ;
, i i : I Bl ,,j
| T EEEEN [T,
: w , W_f " I » h;
T I T T
W ! ; T
| jEaas
1 0 O D WD O B NBERN]
1 n T
| S _H ! |
0 | Ly H
i 1 il
T T T
ST ,
L o RN !
! ,jr T
I : IS Ll
T R E R T e A
REED ,,, , | ,,
| [i il B M. : ; |
N ANNNY I NNN SN AN NN FANE SRS NRARNNRARE
e]

WHOd ONIG0D HITEWISSY QHYXOVA-LLITMIH

wozss

(Actual Size 11 x 13-1/2)

SAMPLE CODING FORM

2-2 Assembler

+ (plus)

- (minus)

, (comma)

= (equals)

() (parentheses)

(space)

Any other ASCH characters may appear in the Remarks field
(See Appendix A).

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres-
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used only
in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used
to establish the format of the output list. Within a field they
may be used freely when following +, -, ,, or (.

Statement Length

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
characters 73 - 80 are not processed by the Assembler.

2.2 LABEL FIELD

The Label field identifies the statement and may be used as a
reference point by other statements in the program.

The field starts in position one of the statement; the first
position following an end-of-statement mark for the preceding
statement. It is terminated by a space. A space in position
one is the null field indicator for the label field; the statement
is unlabeled.

Label Symbol

A label must be symbolic. It may have one to five characters
consisting of A through Z, 0 through 9, and the period. The

Assembler 2-3

first character must be alphabetic or a period. A label of
more than five characters could be entered on the source lan-
guage tape, but the Assembler flags this condition as an error
and truncates the label from the right to five characters.

Examples:
L[D/A [TNl [LIAIBE]L I
.|alcD] VAIL|T[D] |L|ABE[L *
[12[314 VAL IT[0] [LIABE[L]
Al.[1]2]3 VIAILT/D| [LIABIEIL |
T IVALTID[TCABJE[L i
1]./AB , U] [TiULEle[ai] [L|AlBIEIL] | IFITIRS|T! |ICHAIRAICTER
; NUMEIR|I[C]. L] \ RN
AlBlci1[2]3 i TLLEGAL [UABEL] - [TRUN[CIATIEID] [T
ABCl112]. iR f | ,
A|*lBIC TLLEGAL] IUABELL, ©-[|ASITEIRITISIK INOT
; AlLLoWED] [IN] ILABEIL.[T} |
AABICHT No| L ABEL] I-ITHE! (AlSISIEMBIL ER] ATTEMPITS
70| [TIN[TERPIRIEIT, [aBIC| AlS |AIN. [OPERAITIION
ClOD[El. i B
I |
i

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an EXT or COM pseudo
instruction may not also be used as statement labels in the
same subprogram.

Examples:
cloM] 1alcloM (J2lo]1 . BICI([3]0
LB Elou| [1}60 VAILI|o{ [L[ABIE|L
EX(T] X|Lt].[x]Li2
S|T/AR[T] [LiDja] |LiB VAIL[IID| |LIABEIL ¢
N[2]5 VIAILIT]D] ILIAIBIEIL '
X|L[2 TLLEGIAL] LIABEL] |-} JUISE'D{ [IN] 'EX[T[.] |
Blc T[LiLElGIAIL] [LIAIBIEIL] I-[JUISIEDD] [T|N[[Clo}M .
N[2[5 TILILE[GIAIL| [LIAIBEL| [-] IPIREVT/OUISILIY
DfFINED. 5 *
l \ : i
e e e L T
T 1 T T T T T | | | i T

T The caret symbol, ., indicates the presence of a space.

2-4 Assembler

Asterisk

An asterisk in position one indicates that the entire statement
is a comment. Positions 2 through 80 are available; however,
positions 1 through 68 only are printed aspart of the assembly
listing on the 2752A Teleprinter. An asterisk within the Label
field is illegal in any position other than one.

2.3 OPCODE FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows the
Label field and is separated from it by at least one space. If
there is no label, the operation code may begin anywhere after
position one. The Opcode field is terminated by a space im-
mediately following an operation code. Operation codes are
organized in the following categories:

Machine operation codes
Memory Reference
Register Reference
Input/Output, Overflow, and Halt
Extended Arithmetic Unit
Pseudo operation codes
Assembler control
Object program linkage
Address and symbol definition
Constant definition
Storage allocation
Arithmetic subroutine calls
Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Chapters 3 and 4.

2.4 OPERAND FIELD

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The field
follows the Opcode field and is separated from it by at least
one space. It is terminated by a space except when the space

follows , + - (or, if there are no comments, by an end-of-
statement mark,

Assembler 2-5

The Operand field may contain an expression consisting of one
of the following:
Single symbolic terin
Single numeric term
Asterisk
Combination of symbolic terms, numeric terms, and the
asterisk joined by the arithmetic operators + and -,

An expression may be followed by a comma and an
indicator.

Programs being assembled by the Extended Assembler
may also contain a literal value in the Operand field.

Symbolic Terms

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

Examples:
[T [TU0AT [A230 VIAILITO] TE[F] [olETFTTNElSl [T3 [111 11
[T1 [apla] JB[-]1 VAILIID| JI|F DEFIMED} SREBRRNEARR NN
[T { {omp] ENTRYY VIAILTOf TTF DIEFFITINEE ENEERNRREN
siTiAl [1agic] |7 | T[TLLEGIAL| loPJERAIND| FITIRSIT, [CHAIRACTER,
LI [T NumERITCl.] [1111] NENARENEY
S|TB A[IBCDlEI;[ILHEGAL oPER/AND| IMORIE THlA‘N%F{I;V[E !
: CHARA[CTERS[. ' | | N
SREE % r*ztfl‘ { T r :H‘_H‘*“ T R

A symbol used in the Operand field must be a symbol that is
defined elsewhere in the program in one of the following ways:
As a label in the Label field of a machine operation

As a label in the Label field of a BSS, ASC, DEC, OCT,
DEF, ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo
operation

As a label in the Label field of an arithmetic subroutine
pseudo operation

2-6 Assembler

The value of a symbol is absolute or relocatable depending on
the assembly option selected by the user. The Assembler as-
signs a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute
form, the values assigned by the assembler remain fixed. If
the program is to be relocated, the actual value of a symbol is
established on loading. A symbol may also be made absolute
through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its associ-
ated value. If preceded by a minus sign, the symbol refers to
the two's complement of its associated value. A single nega-
tive symbolic operand may be used only with the ABS pseudo
operation.

Numeric Terms

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre-
ceded by a minus sign, the two's complement of the binary
equivalent is used. A negative numeric operand may be used
only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric
operand depends on the type of machine or pseudo instruction.
In a relocatable program, the value of a numeric operand may
not exceed 7T7B. Numeric operands are absolute. Their value
is not altered by the assembler or the loader.

Asterisk

An asterisk in the Operand field refers to the value in the
program location counter {or base page location counter) at the
time the source program statement is encountered. The
asterisk is considered a relocatable term in a relocatable
program.

Expression Operators

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and - to form arithmetic address ex-
pressions. The Assembler evaluates an expression and pro-
duces an absolute or relocatable value in the object code.

Assembler 2-7

[T TILIDla] TSIvIMi+le [ATDID] [6] TT]o] TTHIE] [VIALIVEE] [OfFT [SYM[[[TT] 1!
AlD|A[[S[YM-[3 SlUBTRIACT] 3] [FR/OM] [THE! [VIALIVE] [0F] IS[Ym:
T . | | t
T 1 ‘
: il | | |
Jf *+5 app! |5 T% HE f:ONTTENi S| oF [THE [
. PROGIR]aM] [LIO[C/ATITION [CIOUNITIERR.| [1 [T]!
T SEERASNANNBNNND SIENRNEN:
- RN SNRENERRERNAORNAORRNANRRNNE
STl |-AH{CI-[4] [| | |aDD! [-| VALLUE o [al,| [THE' [VIALVE OF] Ic
i AND] iSBTRAICT Ta-I {1 [T (il
| | 1 I RN IRIE BN NRRRNN
| [REEEAER AR RN AN
| [IsiTia] [xTlaj==] [SUBTIRIAC.T| V[ALUIE [oFF[PRIOGRAM| [| | - L
[[[ILjo[clATlToN_ClouNTE[R [FiROM VIALIE! [OF
L LT ieTiA REREERENERNEED ,ﬁﬁ
[l ‘ 1 iin i TAREE
T ut] e
| RN S B R
T { EERRERRRENNNEEE AENEEN
HERRRA | IRRRRERR DR R “le:"*[‘

Evaluation of Expressions

An expression consisting of a single operand has the value of that
operand. An expression consisting of more than one operand is
reduced to a single value. In expressions containing more than one
operator, evaluation of the expression proceeds from left to right.
The algebraic expression A-(B-C+5) must be represented in the
Operand field as A-B+C-5. Parentheses are not permitted in
operand expressions for the grouping of operands.

The range of values that may result from an operand expression
depends on the type of operation. The Assembler evaluates ex-
pressions as follows: T

Pseudo Operations modulo 215-1

Memory Reference modulo 210-1

Input/Output 26 - 1 (maximum value)

1 The evaluation of expressions by the Assembler is compatible
with the addressing capability of the hardware instructions (e.g.,
up to 32K words through Indirect Addressing). The user must
take care not to create addresses which exceed the memory size
of the particular configuration.

2-8 Assembler

Expression Terms

The terms of an expression are the numbers and the symbols
appearing in it. Decimal and octal integers, and symbols de-
fined as being absolute in an EQU pseudo operation are abso-
lute terms. The asterisk and all symbols that are defined in
the program are relocatable or absolute depending on the type
of assembly. Symbols that are defined as external may appear
only as single term expressions.

Within a relocatable program, terms may be program relo-
catable, base page relocatable, or common relocatable. A
symbol that names an area of common storage is a common
relocatable term. A symbol that is allocated to the base page
is a base page relocatable term. A symbol that is defined in
any other statement is a program relocatable term. Within
one expression all relocatable terms must be base page re-
locatable, program relocatable, or common relocatable; the
three types may not be mixed.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program
relocation. An expression is relocatable if its value changes
according to the location into which the program is loaded. In
an absolute program, all expressions are absolute. In a relo-
catable program, an expression may be base page relocatable,
program relocatable, common relocatable, or absolute (if less
than100g) depending on the definition of the terms composing it.

Absolute Expressions

An absolute expression may be any arithmetic combination of
absolute terms. It may also contain relocatable terms alone,
or in combination with absolute terms. If relocatable terms
do appear, there must be an even number of them; they must
be of the same type; and they must be paired by sign (a nega-
tive term for each positive term). The paired terms do not
have to be contiguous in the expression. The pairing of terms
by type cancels the effect of relocation; the value represented
by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multiterm expression may be nega-
tive only for ABS pseudo operations. A single numeric term
also may be negative in an OCT, DEX, or DEC pseudo
instruction. In a relocatable program the value of an
absolute expression must be less than 100g for instruc-
tions that reference memory locations (Memory Refer-
ence, DEF, Arithmetic subroutine calls).

Assembler 2-9

Examples:

If P, and P, are program relocatable terms; By and B, base
page relocatable; C; and C,, common relocatable; and A, an
absolute term; then the following are absolute terms:

A-Cy+C2 A-Py+Py Ci-Co+A
A+A P,-P, B,-B,
*-P, B,-B,-A -C1+Ca+A
By-* -Py+P; -A-P,+P;

The asterisk is base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Expressions

A relocatable expression is one whose value is changed by the
loader. All relocatable expressions must have a positive
value.

A relocatable expression may contain any odd number of relo-
catable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable expression reduces to a single positive relo-
catable term, adjusted by the values represented by the abso-
lute terms and paired relocatable terms associated with it.

Examples:

If Py, P,, and P5 are program relocatable terms; B, B2, and
B3, base page relocatable; Cy, C2 and C3, common relocatable;
and A, an absolute term; then the following are relocatable
terms:

Pi-A Ci-A Bi+A
P1-P2+P3 C1 -C2+C3 C1 +A

*+A *P+Pp *-A

A+By A+C -A-Py+P2+P3
Bi1-Bz+B3-A C1-C2+C3-A A+*

+Py- Py-Po+* -C1+C2+C3

2-10 Assembler

Literals

Actual literal values may be specified as operands in re-
locatable programs tobe assembled by the Extended Assembler.
The Extended Assembler converts the literal to its binary
value, assigns an address to it, and substitutes this address
as the operand. Locations assigned to literals are those
immediately following the last location used by the program.

A literal is specified by using an equal sign and a one-
character identifier defining the type of literal. The actual
literal value is specified immediately following this identifier;
no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767,
including zero.

=F a floating-point number; any fositive or negative
real number in the range 10-38 to 1038, including
ZEero. t

=B an octal integer, one to six digits, bib2bgb4bsbs,
where bi may be 0 or 1, and bg-b7 may be 0 to 7.¥

=A two ASCII characters.f

=L an expression which, when evaluated, will result
in an absolute value. All symbols appearing in the
expression must be previously defined.

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Literals may be specified only in the following memory
reference instructions and pseudo instructions:

ADA ADB AND MPY
LDA LDB XOR DIV

may use =D, =B, =A, =L
CPA CPB IOR

DLD FAD
FMP FSB may use =F
FDvV

+ See CONSTANT DEFINITION, Section 4.4.

Assembler 2-11

Examples:

LDA =D798§ A-Register is loaded with the binary equiv-
alent of 798¢m.

IOR =B777 Inclusive'or''is performed with contents of
A-Register and 7778.

LDA =ANO A-Register is loaded withbinary representa-
tion of ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the
value resulting from the absolute expression.

FMP =F39.75 Contents of A- and B-Registers multiplied
by floating-point constant 39.75.

Indirect Addressing

The HP computers provide an indirect addressing capability
for Memory Reference instructions. The operand portion of
an indirect instruction contains an address of another location
rather than an actual operand. The secondary location may be
the operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location is
encountered that does not contain an indirect address. Indirect
addressing provides a simplified method of address modifi-
cations as well as allowing access to any location in core.

The Assembler allows specification of indirect addressing by
appending a comma and the letter I to any Memory Reference
operand other than one referring to an external symbol. The
actual operand of the instruction maybe given in a DEF pseudo
operation; this pseudo operation may also be used to indicate
further levels of indirect addressing.

Examples:

B L[D/A [SIAML [T EAICH] [TITME[[T[HEE] [1]s[z] |Tis] [EIXIE[CIUITIED],
AlC AIDA| {SlAM]s]I THE! [E[FIFIE/CITILVIE] [olP[EIR{AINID] [OIF] [AiB] [AIN
AD 1is[z] [SlaM Alc] [C{H]AINGE] [AlCIC|OIR[D[TINIGIL]Y ‘

2-12 Assembler

A relocatable assembly language program, however, may be
designed without concern for the pages in which it will be
stored; indirect addressing is not required in the source lan-
guage. When the program is being loaded, the loader provides
indirect addressing whenever it detects an operand which does
not fall in the current page or the base page. The loader sub-
stitutes a reference to the base page and then stores an indirect
address in this referenced location. References to the same
operand from other pages will be linked through the same loca-
tion in the base page.

Base Page Addressing

The computer provides a capability which allows the Memory
Reference instructions to address either the current page or
thebasepage. The Assembleror the loader adjusts all instruc-
tions inwhich the operands refer to the base page; specific nota-
tion defining an operand asa base page reference is not required
in the source program.

Clear Flag Indicator

The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or
after the particular test is performed. In source language,
this function is selected by appending a2 comma and a letter C
to the Operand field.

Examples:
s[tic| [To[7[,[c CILIE/AIR] [FILIAG] [T]o[7] [ATFITIER] [CONITIRIO[LI T [|
BIT[T| |I]s| ISE|T
olTlel [Tol5],[c clLEWAR] [FlLialg] Tiols| [AFFITIER] MOV
| 1 ul 117 H% I

2.5 COMMENTS FIELD

The Comments field allows the user to transcribe notes on the
program that will be listed with source language coding on the
output produced by the Assembler. The field follows the
Operand field and is separated from it by at least one space.
The end-of-statement mark, @, or the 80th character
in the entire statement terminates the field. If the listing is to
be produced on the 2752A Teleprinter, the total statement
length, excluding the end-of-statement mark, should not ex-

Assembler 2-13

ceed 52 characters, the width of the source language portion
of the listing., Statements consisting solely of comments may
contain up to 68 characters including the asterisk in the first
position. On the list output, Statements consisting entirely
of comments begin in position 5 rather than 21 as with other
source statements.

If there is no operand present, the Comments field should be
omitted in the NAM and END pseudo operations and in the input/
output statements, SOC, SOS, and HLT instruction. If a com-
ment isused, the Assembler attempts to interpret itas an operand.

2-14 Assembler

MACHINE INSTRUCTIONS 3

The HP Assembler language machine instruction codes take the
form of three-letter mnemonics. Each source statement cor-
responds to a machine operation in the object program pro-
duced by the Assembler.

Notation used in representing source language instruction is
as follows:

label Optional statement label

m Memory location -- an expression

I Indirect addressing indicator

sc Select code -- an expression

C Clear interrupt flag indicator

comments Optional ecomments

[1] Brackets defining a field or portion of a
field that is optional
Brackets indicating that one of the set

{ } may be selected.

lit literal

3.1 MEMORY REFERENCE

Memory Reference instructions perform arithmetic, logical
and jump operations on the contents of the locations in core
and the registers. An instruction may directly address the
2048 words of the current and base pages. If required, in-
direct addressing may be utilized to refer to all 32, 768 words
of memory. Expressions in the operand field are evaluated
modulo 2%,

K the program is to be assembled in relocatable form, the
operand field may contain relocatable expressions or absolute
expressions which are less than 100g in value. If the program
is to be absolute, the operands may be any expressions con-
sistent with the location of the program. Literals may not be
used in an absolute program. Absolute programs must be
complete entities; they may not refer to external subroutines
or common storage.

Assembler 3-1

Jump and Increment-Skip

Jump and Increment-Skip instructions may alter the normal
sequence of program execution.

1 —] I\
label | JMP | m [,1] | comments
Jump to m. Jump indirect inhibits interrupt until the transfer

of control is complete.

4] 4

label | JSB | m[,I] | comments

Jump to subroutine. The address for label+l is placed into
the location represented by m and control transfers to m+l.
On completion of the subroutine, control may be returned to
the normal sequence by performing a JMP m, 1.

label | 182 | m[,I] | comments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is by-
passed.

Add, Load, and Store

Add, Load, and Store instructions transmit and alter the con-
tents of memory and of the A- and B-Registers. A literal,
indicated by ‘‘lit’”’, may be either =D, =B, =A, or =I type.

l comments

label | ADA | {m[,1]
lit
Add the contents of m to A.

L l 1
label | ADB | {m[,I)] | comments
lit
Add the contents of m to B.

label | LDA | m[,I]p comments
1lit
Load A from m.

label | LDB | {m [,1]& | comments
1it
Load B from m.

3-2 Assembhler

! | 1
label | STA | m[,I] | comments

Store contents of A in m.

} il]

label] STB] m [, I] | comments

Store contents of B in m.

In each instruction, the contents of the sending location is un-
changed after execution.

Logical Operations

The Logical instructions allow bit manipulation and the com-
parison of two computer words.

label l AND I m [,I] l comments

lit
The logical product of the contents of m and the contents of A
are placed in A.

1 1 Il

label | XOR | {I‘lt[’l] I comments
i

The modulo-two sum (exclusive "or") of the bits in m and the
bits in A is placed in A.

1 Il Il

label | IOR | 3{g1t[,1]§l comments
1

The logical sum (inclusive "or") of the bits in m and the bits
in A is placed in A.

label | CPA | fm [,1]| | comments
lit
Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

! l]
label | CPB | {m [,1]] | comments

lit
Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

Assembler 3-3

3.2 REGISTER REFERENCE

The Register Reference instructions include a Shift-Rotate
group, an Alter-Skip group, and NOP (no-operation). With
the exception of NOP, they have the capability of causing
several actions to take place during one memory cycle. Mul-
tiple operations within a statement are separated by a comma.

Shift-Rotate Group

This group contains 19 basic instructions that can be combined
to produce more than 500 different single cycle operations.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign;sign unaltered.

BRS Shift B right one bit, extend sign;sign unaltered.

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA _Skip next instruction if least significant bit in A
is zero

SLB $kip next instruction if least significant bit in B
is zero

3-4 Assembler

These instructions may be combined as follows:

[(aLs] [(ALS)]
ARS ARS
RAL RAL
label $ ALI“‘IR‘> [[CLE] [,sLA] ,ﬁﬁt comments
ALF ALF
ERA ERA
| (ELA | | L ([ELA) |
[(BLs Y] [(BLS)]
BRS BRS
RBL RBL
label §E§> [,cLE] [,SLB] ’ﬂgsz comments
BLF BLF
ERB ERB
_ELB) | | ELBJ]

CLE, SLA, or SLB appearing alone or in any valid combination
with each other are assumed to be a Shift-Rotate machine
instruction.

The Shift-Rotate instructions must be given in the order
gshown. At least one and up to four are included in one state-
ment. Instructions referring to the A-register may not be

combined in the same statement with those referring to the
B-register.

No-Operation Instruction

When a no-operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A

full memory cycle is used in executing a no-operation instruc-
tion.

— L i
label T NOP Tcomments

A subroutine to be entered by a JSB instruction should have a

Assembler 3-5

NOP as the first statement. The return address can be stored
in the location occupied by the NOP during execution of the
program. A NOP statement causes the Assembler to generate
a word of zeros.

Alter-Skip Group

The Alter-Skip group contains 19 basic instructions that can
be combined to produce more than 700 different single cycle
operations.

CLA Clear the A-Register

CLB Clear the B-Register

CMA Complement the A-Register

CMB Complement the B-Register

ccA Clear, then complement the A-Register (set to
ones)

CCB Clear, then complement the B-Register (set to
ones)

CLE Clear the E-Register

CME Complement the E-Register

CCE Clear, then complement the E-Register

SEZ Skip next instruction if E is zero

SSA Skip if sign of A is positive (0).

SSB Skip if sign of B is positive (0).

INA Increment A by one.

INB Increment B by one.

SZA Skip if contents of A equals zero

SZB Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero

SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If

no skip instructions precede in the statement,
skip the next instruction.

3-6 Assembler

These instructions may be combined as follows:

CLA [reLE
label chi [,SEZ | {cm:ﬂ [,SSA] [,SLA] [,INA] [,SZA] [,RSS| [comments
cea)l |lccE

CCE

cLs)] [(crE
1abel {CMB} [,SEZ) ,{CME}] [,88B] [,SLB] [,INB] [,SZB] [,RSS] |comments
L | L

The Alter-Skip instructions must be given in the order shown.
At least one and up to eight are included in one statement. In-
structions referring to the A-register may not be combined in
the same statement with those referring to the B-register.
When two or more skip functions are combined in a single
operation, a skip occurs if any one of the conditions exists.
If a word with RSS also includes both SSA and SLA (or SSB and
SLB) a skip occurs only when sign and least significant bit are
both set (1).

3.3 INPUT/OUTPUT, OVERFLOW, AND HALT

The input/output instructions allow the user to transfer data
to and from an external device via a buffer, to enable or dis-
able external interrupt, or to check the status of I/O devices
and operations. A subset of these instructions permits check-
ing for an arithmetic overflow condition.

Input/Output instructions require the designation of a select
code, sc, which indicates one of 64 input/output channels or
functions. Each channel consists of a connect/disconnect con-
trol bit, a flag bit, and a buffer of up to 16 bits. The setting
of the control bit indicates that a device associated with the
channel is operable. The flag bit is set automatically when
transmission between the device and the buffer is completed.
Instructions are also available to test or clear the flag bit for
the particular channel. If the interrupt system is enabled,
setting of the flag causes program interrupt to occur; control
transfers to the interrupt location related to the channel.

Assembler 3-7

Expressions used to represent select codes (channel numbers)
must have a value of less than 26, The value specifies the de-
vice or operation referenced. Instructions which transfer data
between the A or B register and a buffer, access the Switch
register when sc = 1. The character C appended to such an
instruction clears the overflow bit after the transfer from the
Switch register is complete.

input/Output

Prior to any input/output data transmission, the control bit is
set. The instruction which enables the device may also trans-
fer data between the device and the buffer.

labeﬁ STC I sc[,C]Al comments

Set 1/0 control bit for channel specified by sc. STC transfers
or enables transfer of an element of data from an input device
to the buifer or to an output device from the buffer. The exact
function of the STC depends on the device; for the 2752A Tele-
printer, an STC enables transfer of a series of bits. If sc =1,
this statement is treated as NOP. The C option clears the flag
bit for the channel.

1 L !
label rCLC ’ sc[,C] rcomments

Clear 1/0 control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc =0,
control bits for all channels are cleared to zero; all devices
are disconnected. If sc =1, this statement is treated as NOP.

Il 5

label] LIA] sc [,C] Tcomments

Load into A the contents of the 1/O buffer indicated by sc.

label ‘rLIB —IL sc [,C] lTcomments

Load into B the contents of the I/0 buffer indicated by sc.

1 i |
label | MIA | sc[,C] | comments

Merge (inclusive “or") the contents of the 1/O buffer indicated
by sc into A.

3-8 Assembler

labelTMIB [sc f,C] | comments

Merge (inclusive "or') the contents of the 1/0 buffer indicated
by sc into B.

label ‘ OTA T sc [,C] | comments
Output the contents of A to the 1/0 buffer indicated by sc.

label ‘ OTB T sc[,C] ‘ comments

Output the contents of B to the 1/0 buffer indicated by sc.

label T STF i sc T comments

Sets the flag bit of the channel indicated by sc. If sc = 0, STF
enables the interrupt system. A sc code of 1 causes the over-
flow bit to be set.

A

label i CLFT sC comments

Clear the flag bit to zero for the channel indicated by sc. If
sc = 0, CLF disables the interrupt system. If sc =1, the
overflow bit is cleared to zero.

1

label | SFC | sc [comments

Skip the next instruction if the flag bit for channel sc is clear,
If sc = 1, the overflow bit is tested.

} 1

label | SFS | sc [comments

Skip the next instruction if the flag bit for channel sc is set.
If sc = 1, the overflow is tested.

Overflow

In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

Assembler 3-9

label erLO Tcomments

Clear the overflow bit.

;

label l STO l comments

Set overflow bit.

4

label .TSOC | [C] | comments

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

{ I L

label | SOS | [C] | comments

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is pzarformed.

The C option is identified by the sequence 'space C space' follow-
ing either 'SOC'or 'SOS'. Anythingelse istreatedas a comment.

label | HLT |{[5 [,C])l| comments

c
Halt the computer. The machine instruction word is displayed
in the T-Register. If the C option is used, the flag bit associ-
ated with channel sc is cleared.

If neither the select code nor the C option is used, the com-
ments portion must be omitted.

3-10 Assembler

3.4 EXTENDED ARITHMETIC INSTRUCTIONS

Ten instructions are used with the extended arithmetic version of the
Assembler or Extended Assembler to increase the computer’s overall
efficiency. They provide for integer multiply and divide and for loading
and storing double-length words to and from the accumulators.

i } [l

label] MPY l ;m[,l]‘] comments

lit

The MPY instruction multiplies the contents of the A-Register
by the contents of m. The product is stored in registers B
and A. B contains the sign of the product and the 15 most
significant bits; A contains the least significant bits.

1 i

label l DIV ’ 3m[,l]2 comments
lit

The DIV instruction divides the contents of registers B and A
by the contents of m. The quotient is stored in A and the
remainder in B. Initially B contains the sign and the 15 most
significant bits of the dividend; A contains the least significant
bits.

] —1 {

label l DLD \ m(,I]i I comments
lit

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

+

label DST ‘ m[, 1]] comments

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word
for the instruction code and one for the operand.

Assembler 3-11

The above four instructions are available without the extended arithmetic
instructions as software subroutines.t However, by using the extended
arithmetic group, they require less core storage and can be executed in
less time.

The following shift-rotate instructions provide the capability to shift or
rotate the B- and A-Registers n number of bit positions, where
1 <n<16

4 1 I

label ASR (n l comments

The ASR instruction arithmetically shifts the B~ and A-
Registers right n bits. The sign bit (bit 15 of B) is extended.

I

' i
label I ASL I n l comments

The ASL instruction arithmetically shifts the B~ and A-
Register left n bits. Zeroes are placed in the least significant
bits. The sign bit (bit 15 of B) is unaltered. The overflow bit
is set if bit 14 differs from bit 15 before each shift, otherwise,
exit with Overflow bit cleared.

4 i 1
label ‘ RRR] n comments

The RRR instruction rotates the B- and A-Registers right n
bits,

| Fl

label | RRL | n T comments

The RRL instruction rotates the B- and A-Registers left n
bits.

4 { i
label LSR n] comments

The LSR instruction logically shifts the B- and A-Registers
right n bits. Zeroces are placed in the most significant bits.

1 ! 4

label LSL n comments

The LSL instruction logically shifts the B- and A-Registers
left n bits. Place zeroes into the least significant bits,

1 See ARITHMETIC SUBROUTINE CALLS, Section 4.7.

3-12 Assembler

3.5 FLOATING - POINT INSTRUCTIONS

Floating-pointinstructions provide a means of performing calcu-
lations on floating-point values. Computers with the hardware
floating-point option should use assemblers and libraries with
floating-point capabilities. The floating-point assembler gener-
ates calls to the appropriate hardware function instead of the
library subroutines. Ifthe computer does not have the hardware
floating-point option, then non-floating-point assemblers and
libraries should be used.
FAD m [L,] comments
|

FADperformsanadditionbetween a floating-point number stored
in the A- and B-Registers and a floating-point number stored in

memory locations m and m + 1. The result is returned in the
A- and B-Registers.

FSB m (1 ,l] comments

lit

The FSB instruction subtracts a floating-point value in memory
locations m and m + 1 from a floating-point value in the A- and
B-Registers. Theresult is returned in the A- and B-Registers.

FMP { m [1,]} comments
lit
The FMP instruction multiplies a floating-point value in memory

locations m and m + 1 with a floating-point value in the A- and
B-Registers. Theresult is returned in the A- and B-Registers.

FDV ml(l,] comments
|

The FDV instruction divides the floating-point value in memory
locations m and m + 1 into the value stored in the A- and B~
Registers. The result is returned in the A- and B-Registers.

Assembler 3-13

FIX comments

The FIX instruction converts a floating-point number contained
in the A-and B-Registers to a fixed point number. The result is
returned in the A-Register. The contents of the B-Register are
meaningless.

FLT comments
The FLT instruction converts a fixed-point value contained in the

A -Register to a floating-point value. The result is returned in
the A- and B-Registers.

3-14 Assembler

PSEUDO INSTRUCTIONS 4

The pseudo instructions control the Assembler, establish pro-
gram relocatablility, and define program linkage as well as
specify variocus types of constants, blocks of memory, and
labels used in the program. With the Extended Assembler,
pseudo instructions also control listing output.

4.1 ASSEMBLER CONTROL

The Assembler control pseudoinstructions establishand alter
the contents of the base page and program location counters,
and terminate assembly processing. Labels may be used but
they are ignored by the Assembler. NAM records produced
by the Assemblers are accepted by the DOS, DOS-M and BCS
Loaders.

+.

—}
{name] l comments

e

NAM defines the name of arelocatable program. A relocatable
program must begin with a NAM statement.} A relocat-
able program is assembled assuming a starting location of
zero (i.e., zero relative). The name may be a symbol of one
to five alphanumeric characters the first of which must be
alphabetic or a period. The program name is printed on the
list output, The name is optional andif omitted, the comments
must be omitted also.

iORG | m] comments

The ORG statement defines the origin of an absolute program,
or the origin of subsequent sections of absolute or relocatable
programs.

An absolute program must begin with an ORG statement. ¥
The operand m, must be a decimal or octal integer specifying
the initial setting of the program location counter.

tThe Control Statement, the HED instruction, and comments
may appear prior to the NAM or ORG statements. If the
Control Statement (ASMB,...) does not appear on tape pre-
ceding the program it must be entered from the Teleprinter.

Assembler 4-1

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code. For
absolute programs the Operand field, m, may be any expres-
sion. For relocatable programs, m, must be a program
relocatable expression; it may not be base page or common
relocatable or absolute. An expression is evaluated modulo
2% Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

4

(LORR l comments

ORR resets the program location counter to the value existing
when an ORG or ORB instruction wis encountered.

=
p-d
bl
le
m
[=]
n
[N
3E4

il
Ll
=3
w
2
i Land)

ME! OfF| [PROGIR|AM . l

T

T
—_

G
ARRFATGReTRRaae
] "“%*‘LT T

AERRNDRRREN

T
FNRELANRERARNRY

S

RENEREN ANNN RSN AN
SISUME, PILC] ‘ATUFlIRIST[3l00:4 || (| |,
1o, FIRST+2280. [||| |

I

S| 42280 nE

F| FlIRST+2/2800 |

R§T+ﬁ29*2%% |
|

(]

o

e
i el

1=
-+

1

D N N A e O A

E'SET] PL | ST+2280. || !
Tl ﬁ
RN E B

i I
T C T T T T
T T
T R S S S SN

More than one ORG or ORB statement may occur before an
ORR is used. I so, when the ORR is encountered, the pro-
gram location counter is reset to the value it contained when
the first ORG or ORB of the string occurred.

4-2 Assembler

Example:

Labat Cparation Oprrand

[T INAM, TRSEFL [| SEF PILe Triol 1zl (17 [T[T T/ T 1]
COA A a AR AR RANR ARG ARANRRRAN HRRRRRRRRN DARRARE
. i T ERAEEEARNRINERANEEE
§EN REENER SRR ARARANE
| I | EERANEARAAN 0
LDAl [wy;z[[| [] | [AIS/SluME PLIc] ‘AT FIRPT+2\25'0' RNERREE
L | lojRl6] [FITjR|s[T]+/2Is/0j0] SIET |PILIc Tiol FITR|SIT+25l0l0] | [[1 1]
s INSENEERE RS e
N - R i SR -
; L L L L1y ;
: H NEERE L 1 RERAEN ‘
3 Lipjs| [ERA || |ASSUME, PL'C| AT, FITRST+27550, | | | B
O[R'G| IFITIR|ST|+2[900] [SET| [PLIC] Tjo FIRST+29j00 [|
I N I i S N
| l IERERY i 1L
* ; | | L L
ClLE [A/S|SUME] [PLC| AT FTRSTH2920 [| |
ORR RE[SEET] [PILIC [T FII[RST+2[250 [
1 *y"— T —tr
3 t T B
!] T ; =1 1
RN ARRAN RSN FAREN NSNS B NN U

If a second ORR appears before an intervening ORG or ORB,
the second ORR is ignored.

ORR cannot be used to reset the location counter for locations
in the base page that are governed by the ORB statement.

1

|ORB | comments

ORB defines the portion of a relocatable program that must be
assigned to the base page by the Assembler. The Label field
(if given) isignored, and the statement requires no operand. All
statements that follow the ORB statement are assigned con-
tiguous locations in the base page. Assignment to the base
page terminates when the Assembler detects an ORG, ORR, or
END statement.

When more than one ORB is used in a program, each ORB
causes the Assembler to resume assigning base page locations
at the address following the last assigned base page location.

An ORB statement in an absolute program has no significance
and is flagged as an error.

Assembler 4-3

Example:

; [U NIA P‘ROIG‘ [| [[AISISIT[GIN [Z[ER[O} fA[s; RE%LA&[I!L E ST[ARTT%I NG
. L LolciaTioN IFloR] PRoje PRIOGI. [[][]
AT e s et
T O e T T
11]oRB] LTI [alsisitoiN [AlLL] [FlOlLiL[oWIING| 'S[TIATIEMENTIS, |
T LTI TTiol BAISE PAlGEL| 1 [T | il E
H T T i T '
lA‘R\‘EAJBSS 1o\oﬂ -] ﬂ[LLF— | B Ll - L ‘ |
| i 1 L [L |)
Bl T ;Jw%j;iﬁuw« !
% ORR T | ! H c NT;iI N\.quEi MATIN: ‘PRTOG‘RAMNTL RN
N : Lt ! EEENREEDNRRARAREREE ‘
O A T A T e e T T
[T OBt 11 [T T [REISUME AS}SI!GJNWIENT}T AT NEXT] 1.
RERCENE A DICIA IN 'PlAG|E.
| L _HL\LAILABLQ:_LO‘CATION‘ {IN} ‘ ‘ASE‘I }PA’G ’
i - ! SERSEESNREEN RS RRARRRR Y
BN . 4—% | | 1] it L—‘»—rj IR o | . |
LT] JolRiR| | L L[[[CONTT|NUE[MATN] [PIROGRAM. | | ["] T[T

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an‘‘N’’ or ‘“Z”’,
respectively, is specified as a parameter for the ASMB control
statement.¥ The IFN or IFZ instruction precedes the set of
statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a
terminator to both the set of statements and the assembly. IFN
and IFZ may be used only when the source program is trans-
lated by the Extended Assembler which is provided for 8K or

larger machines.
1 3

IFN comments
XIF
All source language statements appearing between the IFN and

the XIF pseudo instructions are included in the program if the
character ‘N’ is specified on the ASMB control statement.

All source language statements appearing between the IFZ and

the XIF pseudo instructions are included in the program if the

character ‘‘Z’’ is specified on the ASMB control statement.
! 1

IFZ comments

XIF

t See CONTROL STATEMENT, Section 5.1.
4.4 Assembler

When the particular letter is not included on the control state-
ment, the related set of statements appears on the Assembler
output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may beused in
the program; however, only one type will be selected in a single
assembly. Therefore, if both characters ‘“N’’ and‘‘Z’’ appear
in the control statement, the character which islisted last will
determine the set of coding that is tobe included in the program.

Example:
[NAM TTR[av]
1Flz
Liojal [JAR]
cIMal,isiz[A ! o
JMP| |No[.[c/o]
Loja] MI[UESS NINER
ojTv| [s|PlE[ElD] B i
S[Tial [Gals ' B B
X[I[F !
- 1
TFIN i ;
LAl P[LJANE | ! BN
T S
cmal, |s|zla RN
JMPl INO[.[Glo! 1
LIDiA] [T{TIME R
clplal {cofs[t J
XIJF 1 SENEEE =
Glo] JRILT] [7]7 ! (:
L | e
‘ | L
|
; ! i
EINID ! B
T t —

Program TRAVL will perform computations involving either
or neither CAR or PLANE considerations depending on the pres-
enceorabsenceof Z or N parameters in the Control Statement.

Assembler 4-5

Example:

Lobal Opeconion Opmrons
' 5 10 ¥ x 2 £ » “« s ©

NIAM] WAIGIE

L

o
[=]
[=]
0

<N <]
i)

<

=

L)

=

r

FAECIEHES
O Ee1 (7] B 1 A KN

_4
=

=]
m
o=
@
%)
[
=~

BT
|

T T T

T EEEREERN

Program WAGES computes a weekly wage value. Overtime
consideration will be includedinthe programif‘‘Z’’ is included
in the parameters of the Control Statement.

The REP pseudo instruction, available in the Extended Assem-
bler only, causes the repetition of the statement immediately
following it a specified number of times.

i | }

label REP n comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asterisk in character position 1)
are not repeated by REP. If a comment follows aREP instruc-
tion, the comment is ignored and the instruction {ollowing the
comment is repeated.

A label specified in the REP pseudo instruction is assigned to
the first repetition of the statement. A label cannot be part of
the instructiontobe repeated; it would result in a doubly defined
symbol error.

4-6 Assembler

Example:

CLA
TRIPL REP 3
ADA DATA

The above source code would generate the following:

Clear the A-Register;

CLA the contents of DATA
TRIPL ADA DATA is tripled and stored in
ADA DATA the A-Register.
ADA DATA
Example:
FILL REP 100B
NOP

The example above loads 100, memory locations with the NOP
instruction. The first location is labeled FILL.

Example:
REP 2

MPY DATA

The above source code would generate the following:

MPY DATA
MPY DATA

|END i [m] T comments

This statement terminates the program; it marks the physical
end of the source language statements. The Operand field, m,
may contain a name appearing as a statement label in the cur-
rent program or it may be blank. If a name is entered, it
identifies the location towhich the loader transfers control after
a relocatable program is loaded. A NOP should be stored at
that location; the loader transfers control via a JSB.

Assembler 4-7

If the Operand field is blank, the Comments field must be blank
also, otherwise, the Assembler attempts to interpret the first
five characters of the comments as the transfer address
symbol.

The Label field of the END statement is ignored.

4.2 OBJECT PROGRAM LINKAGE

Linking pseudo instructions provide a means for communica-
tion between a main program and its subroutines or among
several subprograms that are to be run as a single program.
These instructions maybe used only in a relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, separated
by commas. The first space not preceded by a comma or a
left parenthesis terminates the entire field.

[coM | name, [(size)] [, name, [(size,)], ..., name,[(size,)]] [comments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allotted
to the related segments. The size is specified as an octal or
decimal integer. If the size is omitted, it is assumed to be
one.

Any number of COM statements may appear in a subprogram.
Storage locations are assigned contiguously; the length of the
block is equal to the sum of the lengths of all segments named
in all COM statements in the subprogram,

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes may
be the same or they may differ. Regardless of the names and
sizes specified in the separate subprograms, there is only one
common block for the combined set. It has the same relative
origin; the content of the nt" word of common storage is the
same for all subprograms.

4.8 Assembler

PRIBIGA] TCIoM JAIDIBIRT [(5T3 - JADIDRTZt [0 [AIDBREN ol | [T T T 1T TTT 1T
il | ! REREEEN
1 [] IIRNREAE! !
LDla] [AlDpiRl2[+] | [TPITicIK] [ulp] ISIE[C/OiND] (WO[RID! [OF SEGIBQHL
o : [1 | JaDIojRi2 [+t % H B | L
. 1 | Pidd ||
[T]END [EENERSEEENEA SRRRANEE
ARNRENRERND | ANNENNARERRANI
\ | | l |] T
P|Rl0lG[2] {CloM AAA(Z),AAB(‘Z)»’AA‘@:A’AD(ZO\) | ‘_4 L
: ARARARNBRERRARARA NARR NAARRNE RS
LD(A] {1 [T [1 IPITICIK| {UiP[[SEICONID WO[RID] [0/F| [SEIGMENT
L L g LT
Organization of common block:
PROG1 PROG2 Common
name name Block
ADDRI1 AAA (location 1)
(location 2)
AAB (location 3)
(location 4)
AAC (location 5)
ADDR2 AAD (location 6)

(location T)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
ADDR3 (location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

Assembler 4-9

The LDA instructions in the two subprograms each refer to
the same location in common storage, location 7.

The segment names that appear in the COM statements can be
used in the Operand fields of DEF, ABS, EQU, or any Memory
Reference statement; they maynot be used as labels elsewhere
in the program.

The loader establishes the origin of the common block; the
origin cannot be set by the ORG or ORB pseudo instruction.
All references to the common area are relocatable.

Two or more subprograms may declare common blocks which
differ in size., The subprogram that defines the largest block
must be the first submitted for loading.

_n — +

] ENT I name, [, namey, ..., name,] , comments

ENT defines entry points to the program or subprogram. Each
name is a symbol that is assigned as a label for some machine
operation in the program. Entry points allow another sub-
program to refer to this subprogram. All entry points must be
defined in the program.

Symbols appearing in an ENT statement may not also appear
in EXT or COM statements in the same subprogram.

- L

4
! EXT l namej [, name, ..., name,) l comments

This instruction designates labels in other subprograms which
are referenced in this subprogram. The symbols must be de-
fined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in Mem-
ory Reference statements, the EQU or DEF pseudo instructions.
An external symbol must appear alone;it may not be in a mul-
tiple term expression or be specified as indirect. References
to external locations are processed by the BCS loader as indirect
addresses linked through the base page.

4-10 Assembler

Symbols appearing in EXT statements may not also appear ir
ENT or COM statements in the same subprogram. The label
field is ignored.

Example:

RE R

EIEI
b=

[l 102
[=1E:]F-2

4.3 ADDRESS AND SYMBOL DEFINITION
The pseudo operations in this group assign a value or a word

location to a symbol which is used as an operand elsewhere in
the program.

Assembler 4-11

label | DEF | m[,1] | comments

The address definition statement generates one word of mem-
ory as a 15-bit address which may be used as the object of an
indirect address found elsewhere in the source program. The
symbol appearing in the label is that which is referenced; it
appears in the Operand field of a Memory Reference instruc-
tion.

The operand field of the DEF statement may be any positive ex-
pression in an absolute program; in a relocatable program it
may be a relocatable expression or an absolute expression with
a value of less than 100g. Symbols that do appear in the Oper-
and field, may appear as operands of EXT or COM statements,
in the same subprogram and as entry points in other sub-
programs.

The expression in the Operand field may itself be indirectand
make reference to another DEF statement elsewhere in the
source program.

Example:

NAM]_ [PRIO[GIN] | [1 | ZIEIRIO-IRE[LIA[TITIVIE] [SITIARR[T] JOFF] [PIRICIGIR/AM

EXT| {SIT|NIEL,|SIQRT

iclom] [sicmial(]2[oN] [SlcMiB]([S[o)

Jis|8l [SIZTNE EXEICIUITIE| ISITINE| RIONTITINE

L|DiA| [xicMal L PlI[cK uip] [ClolMmoln] WoRIp! [1|NDTRIEICITLL]Y
x|ciMa] | [DIEIF] [S[Cimia! SiC I/S| A [15/-BT|T| ADDIRES]S

JiSiB] [Xslal: |1 GET] S|OUARE| R[0T [USITING, TWO[-ILEIVE|L
X[Sia{ T | [DIEF[XSRIR,, [T TINDIRIEICT] AIDDRRIEISISTINIG

|

XiS|QR| [[DIEIF] [SQR[T SIQIRITL (TS| |Al [1]5[-[BT[T] |AIDIDIREIS[S

£ IND| IPIRIOIGN ;

T T } % T

4-12 Assembier

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs should
not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different
pages, the BCS Loader processes TBL as an indirect address

linked through the base page. The ISZ
the loader provided reference to the b
value of TBL.

erroneously increments
ase page rather than the

Example:
oL oAl FBL T TTTTT [T TT - T : .
dENEED T INENEAE
ZNNAN T REAREE
AAAN T | 5 1
L] tisz] Lol | 1] [!
IL : | EEEEERE L] ‘ T
1 . BRENN ‘LJL 11 *}ﬁ_%
TiBIL [(B[S [0 | | |1 1 T , %
- i e
T | [i i L
A A T A T o e e

Assuming the loader might assign abso
ble to the following octal values:

Page Loc Opcode
(0) (700) DEF
(1) (200) LI;A
(1) (300) IS.Z
(2) (0)

lute locations compara-

Reference

4000

(0) 700(1)

(1) 200

(TBL)

Assembler 4-13

It can be seen that the ISZ instruction would increment the

quantity 700 rather than the address of the table (4000,).

The following assures correct address modification during

program execution.

Example:
VBl [TOEF] e |) OO
LIDITIBIL[|LIDIA{ (IITIBIL{{I
11SZ| [[TB|L
I1F
TiBlL. B/SIs| 1100} | :
RN
L 1 B I
L RN N L
This sequence might be stored by the loader as:
Page Loc Opcode Reference
(1) (200) DEF 4000
(1) (201) LDA 200(I)
(1) (300) 182 (1) (200)
(2) (0) (TBL)

4-14 Assembler

The value of 4000 is incremented; each execution of LDA will
access successive locations in the table.

label | ABS | m | comments

ABSdefines a 16-bit absolute value to be stored at the location
represented by the label. The Operand field, m, may be any
absolute expression; a single symbol must be defined as abso-
lute elsewhere in the program.

Example:

Labat Operotion [E—
s 10 ' » 2 E 3 «© « 50

[TIE/QU] T315] [T [AIS[STT[GIN'S] TTIH[E] [VIALIVE] o] 135 T
7ol [THE] [5YMBolL, AB ||]| BB
I LI ! %w
35/ | | [ABs] |-/AlB M3}/ [CloNITIAITIN'S] |-35 1
REE AlBls| JAB Pi3j5| [CloNTIAlTIN'S| [3)5].] | 1 | !
P|7l0 ABls| [AB[+/AlB P[7jo] [ClONTIA[IN)S| (7l0[.| | | ']
Pislol | | laBis| aBl-s [| || [Pi3lo] (ClONTAIINS] 30 il i
il AN ; 1 l BEN | INER
m H A e ;rLFH‘L Y_FTL”‘

Y

label r EQU T m I comments

The EQU pseudo operation assigns to a symbol a value other
than the one normally assigned by the program location coun-
ter. The symbol in the Label field is assigned the value
represented by the Operand field. The Operand field may
contain any expression. The value of the operand may be
common, base page or program relocatable as well as abso-
lute, but it may not be negative. Symbols appearing in the
operand must be previously defined in the source program.

The EQU instruction may be used to symbolically equate two
locations in memory; or it may be used to give a value to a
symbol., The EQU statement does not result in a machine
instruction.

Assembler 4-15

Examples:

Commmnty

111

[93+1] BOTH

IE[D] JON
Al

|

-

1
N
HNENEE

SIYMBOLIS, [JF OUR. AN

|
i

T
I
-

E

IIDENTIIFIY] ITHE [SIAIME[[LiOICIATII/OIN. | [THIE
AIND| [olPIERIATILION] T[S [PIERRIF ORI
THTIS] JLIOCIAT|TION].

TH]

T

FlaM]

INE

DEF

Lioia] (i3
ADA

SITIA} [9]3]+]1

Air;Jp JIFOUR

T.

r

JIFIONR] JEIQUL 9341

FPH

|3

Examples:

L
T

. - <) O U S SV
- =) ¥ Fih
wlLiﬂulLL(Lu =t Jﬂ‘L 4 O
] @ T [4 A =31~ B -
<] (LWN% 1] =l T Twl
= [=1[7] [T A
®] Y O O O 1 -3~ 3 17) T A O QIOI=~]| ¥
i I e L e r e
i [TY] -~ 1] ..Nl = l]xﬁ! \\I\VW....I._ [CIN!
! = L e <
) =TTl N &lnlh] e
2 [| [| j= [« N I ~—t []
= = ~ o 1T [|- AN
o wiul T [Zfwl T [
[=Y (-4 w xlia . <o FL
@ T [=I=31N] < - n~&
E =] a -
A A 3 S T ol g~ olw
[] [dr=) R
— |4WMX#\#LHHB = Qo |=h|
| = O R R T =4 (M=) I ﬂT Aad i
8 Qli- (o = A O L O 53 Y A L I Y
< @ T;]MWJTNT I ;SIUT 1=)|
1 [Si=llo o~ [Ofa
) <[O] [l Gluf Tol
w = Y3 -
B = o<t NO <L Z O w
1 — w|-J| [~ —Jac = O [=)
U \Wﬁm < |E|D]w [) M.l
W << Slolaja i [O] =]
N LCL_TO o= ol
® +—
. P N
=Y
- [7e) [H [1
1 = +
I-[@ << < &0
S = —]]
™ @® o] [2)
— < <C <t W
%) = = — 3 [~] [=+)
h' = > << S5 | [<
(= o o= RI-ID = ool e
o | O Ly - = ()] -
- ™
. [
i @ [Pl I]
<
- [<m

4-16 Assembler

4.4 CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or
more constant values into consecutive words of the object pro-
gram. The statements may be named by labels so that other
program statements can refer to the fields generated by them.

} } }

label I ASC | n, <2n characters> lcomments

ASC generates a string of 2n alphanumeric characters in
ASCH code into n consecutive words.t One character is right
justified in each eight bits; the most significant bit is zero.
n may be any expression resulting in an unsigned decimal
value in the range 1 through 28. Symbols used in an expres-
sion must be previously defined. Anything in the Operand field
following 2n characters istreatedas comments. If less than 2n
characters are detected before the end-of-statement mark,
the remaining characters are assumed to be spaces, and are
stored as such. The label represents the address of the first
two characters.

Example:

[Owaration
’ 3 ©

Als[c] [3,JAB[CIOE []
]

T

causes the following:

ALPHABETIC
15 14 8 7.6 o
TTYPY 7 B
/ 3
A
EQUIVALENT IN OCTAL NOTATION
15 14 8 7. 6 v}
TTYPY/] 4 ‘7K o 2
/ 1 3 1 o 4
/ 1 5 0O 4 o0

T To enter the code for the ASCHI symbols which perform some
action (e.g., @ and), the OCT pseudo instruction
must be used.

Assembler 4-17

label | DEC T 0, dz.,d,] | comments

DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified, posi-
tive is assumed. The decimal number is converted to its
binary equivalent by the Assembler. The label, if given,

serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of 0 to 2% -1; it may
assume positive, negative, or zero values. It is converted
into one binary word and appears as follows:

15 14 0

sisch—""{s| number]

Example:

[Oparation pev—
10 N
T

IGENIREEACEREEEERE 0@%]

I SRS

| 3
1
-

INT |0} O 8]] 6 2

(=}
o
o
o
-
o

A floating-point number has two components, a fraction and an
exponent. The fraction is a signed or unsigned number which
may be written with or without a decimal point. The exponent is
indicated by the letter E and follows a signed or unsigned decimal

integer. The floating-point number may have any of the follow-
ing formats:

+n.n xn. zn.nEte i,nEixe zin.Ete inEze

4-18 Assembler

The number is converted to binary, normalized (leading bits
differ), and stored in two computer words. If either the frac-
tion or the exponent is negative, that part is stored in two's
complement form.

t5 14 ¢}
Word 1 [s] fraction (most significant bits) |

I:————binory point
sign of fraction

15 87 10
word 2] fraction | exponent [s]
sign of exponent

The floating-point number is made up of a 7-bit exponent with
sign and a 23-bit fraction with sign. The number must be in
the approximate range of 10738 and zero.

olololo] ¢
. 5]
o Oom

-+

-+

are all equivalent to
. 45x10!

and are stored in normalized form as:

15 14 [+]
[o]t oo 10000000000 0]

15 87 10
[pooooooofooooo0 1 1]o]

Assembler 4-19

are stored as:

(1lo1oo11100001010]

loo1 1101 1Jo000000]0]

loJto1 o001 11 101011]

[toooo 10111114 100][1]

label | DEX ‘dl[,dz yeee 5 dp] |comments

DEX, for the Extended Assembler, records a string of
extended precision decimal constants into consecutive words
within a2 program. Each such extended precision constant
occupies three words as shown below:

Word 1 Sm Mantissa 3
~7
15 14 0
Word 2 \
7
15 0
Word 3 —_— Exponent Se
15 81 1 0

4-20 Assembler

Legend: Sm = Sign of the mantissa (fraction)

Se = Sign of the E xponent

NOTE: a value is entered only if normalizing of the
Mantissa is needed.

An extended precision floating -point number is made up
of a 39-bit Mantissa (fraction) and sign and a 7-bit ex-
ponent and sign. The exponent and sign will be zero if
the Mantissa does not have to be normalized.

This is the only form used for DEX, All values, whether
they Dbe floating ~point, integer, fraction, or integer and
fraction, will be stored in three words as just described.

This storage format is basically an extension of that used
for DEC, as previously described.

Examples:
DEX 12,-.45

are stored as:

WORD 1 WORD 2 WORD 3

01100000000000G0 0000000000000000 00060000000001000

WORD 1 WORD 2 WORD 3

1000110011001100 1100110011001100 1001101111111111

Assembler 4-21

label i ocT T o1 [,02...,04] chomments

OCT stores one or more octal constants in consecutive words
of the object program. Each constant consists of one to six

octal digits (0 to 177777). H no sign is given, the sign

is

assumed to be positive. If the sign is negative, the two's com-

plement of the binary equivalent is stored. The constants a.
separated by commas; the last constant is terminated by
space. If less than six digits are indicated for a constant, t
data is right justified in the word. A label, if used, acts
the address of the first constant in the string. The letter
must not be used after the constant in the Operand field; it
significant only when defining an octal term in an instructi
other than OCT.

re
a
he
as
B
is
on

Examples:
T TTTlokh J+ 11 | HERERRAN] [T TIITT
ot |-l2 L | L
N[UM olc(T] [1[7(7],2|¢l4lal5], [~13l6 T
olciT [s)1], [7[z (777l - [1]. [1@ 1lg 1 RER it
olCiT| [1/@l7le/af2l, 1 7I7|@77 | [| || BEENA |
T loic] [tlei7s 1 [T ILLEBALL] CONTAIN |
1 lole] [zl L[1|1 IonelTT o[[11] L
olclt{ 1778 | JLULEGIAL: ClONTINTINS] | L
i Tl HamAcrR L1 i
[l EEANERERRANNARNRRNE! . ! IR
1 T T T T i 1 T 1 [T T T I
The previous statements are stored as follows:
15 14 Q
ol © 0 0 0 0
1| 7 7 7 7 6
NUM (0| o 0 1 7 7
of 2 0 4 0 5
1] 7 7 7 4 2
ol o 0 0 5 1
ol 7 7 7 7 7
1| 7 7 7 7 7
o] 1 0 1 0 1
1| o 7 6 4 2
7 L4 o ! L4 THE RESULT OF
X} X X X X X ATTEMPTING TO
o o 1 DEFINE AN ILLEGAL
0 o o CONSTANT IS UN-
X|] X% X X X X PREDICTABLE

4-22 Assembler

4.5 STORAGE ALLOCATION

The storage allocation statement reserves a block of memory
for data or for a work area.

1 1

label 'L BSS I m comments

The BSS pseudo operation advances the program or base page
location counter according to the value of the operand. The
Operand field may contain any expression that results in a
positive integer. Symbols, if used, must be previously de-
fined in the program. The label, if given, is the name as-~
signed to the storage area and represents the address of the
first word. The initial content of the area set aside by the
statement is unaltered by the loader.

4.6 ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the user to
control the assembly listing output during pass 2 or 3 of the
assembly process. These pseudoinstructions may beused only
when the source program is translated by the Extended Assem-
bler provided for 8K or larger machines (8, 192-word memory
or larger).

i 1

UNL T comments

Output is suppressed from the assembly listing, beginning with
the UNL pseudo instruction and continuing for all instructions
and comments until either an LST or END pseudo instruction is
encountered. Diagnostic messages for errors encountered by
the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source
program listing) are incremented for the instructions skipped.

Assembler 4-23

LST T comments

The LST pseudo instruction causes the source program listing,
terminated by a UNL, to be resumed,

A UNL following a UNL, a LST following a L.ST, and a LST not
preceded by a UNL are not considered errorsby the Assembler.

4

1
sup I comments

The SUP pseudo instruction suppresses the output of additional
code lines from the source program listing. Certain pseudo
instructions, because they result inusing subroutines, generate
more than one line of coding. These additional code lines are
suppressed by a SUP instruction until a UNS or the END pseudo
instruction is encountered. SUP will suppress additional code
lines in the following pseudo instructions:

ASC DIV FAD FSB
OoCT DLD FDV MPY
DEC DST FMP

The SUP pseudo instruction may also be used to suppress the
listing of literals at the end of the source program listing.

| —

r UNS T comments

The UNS pseudo instruction causes the printing of additional
coding lines, terminated by a SUP, to be resumed.

4-24 Assembler

A SUP preceded by another SUP, UNS preceded by UNS, or
UNS not preceded by a SUP are not considered errors by the
Assembler.

l SKP comments

The SKP pseudo instruction causes the source program listing
to be skipped to the top of the next page. The SKP instruction
is not listed, but the source statement sequence number is
incremented for the SKP.

spC n

The SPC pseudo instruction causes the source program listing
to be skipped a specified number of lines. The list output is
skipped n lines, or to the bottom of the page, whichever occurs
first. The n may be any absolute expression. The SPC
instruction is not listed but the source statement sequence
number is incremented for the SPC.

L

_—

HED m(heading)

The HED pseudo instruction allows the programmer to specify
a heading to be printed at the top of each page of the source
program listing.

The heading, m, a string ofup to 56 ASCII characters, is printed
at the top of each page of the source program listing following
the occurrence of the HED pseudo instruction. If HED is
encountered before the NAM or ORG at the beginning of a
program, the heading will be used on the first page of the
source program listing. A HED instruction placed elsewhere
in the program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be
used on every page until it is changed by a suceeding HED
instruction.

The source statement containing the HED willnot be listed, but
source statement sequence number will be incremented.

Assembler 4-25

4.7 ARITHMETIC SUBROUTINE CALLS

The members of this group of pseudo instructions request
the Assember to generate calls to arithmetic subroutinest
external to the source program. These pseudo instructions
may be used in relocatable programs only. The Operand
field may contain any relocatable expression or an absolute
expression resulting in a value of less than 100g.

} 1 1
label MPY] { m m }Tcomments
=Dn or =Bn

Multiply the contenis of the A-register by the contents of m
or the quantity defined by the literal and store the product in
registers B and A, B contains the sign of the product and the
15 most significant bits; A contains the least significant bits.

L 1 l
label I DIV [{ m [,I] }[comments
=Dn or =Bn
Divide the contents of registers B and A by the contents of m
or the quantity defined by the literal. Store the quotient in A
and the remainder in B. Initially B contains the sign and the 15
most significant bits of the dividend; A contains the least
significant bits,
m 1]

=Fn

Multiply the two-word floating-point quantity in registers A
and B by the two-word floating-point quantity in locations m
and m+l1 or the quantity defined by the literal. Store the two-
word floating-point product in registers A and B.

m 1]

=Fn

] i 3
label [FMP ’ l comments

! 1 {
label FDV ‘ T comments

Divide the two-word floating-point quantity in registers A and
B by the two-word floating-point quantity in locations m and
m+1 or the quantity defined by the literal. Store the two-
word floating-point quotient in A and B.

-¥ Not intended for usewith DEX formatted numbers. For
such numbers JSB's to double precision subroutines must
be used. See Relocatable Subroutines Manual (02116~
91780).

4-26 Assembler

I
label FAD | ‘ comments

Add the two-word floating point quantity in registers A and B
to the two-word floating point quantity in locations m and m+1
or the quantity defined by the literal. Store the two-word
floating point sum in A and B.

m [,I]

=Fn

Subtract the two-word floating point quantity in m and m+1
or the quantity defined by the literal from the two-word
floating point quantity in registers A and B and store the
difference in A and B.

— 4
label FSB I l comments

labelTl DLD J| m [, 1] —l[comments
=Fn

Load the contents of locations m and m+l or the quantity
defined by the literal into registers A and B respectively.

label DST] m [, I) Tcomments

Store the contents of registers A and B in locations m and m+1
respectively.

Each use of a statement from this group generates two words

of instructions. Symbolically, they could be represented as
follows:

JSB <. arithmetic pseudo operation>
DEF m[,I]

An EXT <. arithmetic pseudo operation>>is implied preceding
the JSB operation.

In the above operations, the Overflow bit is set when one of
the following conditions occurs:

Integer overflow
Floating-point overflow or underflow
Division by zero.

Execution of any of the subroutines alters the contents
of the E-Register.

Assembler 4-27/4-28

ASSEMBLER INPUT AND OUTPUT 5

The Assembler accepts as input a paper tape containing a
control statement and a source language program. A relocat-
able source language program may be divided into several
subroutines; the designation of these elements is optional.
The output produced by the Assembler may include a punched
paper tape containing the object program, an object program
listing, and diagnostic messages.

5.1 CONTROL STATEMENT

The control statement specifies the output to be produced:

ASMB, p, Py, -+ -, P

‘‘ASMB,’’ is entered in positions 1-5. Following the comma
are one or more parameters, in any order, which define the
output to be produced. The control statement must be termi-
nated by an end-of-statement mark,

The parameters may be any legal combination of the follow-
ing starting in position 6:

A Absolute: The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity. It may not include
NAM, ORB, COM, ENT, EXT, arithmetic pseudo
operation statements or literals. The binary output
format is that specified for the Basic Binary loader.

R Relocatable: The program may be located anywhere in
memory. Instruction operands are adjusted as neces-
sary. The binary output format is that specified for
the BCS Relocating loader.

B Binary output: A program is to be punched according
to one of the above parameters.

L List output: A program listing is to be produced either

during pass two or pass three (if binary output se-
lected) according to one of the above parameters.

Assembler 5-1

T Table print: List the symbol table at the end of the
first pass. For the Extended Assembler:; List
the symbol table in alphabetic order in three sections:
section 1 for one- character symbols, section 2 for
two- and three- character symbols, and section 3
for four- and five- character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

Z Include sets of instructions following the IFZ pseudo
instruction.

F Acceptedby the Assembler to provide compatibility with
DOS or DOS-M Assemblerprograms. F causes no action
in any other assemblers.

(F = Extended Arithmetic Unit/Floating Point;
X = Nonextended Arithmetic Unit;
No parameter = Extended Arithmetic Unit)

Either A or R must be specified in addition to any combination of
B, L,orT.

If a programmer wishes to assemble pass 1 of a source program to check
for errors, he can specify only an A or R to be the sole parameter of
the Assembler contro] statement, executing only pass 1. (This produces
pass 1 efror messages without listing the program or providing an object
tape). Extended Assembler only.

The Assembler control statement must specifically request pass 2
operations (list or punch) in order for pass 2 to be executed. Lack of
pass 2 option information causes processing only of pass 1 errors. If a
C option is also provided, an automatic cross-reference symbol table is
done after pass 1 when operating in the MTS environment.

The control statement may be on the same tape as the source
program, or on a Separate tape; or it may be entered via the
Teleprinter keyboard.

52 Assembler

5.2 SOURCE PROGRAM

The first statement of the program (other than remarks or
a HED statement) must be a NAM statement for a relocatable
program or an ORG statement for indicating the origin of an
absolute program. The last statement must be an END state-
ment and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an
end-of-statement mark.

5.3 BINARY OUTPUT

The punch output is defined by the ASMB control statement.
The punch output includes the instructions translated from the
source program. It does not include system subroutines re-
ferenced within the source program (arithmetic subroutine
calls, .IOC., .DIO., .ENTR, etc.)

5.4 LIST OUTPUT

Fields of the object program are listed in the following print
columns.

Columns Content
1-4 Source statement sequence number gener-
ated by the Assembler
5-6 Blank
7-11 Location (octal)
12 Blank
13-18 Object code word in octal
19 Relocation or external symbol indicator
20 Blank
21-72 First 52 characters of source statement.

Assembler 5-3

Lines consisting entirely of comments (i.e., * in column 1) are
printed as follows:

Columns : Content
1-4 Source statement sequence number
5-72 Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns Content
1-5 Symbol
6 Blank
7 Relocation of external symbol indicator
8 Blank
9-14 Value of the symbol

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as follows:

Character Relocation Base
Blank Absolute
R Program relocatable
B Base page relocatable
C Common relocatable
X External symbol

At the end of each pass, the following is printed:

** NO ERRORS*
or
** nnnn ERRORS*

The value nnnn, indicates the number of errors.

NOTE: For complete operating instructions for the HP Assem-
bler or extended Assembler, consult Software Operat-
ing Procedures, SIO Subsystems module (5§931-1390).

5-4 Assembler

HP CHARACTER SET A
1t

ASCll CHARACTER FORMAT

by (]] o o ! ! ! !
s ° o ' ' [o ! ’
by o [) ' o ! ° !
be
bs
b2
Ly bt
o{olo|o|NuLL D(:uj1 5 | o @ LA N S N O
ejofoj {som|oc, [! A Q
! . NN
{olo|i]o]€oa Dy | o 2 1B | R |14
loja] | ([EOM {DCy | W 3 c|s N
[of (Jololeor 1 24LT 8 4 o T .u—~--:—~
fo]r]o]v]wRuTERR] % | 5 | & | u | N | s
ol]o] Ru {sYnc] 8 6 Flwv 2* (ls
.5-4--6-
fol 1] [BELL] LEM [(aposy] 7 i W s LN
LifolofolFEol S | ¢ [8 W ["x |71 37°E
I 010 [) 9 I Y LN 4L
Dlofifol LFiss [~ | - [4 [z :
Llolelifvas] 83 | + T l L -
ST Telo] fF Sa [icomma) < L \ ACK
tlijojrl CR | S - = M
A EE S R EO)
T]ijol so | s¢] - >~ | ¢ Esc
INDBDEIEIN ? o |- DEL
| st :

Standard 7-bit set code positional order and nototion are shown below with by the high-order

ond b, the low-order, bit position.
b, bg by b, by b
EXAMPLE: The code for "R" is: 1 0 | 0 0 1

b

2 1

LEGEND
NULL Nul/1dle DC,-DCy Device Control
SOM Start of message DC4(Stop} Device contral (stop)
EOCA End of oddress ERR Error
EOM End of messoge SYNC Synchranous idle
ECT End of transmission LEM Logical end of medio
WRU "Who are you?" Se =S¢ Seporator {informotion)
RU "Are you...?" b Word separotor (space, normally
BELL Audible signal non-printing)
FEo Format effector < Less thon
HT Horizontal tabulation > Greater than
SK Skip (punched card) ' Up arrow (Exponentiation)
LF Line feed -— Left arrow (Implies/Replaced by)
Vias Verticol tabulotion \ Reverse slant
FF Form feed ACK Acknowledge
CcR Carriage return 0] Unassigned control
SO Shift out ESC Escape
S Shift in DEL Delete/Idle
DC, Device control reserved for

data link escape

Assembler A-1

BINARY CODED DECIMAL FORMATY

Kennedy 1406/1506 ASCII-BCD Conversion

BCD ASCII Equivalent BCD ASCIl Equivalent
Symbol {octal code) (octal code) Symbol (octal code) (octal code)
(Space) 20 gap A 61 1§}
! 52 941 B 62 192
13 243 C 63 193
$ 53 p44 D 64 194
% 34 @45 E 65 185
& 8 P46 F 66 196
' 14 947 G &7 197
(34 #50 H 78 g
) 74 @51 i 71 m
* 54 @52 J 41 N2
+ 13 253 K 42 113
’ 33 @54 L 43 114
- AQ 255 M 44 115
. 73 @56 N 45 1né
/ 21 @57 o 46 17
P 47 120
i 12 g Q 50 121
1 A go1 R 5] 122
2 (17 @62 S 22 123
3 @3 263 T 23 124
4 g4 P64 U 24 125
5 @5 265 \ 25 126
6 @6 #66 w 26 127
7 o 267 X 27 139
8 9 o790 Y 30 131
9 1 74| 4 31 132
15 #72 [75 133
; 56 973 \ 36 134
< 76 774] 55 135
= 13 @75
> 16 a76
? 72 977
® 14 190

Other symbols which may be represented in ASCH are converted to spaces in BCD (20)

A-2 Assembler

HP 2020A/B ASCII - BCD Conversion

Ascn BCD ASCII BCD

Symbol (Octal code) | (Octal code) Symbol (Octal code) | (Octal code)

(Space) 49 20 A 141 61
! 41 52 B 192 62
" 42 37 c 143 63
43 13 D 184 64
$ 44 53 E 185 65
% 45 34 F 166 66
& 46 601 G 197 67
\ 47 36 H 119 70
(50 75 I 111 71
) 51 55 J 112 41
* 52 54 K 113 42
+ 53 60 L 114 43
, 54 33 M 115 44
- 55 4p N 116 45
. 56 73 o 117 46
/ 57 21 P 128 47

Q 121 50
R 122 51

f g’f ;,f S 123 22
2 62 g2 T 124 23
1 64 4 v 126 25
8 66 76 X 139 27
7 67 87 Y 131 30
8 7ﬂ 18 VA 132 31
o n u][133 75 1
. 135 55 t
: 7,3 ég 1 136 7
< 74 76 - 137 32
= 75 35
> 76 16
? 77 72
@ 149 14

T BCD code of 60 always converted to ASCII code 53 (+).
1 BCD code of 75 always converted to ASCII code 50 (() and
BCD code of 55 always converted to ASCI code 51 ()).

Assembler A-3/A-4

ASSEMBLER INSTRUCTIONS 8
S

Symbols Meaning

label Symbolic label, 1-5 alphanumeric characters and periods
m Memory location represented by an expression
1 Indirect addressing indicator

C Clear flag indicator

(m, m+1) Two-word floating-point value in m and m+1
comments Optional comments

[] Optional portion of field

{ } One of set may be selected

P Program Counter

() Contents of location

A Logical product

h Exclusive "or"

\ Inclusive "or™

A A - register

B B- register

E E- register

An Bit n of A-register

Bn Bit n of B-register

b Bit positions in B- and A-register

W—B-) Complement of contents of register A or B
(AB) : Two-word floating-point value in registers A and B
sc Channel select code represented by an expression

Decimal constant

[+] Octal constant
r Repeat count

n Integer constant
lit Literal value

Assembler B-1

MACHINE INSTRUCTIONS

L
MEMORY REFERENCE

Jump and Increment-Skip

1SZ m [,I] (m) + 1 - m: then if (m) = 0, execute P + 2
otherwise execute P + 1
JMP m [,1] Jump tom; m -P
JSB m [,I] Jump subroutinetom: P+1-m;m+1-P
Add, Load and Store
,1
apa ™Y (m) + (a) ~ A
,1
app {™ U (m) + (B) - B
m [,1]
LDA { lit } (m) - A
m {,1} } -
LDB { Lit (m)-B
STA m {,1] (A) ~ m
STB m [,1] (B) ~ m
Logical
m [,1] -
AND oy (m) A (A) - A
m [,I]
XOR it } (m) ¥ (A)~ A
lit } (m) v (&)~ A

CPA If (m) # (A), execute P + 2, otherwise

execute P + 1

If (m) # (B), execute P + 2, otherwise
execute P + 1

CPB

{
{
IOR { m [1]
{
{

REGISTER REFERENCE
Shift-Rotate

CLE 0-E

ALS Shift (A) left one bit, 0 - A, Aw unaltered
BLS Shift (B) left one bit, 0 ~ B,, B, unaltered
ARS Shift (A) right one bit, (A,) ~ A,

BRS Shift (B) right one bit, (Bjy) = B,

RAL Rotate (A) left one bit

RBL Rotate (B) left one bit

B-2 Assembler

Shift-Rotate (Continued)

RAR Rotate (A) right one bit

RBR Rotate (B) right one bit

ALR Shift (A) left one bit, 0 — A 4

BLR Shift (B) lett one bit, 0 — By,

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA If (A,) = 0, execute P + 2, otherwise execute P + 1
SLB If (B,) = 0, execute P + 2, otherwise execute P + 1

shift-Rotate instructions can be combined as follows:

[/ ALS '} "/ ALS '1
ARS ARS
RAL RAL
RAR RAR
ALR [,CLE] [,SLA] A\ ALR
ALF ALF
ERA ERA
L\ ELA /| L\ ELA /J
[/ BLS \] [/ BLS T
BRS BRS
RBL RBL
RBR RBR
BLR [:CLE] [YSLB] '\ BLR
BLF BLF
ERB ERB
L\ ELB L\ ELB/J
No-operation
NOP Execute P + 1
Alter-~Skip
CLA 0's— A
CLB 0's-B
CMA @A)y-a
CMB B)-B
CCA 1's - A
CCB 1's-B
CLE 0 —-E
CME ®)-E

Assembier B-3

Alter-Skip (Continued)

CCE 1-E

SEZ If (E) = 0, execute P + 2, otherwise execute P + 1
SSA If (A;) =0, execute P + 2, otherwise execute P + 1
SSB If (B)s) = 0, execute P + 2, otherwise execute P + 1
INA (A)+1 -4

INB B)+1 -8B

SZA If (A) = 0, execute P + 2, otherwise execute P + 1
SZB If (B) = 0, execute P + 2, otherwise execute P + 1
SLA If (A,) =0, execute P + 2, otherwise execute P + 1
SLB If By) =0, execute P + 2, otherwise execute P + 1
RSS Reverse sense of skip instructions. If no skip

instructions precede, execute P + 2

Alter-Skip instructions can be combined as follows:

CLA CLE
l:{CMA}] [,SEZ] BCMEH [,8SA) [,SLA] [,INA] [,SZA] [,RRS]
cCA CCE

CLB CLE
[{cm}] [,SEZ] [{cmzﬂ {,5SB] [, SLB] [,INB] [,SZB] [, RSS]

CCB CCE
INPUT/OUTPUT, OVERFLOW, and HALT
Input/Output

STC sc [,C] Set control bitg, enable transfer of one elemeat of data be-
tween deviceg. and bufferg .

CLC sc [,C] Clear control bit, . If sc =0 clear all control bits
LIA sc [,C] (buffersc)~ A

LIB sc¢ [,C] (buffers)~ B

MIA sc [,C] (buffers;) V (A) - A

MIB sc [,C] (buffers.) V (B)—~ B

OTA sc [,C] (A) -~ bufferg

OTB sc [,C] (B) - bufferg

STF sc Set flag bit,.. If sc = 0, enable interrupt system. sc = 1sets
overflow bit.

CLF sc Clear flag bitg.. If sc=0,disableinterruptsystem. If sc =1,
clear overflow bit.

SFC sc If (flag bitsc) = 0, execute P + 2, otherwise execute P + 1.
I sc = 1, test overflow bit.

SFS sc 1f (flag bitg:) = 1, execute P + 2, otherwise execute P + 1.
If sc = 1, test overflow bit.

B4 Assembier

Overflow

CLO
STO
socC

SOs

Halt

HLT

fci

(c]

[sc [,c]]

0 - overflow bit
1 - overflow bit

If (overflow bit) = 0, execute P + 2,
otherwise execute P + 1

If (overflow bit) = 0, execute P + 2,
otherwise execute P + 1

Halt computer

EXTENDED ARITHMETIC UNIT (requires EAU version of Assembler or

MPY

DIV

DLD

DST

ASR
ASL

RRR
RRL
LSR
LSL

Extender Assembler)

%ml[i’tl]} (&) x (m) = (By,,, and A|sb)

%

lit
m[,I
lit
m(,1]
lit
b
b

m[1]
|

T T T T

}
|
|

(B, gy 2nd Alsb)/(m) - A, remainder - B
(m) and (m + 1) ~ A and B

(A) and (B) = mandm + 1

Arithmetically shift (BA) right b bits, B, extended
Arithmetically shift (BA) left b bits, B unaltered,
0's to A,

Rotate (BA) right b bits

Rotate (BA) left b bits

Logically shift (BA) right b bits, 0'S to Bpe
Logically shift (BA) left b bits, 0's to Al

Assembler B-5

PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NAM [name}

ORG m
ORR
ORB
END |[m]
REP r
< statement>
IFN
< statements>
XIF
1FZ
< statements>
XIF

OBJECT PROGRAM LINKAGE

Specifies relocatable program and its name.

Gives absolute program origin or origin for a segment of
relocatable or absolute program.

Reset main program location counter at value existing
when first ORG or ORB of a string was encountered.

Defines base page portion of relocatable program.
Terminates source language program. Produces trans-
fer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control statement con-
tains N.

Include statements in program if control statement con-
tains Z.

COM name, [(size;)]{,name, [(size,)], . . . ,name, [(size,)]]

ENT name,[,name,,

EXT name,[,name,,

ADDRESS AND SYMBOL DEFINITION

label DEF ml,I]

label ABS m
label EQU m

B-§ Assombler

Reserves a block of common storage locations. name,
identifies segments of block, each of length size.

,name,]

Defines entry points, name ;, that may be referred to by
other programs

,name, |

Defines external locations, name;, which are labels of
other programs, referenced by this program.

Generates a 15-bit address which may be referenced in-
directly through the label.

Defines a 16 -bit absolute value tobe referenced by the label.
Equates the value, m, to the label.

CONSTANT DEFINITION

ASC n, <2n characters> Generates a string of 2n ASCII characters.
DEC d, {,d,, . . . ,d,| Records a string of decimal constants of the form:
Integer: +n

Floating-point: #n.n, #n., +.n, inEte, in.nEze,
+n. Eze, +.nEze
DEX d ['dz' e dn] Records a string of extended precision
decimal constants of the form

Floating point: n, #n.n,
+n,, t.n,

mnE+e, n, nEze,
. E+e, t.nEte

OCT o, [,0,, . . - ,0,] Records a string of octal constants of the form: +o0o000o

STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

ARITHMETIC SUBROUTINE CALLS REQUESTST{

meyr (I) x (m) - (B, 200 AL,)
DIyt {ml[i’tl]} (Bymepand Al)/(m) ~ A, remainder -~ B
FMP {m{{t”} (AB) x (m, m + 1) ~ AB
FDV {m[_’”} (AB)/(m, m+ 1) ~ AB
lit
FAD {m[_'”f (m, m+ 1) + (AB) ~ AB
lit
FSB {ml[i’t”} (AB)-(m, m + 1) - AB
DLDt {mL’tI]} (m)and (m + 1) = A and B
DSTt m{,I] (A)and (B) - mand m + 1

t For configurations including Extended Arithmetic Unit, these mnemonics generate
hardware instructions when the EAU version of the Assembler or Extended Assembler
is used.

t+Not intended for use with DEX formatted numbers. For such numbers, JSB Machine
Instructions must be used.

Assembier B-7

ASSEMBLY LISTING CONTROL

UNL
LST
SKP
SPC
SUP

UNS
HED

B-8 Assembler

< heading>

Suppress assembly listing output.
Resume assembly listing output.
Skip listing to top of next page.
Skip n lines on listing

Suppress listing of extended code lines {e. g. , asproduced
by subroutine calls).

Resume listing of extended code lines.

Print <heading> at top of each page, where <heading>
is up to 56 ASCII characters.

ALPHABETIC LIST OF INSTRUCTIONS C

ABS Define absolute value

ADA Add to A

ADB Add to B

ALF Rotate A left 4

ALR Shift A left 1, clear sign

ALS Shift A left 1

AND ““And’’ to A

ARS Shift A right 1, sign carry
ASC Generate ASCII characters
ASL Arithmetic long shift left
ASR Arithmetic long shift right
BLF Rotate B left 4

BLR Shift B left 1, clear sign

BLS Shift B left 1

BRS Shift B right 1, carry sign
BSS Reserve block of storage starting at symbol
CCA Clear and complement A (1’s)
CCB Clear and complement B (1’s)
CCE Clear and complement E (set E = 1)
CLA Clear A

CLB Clear B

CcLC Clear I/0 control bit

CLE Clear E

CLF Clear 1/0 flag

CLO Clear overflow bit

CMA Complement A

CMB Complement B

Assembder C-1

CME Complement E

COM Reserve block of common storage

CPA Compare to A, skip if unequal

CPB Compare to B, skip if unequal

DEC Defines decimal constants

DEF Defines address

DEX Defines extended precision constants

DIV Divide

DLD Double load

DST Double store

ELA Rotate E and A left 1

ELB Rotate E and B left 1

END Terminate program

ENT Entry point

ERA Rotate E and A right 1

ERB Rotate E and B right 1

EQU Equate symbol

EXT External reference

FAD Floating add

FDV Floating divide

FMP Floating multiply

FSB Floating subtract

HED Print heading at top of each page

HLT Halt

IFN When N appears in Control Statement, assemble
ensuing instructions

IFZ When Z appears in Control Statement, assemble
ensuing instructions

INA Increment A by 1

INB Increment B by 1

IOR Inclusive “‘or’’ to A

1SZ Increment, then skip if zero

JMP Jump

C-2 Assembler

JSB
LDA
LDB
LIA
LIB
LSL
LSR
LST
MIA
MIB
MPY
NAM
NoP
OCT
ORB
ORG
ORR
OTA
OTB
RAL
RAR
RBL
RBR
REP
RRL
RRR
RSS
SEZ
SFC
SFS
SKP

Jump to subroutine

Load into A

Load into B

Load into A from I/0 channel
Load into B from I/0 channel
Logical long shift left
Logical long shift right

Resume list output (follows a UNL)
Merge "or" intoc A from 1/0 channel

Merge "or'' into B from 1/0 channel

Multiply

Names relocatable program
No operation

Defines octal constant
Establish origin in base page
Establish program origin
Reset program location counter
Output from A to I/0 channel
Output from B to 1/0 channel
Rotate A left 1

Rotate A right 1

Rotate B left 1

Rotate B right 1

Repeat next statement

Rotate A and B left

Rotate A and B right
Reverse skip sense

Skipif E=0

Skip if 1/0 flag = 0 (clear)
Skip if 1/0 flag = 1 (set)

Skip to top of next page

Assembler C-3

SLA Skip if LSBof A =0

SLB Skip if LSB of B =0

SOoC Skip if overflow bit = 0 (clear)

S0s Skip if overflow bit = 1 (set)

SPC Space n lines

SsA Skip if sign A =0

SSB Skip if sign B =0

STA Store A

STB Store B

STC Set I/0 control bit

STF Set 1/0 flag

STO Set overflow bit

suUp Suppress list output of additional code lines
SWP Switch the (A) and (B)

SzZA Skip if A= 0

SZB Skipif B=0

UNL Suppress list output

UNS Resume list output of additional code lines
XIF Terminate an IFN or IFZ group of instructions
XOR Exclusive “‘or’’ to A

C-4 Assembler

SAMPLE PROGRAMS D

Following are two sample programs, the second of which implements several options
of the Extended Assembler.

PARTS FILE UPDATE

A master file of parts is updated by a parts usage list to produce a new master
parts file. A report, consisting of the parts used and their cost, is also produced.

The master file and the parts usage file contain four word records. Each re-
cord of the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

hdentification Fuanmil (i?:;‘/

Identification field of the Parts Master Files exists in ASCII althrough the
entire record is read and written in binary.

Parts Usage File (PRTSU)

Identification l Quantity

The parts usage file has been recorded in ASCIL

Parts Cost Report (PRTSC)

Ddentificaﬁon W % Quantity used ? % ﬁl for gg:;tity]

The Parts Cost Report is recorded in ASCII with spacing and editing for
printing.

The sample program reads and writes the files, adjusts the new stock levels,
and calculates the cost. External subprograms perform the binary-to-decimal
and decimal-to-binary conversions and handle unrecoverable input/output
errors, invalid data conditions, and normal program termination. Input/output
operations are performed using the Basic Control System input/output sub-
routine, .I0C.

Assembler D-1

START

READ
PARTS
MASTER

SUBTRACT
USAGE QUANTITY

FROM
MASTER QUANTITY

l

CALCULATE
COST OF PARTS
USED

SAMPLE PROGRAM
GENERAL FLOW CHART

D-2 Assembler

START
PRTSM
PRTSU
PRTSC
EOTS!1
E0TS2
MTEMP
UTEMP
SWTHMP
SPACS
DLRSG
A

3
«I0C.
BCONV
DCONvV
ABORT
HALT
DTOBI
DTO30
BTODI
3TODO
OPEN
SPCFL
oLD
bDST
READY
CKSTU
RJCTU
EOTU
MSGJ
READM
CKST™
RJCTM
EOTM
MSGM
HLTSW
COMPR
PROCH
PROCC
MPY
CONVM
CoNuUl
CONU2
CONVC
WRITC
CKSTC
RJCTC
WRITN
CKSTN
RJCTN

T WD DD WW N

PHVIAVAVDAAXATDIILTDDLANIDDLXXDDOQOOOOXX XXX

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT

2201
204020
2020020
200004
Q00310
208023
200024
200325
Qo226
220027
222931
2232033
002000
Qooenl
000031
202002
200203
220004
200085
200000
20002832
200003
2002085
000202
202203
2002936
20ed07
Q22013
200022
200835
200040
200951
280263
200070
Q22185
200110
222117
220137
Q02140
200157
Q00165
200010
Q0r213
002224
202235
Q022 46
200261
NBB266
202276
628301
000306
220316

=« NO ERRORS*

ASMB,R,BsL»T

Assembler D-3

SAMPLE ASSEMBLER LIST OUTPUT

PAGE

2001

2002
2093
2004
2925
2206
2027
2008
2009
2219
2211

2212
8213

201 4
2015
2016
ea1?
aai1sx
2219
2020*
@02y
2922+
2023+
0024
3025%*
d226%*
2027
9028
2029*
2030*
2031*
2032
@a33=
#8334
2335

2936

2037

2038
2039
2040
2241
20 42
@043
2344
20845
20 46
2047
0048
20 49
@950
@051
2252
2053*

Qa2

00000
29220
209921

23000
22200
00004
g2e12
22923
22024
23925
009226
20927
ara31

00932
42033
200029
000021

20292

202092
22223
20804
23005
20006
aaoo7
aoalo
20911

20012
20013
29014
000215
29216
20017
20020
20021

29022
20923
00024
00025
29926
20027

200009
926002R

2000002
2000092
20202002
226063R
B26301R
000200
2002000
0000020
220040
220040
020244

002000
A160086X
2000318
d16007X
2009128
216007X
0002168
2600338
2700208
a16001X
212001
B26235R
2000043
2000024
A16001X
240001
202920
326@20R
201200
292920a
B26030R
026863R

D-4 Assembler

START

PRTSM
PRTSU
PRTSC
EOTS!

EQTS2
MTEMP
UTEMP
SWTMP
SPACS

DLRSG
A
B

OPEN
SPCFL

READU

CXSTU

NAM
NOP
Jup
ORB
BSS
B5S
BS5S
JmpP
JMP
BSS
BSS
B5S
ASC

ASC
EQU
EQU
EXT

EXT

EXT

EXT

EXT
coM

ORR

NOP
DLD

DST
DST

LDA
STA
Jss
ocT
JMpP
DEF
DEC
JsB
ocT
SS5A
JMP
RAL
SSA
JMP
JMP

UPDTE

QPEN
ASSIGN S5TORAGE & CONSTANT3 TO BP

4 MASTER PARTS FILE - BINARY.

4 PARTS USAGE LIST -~ ASCII.

11 PARTS COST REPQRT - ASCI{.

READM

WRITN

1

1

2

2,

1 8

]

1

+10C. PERFORM [/0 OPERATIONS USING BCS
170 CONTRQL ROUTINE.

BCONV ENTRY POINT FOR DECIMALC(ASCII)
TO BINARY CONVERSIQN SUBPROGRAM.

DCONV ENTRY POINT FOR BINARY TO
DECIMALC(ASCII) CQONVERSIQN Su8-
PROGRAM.

ABORT ENTRY POINT FOR SUBPROGRAM WHICH
HANDLES UNRECOVERABLE /0 ERRORS
OR INVALID DATA.

HALT END OF PROGRAM SUBROUTINE.

DTOB1¢2)>,DTOBO,BTODI(2),BTADAC2)
COMMON STORAGE LOQCATIONS USED TO
PASS DATA BETWEEN MAIN PRJIGRAM
AND CONVERSION SUBPROGRAMS.

RESETS PLC AFTER USE OF QRB AT
BEGINNING OF PROGRAM.
SPACS STORES EDITING CHARACTERS IN
PRTSC+2 QUTPUT AREA FOR PARTS COST

PRTSC+6 REPORT.

DLRSG

PRTSC+8

«10C. READ ONE RECORD FROM USAGE LIST
10901 LOCATED ON STANDARD UNIT

RJCTU (TELEPRINTER INPUT). PRTSU IS
PRTSU ADDRESS OF STORAGE AREA3 AREA IS
4 4 WORDS LONG.

+I10C. CHECK STATUS OF UNIT 1j.

49001

CKSTU IF BUSY, LOOP UNTIL FREE.

42

READM IF COMPLETE, TRANSFER TO SECTION

WHICH READS MASTER FILE RECORD.

PAGE @003

2054 02032 201727 ALF,ALF TEST END OF TAPE STATUS BIT
9055 00031 201200 RAL (ORIGINAL BIT 85).

9356 00032 002020 SSA

@857 08033 826040R JMP EQTU IF SET» GO TO EOT PROCEDURE.
2058 @0034 026004X JMP ABORT IF NOT SET» SOME ERROR CONDITION
B059% C(UNRECOVERABLE) EXISTS.

0060 00035 V36028 RJICTU SSB CHECK CAUSE OF REJECT. IF UNIT
B26) 29836 026013R JMP READU BUSY LOOP UNTIL FREE. ANY OTHER
8862 90037 B826884X JMP ABORT CAUSE IS UNRECOVERABLE ERROR.
8063 00048 8680238 EOTU LDA EOTSI IF END OF USAGE FILE, ALTER
0064 @004l B72002R STA OPEN PROGRAM SEQUENCE TO BYPASS

BB65 00842 0600248 LDA EOTS2 SECTIONS THAT READ AND PROCESS
@366 @BB843 @72140R STA COMPR USAGE FILE. PRINT MESSAGE ON
@067 00044 B16001X JSB .10C. TELEPRINTER INDICATING EOT.
2368 0§BB4S B2p002 OCT 2e0@82

P06 00046 B26044R JMP EQOTU+4

B@70 00047 BBVASIR DEF MSGU

2071 028050 0008011 DEC 9

@372 @0851 242516 MSGU ASC 9,END OF USAGE FILE
20852 042840
BBA53 347506
90054 820125
22055 851581
@9056 843585
600857 820106
B0060 Baas5la
20861 D42440

0373 200862 B26063R JMP READM

B074 0DOB63 B16881X READM JSB +I0C. READ A RECORD FROM MASTER PARTS
BB75 00364 310185 0CT 10105 FILE ON STANDARD UNIT @5(PUNCHED
BAT6 0BBB65 B26105R JMP RJUCTM TAPE READER). PRTSM 1S ADDRESS
6877 08366 3060008 DEF PRTSM QF STORAGE AREA} AREA IS 4 WORDS
B378 20067 200034 DEC 4 LONG. RECORD IS IN BINARY FORMAT
2879 DPOB7P B)68B1X CKSTM JSB .10C. CHECK STATUS OF UNIT 5.

2380 00071 348085 OCT 4005

2031 00272 002020 SSA

@082 0OB73 B26070R JMP CKSTM IF BUSY, LOOP UNTIL FREE.

9283 00074 221200 RAL

8354 03875 882028 SSA

@085 0OA76 B26100R JMP x+2

0886 ©0B77 0261 40R JMP COMPR 1F COMPLETE. TRANSFER TO EITHER
9887 20100 001727 ALF > ALF PROCESSING OR WRITE OUTPUT

P288 00101 001200 RAL DEPENDING ON SETTING OF COMPR.
2089 00102 002020 5SA TEST FOR ENO OF TAPE.

0090 281083 826110R JMP EOTM IF END, GO TO EOT PROCEDURE.
229! 082184 P260BAX JMP ABORT IF NOT, AN UNRECOVERABLE ERROR
8092 EXISTS.

P93 @105 PB6M2@0 RJICTM SSB CHECK CONTENTS OF B FOR CAUSE OF
@094 00186 B26B63R JMP READM REJECT. IF UNIT BUSY, LOOP UNTIL
@095 80107 826004X JMP ABORT FREE, QTHERWISE I/0 ERROR EXISTS
B696 88110 @62137R EOTM LDA HLTSW ALTER PROGRAM SEQUENCE TQ HALT
9897 @0111 BT2315R STA CKSTN+7 EXECUTION AFTER LAST RECORD IS
PB98 B2P112 P168BIX JSB .I0C. WRITTEN PRINT MESSAGE

9099 02113 2200082 OCT 20002 INDICATING END OF MASTER INPUT.
0108 00114 B26112R JMP EQTM+2

9101 @@2115 880117R DEF MSGM

2102 00116 200017 DEC 15

G183 @3117 042516 ™MSGM ASC 15,END OF MASTER PARTS FILE INPUT

Assembler D-5

PAGE

2104
@195
a1d6
2187
P108
2129
2110
2111

8li2
2113
atia
2115
2116
2117
at1g
ot19
a122
gi21

2122
2123
2124
8125
9126
127

o128

2129

8130

@i 31
9132

2133
2134
at3s
8136

2137
@138

8139
@140

8B4

02120
e012)
aai122
22123
22124
20125
22126
’v127
22130
38131
20132
20133
20134
82135
20136
22137
20140
#B14)
201 42
22143
PBta4a
82145
28146
22147
aaisa
22151
29152
82153
@8154
80155
29156
29157
20160
BR161
ga162
82163
20164
aatLes
00166
20167
00179
002171
80172
90173
00174
82175
22176
28177
20200
00201
aaz2a2
080203
00204
20205
00206
002087
00210
eoz2i1

042040
047506
220115
243523
252185
851042
0501081
251124
851440
343111
846105
a2a111
B47120
852524
8261 40R
826005X
2000200
216224R
B16213R
2600268
2640258
250001
2263 5TR
207004
242001
2020282
026004X
B62156R
@72315R
B26301R
B26063R
B16235R
26002028
26409278
207204
3420201
0700028
2160a6X%
0000048
216007X
0000108
216006X
2000068
B160ATX
002091 48
8600038
B16010X
9000278
#70030B
@740278
B16246R
216006X
2000278
P16007X
0000218
#62212R
@72315R
026261R

D-6 Assembler

HLTSwW
COMPR

PROCM

PROCC

JMP COMPR
JMP HALT
NOP

JsSB CONUI
JSB CONVM
LDA UTEMP
LDB MTEMP
CPA B

JMP PROCM
CMB, INB

ADA B

SSA

JMP ABQRT
LDA *+3

STA CKSTN+7
JMP WRITN
JMP READM
JSB CONU2
LDA PRTSM+2
LDB UTEMP+]
CMB, INB

ADA B

STA PRTSM+2
OLD PRTSUY

0ST PRTSC
DLD PRTSU+2
DST PRTSC+4

LDA PRTSM+3
MPY UTEMP+)

STA SWTMP+1
STB SWTMP
JSB CONVC
DLD SWTMP

DST PRTSC+9
LDA #+3

STA CKSTN+7
JMP WRITC

END OF PROGRAM SUBROUTINE.

CONVERT ID NUMBER FIELDS OF
MASTER AND USAGE FILES TO BIN.
LOAD THESE FIELDS FROM TEMPORARY
STORAGE.

COMPARE

1F EQUAL, JUMP TO PROCESSING

IF ID NUMBER OF MASTER GREATER
THAN 1D NUMBER OF USAGE, DATA 1IN
USAGE FILE ERRQNEOUS. TERMINATE
RUN.

IF 1D MASTER LESS THAN 1D USAGE,
ALTER SEQUENCE: READ NEXT MASTER
RECORD IMMEDIATELY AFTER WRITING
CURRENT MASTER RECORD.

CONVERT QUANTITY FIELD OF USAGE
FILE TO BINARY AND SUBTRACT FROM
QUANTITY FIELD OF MASTER AND
STORE RESULT.

STORE 1D OF PARTS USED IN REPORT
FILE STORAGE AREA.
STORE QUANTITY QF PARTS USED IN

REPORT FJLE STORAGE AREA.

COMPUTE COST OF PARTS USED.

CONVERT RESULT TO DECIMAL

STORE IN REPORT FILE AREA.

ALTER SEQUENCE: READ NEXT USAGE
RECORD AFTER WRITING CURRENT
MASTER RECORD.

PAGE

@14l
2142
D143

Blaa

@145
@1 46
2147
a1 48
2149
2150

o151

2152
2153
@154
8155
156
2157

2158

2159
2160
2161
162
2163
2164

2165

2166
2167

P168

2169
8170
217}
2172
2173
2174
2175
2176
8177
2178
2179
21802
8181
8182
2183
d184
2185
2186
2187
2188

8985

éa212
28213
208214
29215
20216
29217
29220
209221

29222
89223
89224
Ba225
20226
de227
209230
2231

22232
29233
20234
20235
29236
22237
@n240
@n24)

29242
20243
29244
29245
29246
ap247
2092508
2923)

29252
28253
29254
#8255
@p256
20257
ap260
20261

29262
2p263
20264
20265
20266
0267
29270
90271

aa272
20273
00274
92275
3a276
902277
20300
80302)

99382
80303

826013R
220000

B816006X
8000008
216007X
a3aa00C
B16002X
B62082C
2700258
12621 3R
002000

B16006X
6000048
B16007X
202000C
216002X
062002C
2700268
126224R
2900080

216006X
2000068
016007X
200009C
216002X
262002C
3700278
126235R
200000

016006X
2000278
216207X
d00003C
216003X
016006X%
209925C
P16007X
8000278
1262 46R
216001X%
920102

B26276R
20022108
220013

216201X%
040002

202020

B26266R
821282

002020

226004X
B26301R
806322

226261R
22600 4X
B160081X
0292184

B26316R

CONVM

conul

coNu2

CONVC

WRITC

CKSTC

RJCTC

WRITN

JMP
NOP
DLD

DST

Jss
LDA
STA
JMP
NOP
bLD

DST

JsB
LDA
5TA
JMP
NOP
bLD

0ST

JsB
LDA
5TA
JMP
NOP
oLD

0ST

Jss
bLD

DST

JMP
JsB
ocT
JMP
DEF
DEC
JsB
ocT
SS5A
JMP
RAL
SSA
JMP
JMP
558
JuP
JMP
JsB
ocT
JMP

READU
PRTSM
DTOBI1

BCONV
DTOBO
MTEMP
CONyM, I

PRTSU
0TOBI

BCONV
DTOBO
UTEMP
CONUY, I

PRTSU+2
DTOBI

BCONV
DTOBO
UTEMP+1
CONU2, I

SWTMP
8TODI

DCONV
BTODO

SWTMP

CONVC, 1
«I10C.
20102
RJCTC
PRTSC
11
«10C.
40002

CKSTC

ABORT
WRITN

WRITC
ABORT
-10C.
231064
RJCTN

STORE D FIELDS IN COMMON
LOCATIONS TQO BE PROCESSED BY

CONVERSION SUBPROGRAM. ON
COMPLETION, STORE RESULTS IN
LOCATIONS USED BY PROCESSING
SECTIONS. CONVM APPLIES TO ID OF
MASTER PARTS FILE} CONUI» TO 1D
OF USAGES CONU2, TO QUANTITY OF

USAGEs AND CONVC,» TO COST OF

PARTS(THIS IS A BINARY TO
DECIMAL CONVERSION).

WRITE ONE RECORD OF PARTS COST
REPORT ON STANDARD UNIT 2
(TELEPRINTER OUTPUT). PRTSC IS
ADDRESS IN STORAGE AREA} AREA IS
11 WORDS LONG. RECORD IS IN ASC!
CHECK STATUS OF UNIT 2.

IF BUSY, LOOP UNTIL FREE.

TERMINATE IF ANY [/0 ERROR.

IF COMPLETE» TRANSFER TO WRITN.
IF BUSY, LOOP UNTIL FREE.
TERMINATE ON ANY OTHER REJECT
CONDITION.

WRITE ONE RECORD (BINARY) OF
NEW MASTER PARTS LIST ON UNIT 4
CTAPE PUNCH)>. PRTSM C(INPUT AREA)

Assembler D-7

PAGE

ata9
2192
2191

2192
9193
2194
2195
2196
2197
2198
8199
9200
0201

@202

8ade6

20304
20305
20306
202327
202319
92311
208312
20313
00314
00315
28316
0a3t7
09320

2000008
200004
216081X
040004
002020
B26306R
901209
202020
02600 4X
@26013R
286829
826301R
026004X

% NO ERRORS

D-8 Assembler

CKSTN

RJCTN

DEF
DEC
Js8
ocT
SSA
Jup
RAL
SSA
JMP
JMP
558
Jup
Jup
END

PRTSM
4

«10C.
40004

CKSTN
ABORT
READU
WRITN

ABORT
START

I5 ALSO USED AS OUTPUT AREA.

CHECK STATUS OF UNIT 4.

IF BUSY, LOOP UNTIL FREE.

1F BUSY, LOOP UNTIL FREE, OTHER-
WISE TERMINATE.

CALCULATING DISTANCE

Program 'Line” will either calculate the distance between two points or find the
slope of the line connecting the points; then the point equidistant from each point (the
mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers at a
time. The first quantity is the X coordinate of the first point; the second quantity is
the Y coordinate of the first point; the third and fourth quantities are the X and Y co-
ordinates of the second point.

The result isoutput to the teleprinter by the formatter library routine; each quan-
tity cannot be more than an eight digit real number.

[P

MIDPOINT=
XXy Y%
2 , 2

QUTPUT
THE RESULT
(TELEPRINTER),

GENERAL FLOW CHART

Assembler D-9

Below is the source programas it is typed up on the teleprinter. After it are the
assembler listings. The first listing results from including the Z option in the control
statement, In the second listing the Noption has been included in the control statement.

NOTE: When thecomplete data tape has been read and the tape reader en-
counters 10 blank feed frames, an EQT message is typed on the teleprinter
and the computer halts. Thus nohalt instruction is needed in the program.)

HED LINE FORMULI: DISTANCE. SLOPE, MID-POINT
PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH
POINT (THE MID-POINT) 1S CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY 1S THE X COORDINATE OF THE FIRST POINT}THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT)
THE THIRO AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS QUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINEj) EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

NAM LINE
START NOP

JMP INPUT

EXT .10C.,FLOAT,IFIX,SQRT

EXT .DI0.s.10l.,.DTA.,.RAR.

EXT «.IQR.,.IAR.
+DATA DEF DATA
+PRIN DEF PRINT
DATA BSS 4
FMT ASC 3,(F8.Q)
FMT2 ASC 8,(F8.3,"
FMT3 ASC 3,c4l2)

SKP
* INPUT THE FIRST TWO POINTS) FOUR DATA WORDS
INPUT NOP

LDA =BS

CLB, INB

JSB «DIO.

DEF FMTJ

DEF *+4

LDA =B4

LOB .DATA

JSB «IAR.

SPC 3
* THE DISTANCE BETWEEN THE TWO POINTS:

IFZ

LDA DATA+2

CMA, INA

ADA DATA

SPC 1

JMP %+5
PRINT REP 4

NOP

SPC 1

STA PRINT

sup

M E R EREE R)

»F8.37)

D-10 Assembler

MPY PRINT
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
STA PRINT+1
MPY PRINT+]
ADA PRINT
SPC 1
JSB FLOAT
JSB SGORT
DST PRINT
XIF
SPC 3

* FIND THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA, INA
ADA DATA
JMP *+5

PRINT REP 4
NOP
STA PRINT
SPC 1
LDA OATA+3
CMA, INA
ADA DATA+1
cLB
DIV PRINT
DST PRINT
X1F
SPC 3

* QUTPUT THE RESULT
LDA =B2
CLB
JSB «DIO.
DEF FMT
DEF *+4
DLD PRINT
JSB .10R.
JSB .-DTA.
SPC 3

* FIND THE MID-POINT OF THE LINE SEGMENT:
LDA DATA
ADA DATA+2
CLB
JSB FLOAT
FMP =F.5S
DST PRINT
SPC 1
LDA DATA+]
ADA DATA+3
CLB
JSB FLOAT
FMP =F.5
DST PRINT+2
SPC 1
UNL

Assemhbler D-11

LDA =B2
CLB

JSB .DID.
DEF FMT2
DEF *+5
LDA =B2
LDB .PRIN
JSB <RAR.
JSB .DTA.
ST

SPC 3

UNS

JMP INPUT
END START

D-12 Assembier

PAGE

2081
START
«10C.
FLOAT
IFIx
SeRT
«DI0.
»101.
+DTA.
+RAR.
«10R.
«1AR.
«DATA
«PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
wMPY
+DST
«DLD
«FMP

2021

R
X
X
X
x
x
X
X
X
X
X
R
R
R
R
R
R
R
R
X
X
X
X

poanaaa
2ageal
oraeaz
Q0aga3
A000a4
?0aeds
Qeeens
200007
200010
200011
20012
290002
2083023
208004
2002010
200013
nR2R23
202026
PRBRas3
P0RR13
200014
Qeee1s
Qaealé

** NO ERRORS»

ASMB,R,L,T»2Z

PAGE

2082»
28923
0GB 4
e85
0B06*
007+
2008
0909+
o318«
al1e
312+
8013+
BB14ax
8815
8416
8e17
o018
8319
80820
faz21
8822
20823
8924

@825

9826

#8082 #81 LINE FORMULIt DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTSs TMEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) 1S CALCULATED.

DATA 1S5 INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY 1S THE X COORDINATE OF THE FIRST POINTITHE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT:
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT 15 QUTPUT TO THE TELEPRINTER BY THE
FORMATTER L1BRARY ROUTINEs EACH QUANTITY CANNOT BE MORE
THAN AN EI1GHT DIGIT REAL NUMBER.

20000 NAM LINE
20008 888808 START NOP
99081 B260826R JMP INPUT

EXT .10C.,FLOAT,IFIX,SORT
EXT «D10.,.101.,.DTA.,.RAR.
EXT «<IDR.,.1AR.

20992 @0BABAR .DATA DEF DATA

P0B683 088243R .PRIN DEF PRINT

¢9884 PEPBOB DATA BSS 4

#8618 B24166 FMT ASC 3,(F8.2)

20811 9340456

eee12 31451

BBBI3 824186 FMT2 ASC 8,(FB.3,",",F8.3/)

60014 834956

20a15 831454

200216 821054

28017 821854

PP220 843079

60021 027863

88922 27451

20023 B24064 FMT3 ASC 3, (412)

28024 @44462

BPB25 824440

D-14 Assembler

PAGE

P28
2029
2030
8031
2032
0833
2034
2035
0836
o037

2039%
29 49
Al
2042
#2043

0045
2046
0847
2047
9047
o047

2049
2858
2851
es5s52

2854
2355
20S6
2057
20S8
2859

2861
#0062
0363
PB64

2066
o867
2868
2069
2078
71
#0712
2073
#0074
#0075
2076
2877
2078

2603 401

INPUT THE FIRST TWO POINTS)

290926
800827
98030
20031
28932
2P@33
8Pa3a
PPRB3S
28B36

290000

P62131R
206404

216005X
#00023R
PPABITR
#62132R
P660B2R
P16012X%

THE DISTANCE

20037
28040
P0BAa1

2P0 42

20043
20044
88045
28046

28Ba7

0858
Pea3s2

88853
200854
208355
800856
2ens7
28061

00062

90063
20064

FIND

P62006R
803304
P42@04R

026047R

200000
200080
008080
208000

@72043R

@16013X
@72043R

262807R
083804

P4200SR
P72844R
216013X
#42043R

216802X
216804X
P16014X

LINE FORMULIS

INPUT

DISTANCE, SLOPE.

FOUR DATA WORDS
NOP

LDA =BS

CLB, INB

JSB .DI0.

DEF FMT3

DEF #+4

LDA =Ba

LDB .DATA

JSB .1AR.

BETWEEN THE TWO POINTS:

PRINT

LDA DATA+2
CMA, INA
ADA DATA

JMP *x+5
REP a4
NOP
NOP

NOP

NOP

STA PRINT
Sup

MPY PRINT
STA PRINT

LDA DATA+3
CMA, INA
ADA DATA+1
STA PRINT+}
MPY PRINT+!
ADA PRINT

JSB FLOAT
JSB S@QRT
OST PRINT
X1F

THE SLOPE OF THE LINE

PRINT

FN
LDA DATA+2
CMA, INA
ADA DATA
JMP s+S
REP 4

NOP

STA PRINT
SPC 1

LDA DATA+D
CMA, INA
ADA DATA+1

MID-POINT

Assembler D-15

PAGE @094 #9)

0279
00ED
0081}
2082
8084 OUTPUT THE RESULT
BPBS POP66 B62133R
0086 00067 PA6400
0087 D0B70 016005X
2088 ©20ATI VBVOIOR
9089 00AB7T2 QABBT6R
0098 ©VORT3 016915X
9091 00075 A160811X
Q892 ©@0a76 2160B7X
P@9ax FIND THE MID-POINT
0095 0@08A77 V062004R
P96 02109 B42P06R
2N97 0101 BR6400
0098 901082 216pA2XK
P099 ©A1E3 B16616X
2108 30185 @16814aX
2192 02081987 P620DSR
2103 29110 B42907TR
2104 00111 206400
2105 00112 A16002X
9106 BOA113 016016X
Q187 08115 B16914X
ert9
212)
9122 00130 026026R
02131 B0G00S
00132 000084
20133 0000R2
PR134 3400360
BG135 Q08200
@123
% NO ERRORSx

D-16 Assembler

LINE FORMULI:

cLB
DIV
DST
XIF

LDA
CLB
JSB
DEF
DEF
oLD
JsB
JsB

DISTANCE, SLOPE,

PRINT
PRINT

«D10.
FMT
*+4
PRINT
«I0R.
+«DTA.

OF THE LINE SEGMENT:

LDA
ADA
cLB
Jse
P
DST

LDA
ADA
cLB
JsB
FMP
DST

LST

UNS
JMP

END

DATA
DATA+2

FLOAT
=Fs5
PRINT

DATA+1
DATA+3

FLOAT
=F.5
PRINT+2

INPUT

START

MID~POINT

PAGE

2021
START
«10C.
FLOAT
IFIX,
SQRT
-DIO.
«I10I.
«DTA.
+RAR.
«IOR.
«IAR.
«DATA
«PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
D1V
«DST
«DLD
«FMP

88901

X
X
X
X
X
X
X
X
X
X
R
R
R
R
R
R
R
R
X
X
X
X

o000
0800091
800002
000003
200004
200005
200006
000007
200010
200011
oove12
000002
000083
800004
200010
000013
0000823
200026
200043
208013
200014
200915
000016

*% NO ERRORS»

ASMB,R,L,>TsN

Assembler D-17

PAGE

2BR2*
20B3*
2BO 4%
P0BS*
2006*
2807
2088*
2009
2910~
2011+
2912%
2013*
881 4%
@a1s
8816
ee17
o018
8019
8020
8021
0922
2923
0024

2025

2026

8002 #61 LINE FORMULLI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) 1S CALCULATED.

DATA 1S INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY 1S THE X COORDINATE OF THE FIRST POINT)THE
SECOND QUANTITY 1S THE Y COORDINATE OF THE FIRST POINT:
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE: EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

22000 NAM LINE
20000 02PP2R START NOP
20081 226B26R JMP INPUT

EXT .10C.,FLOAT,IFIX,SORT
EXT +DI0.,.1014,.DTA.,:RAR.
EXT .I10R.s.1AR.

20002 80BOO4R .DATA DEF DATA

860603 820243R .PRIN DEF PRINT

Pee04 80003280 DATA BSS 4

00618 824186 FMT ASC 3,(FB.3>

00811 834056

08612 831451

P00B123 V24126 FMT2 ASC 8,(F8.3,",",F8.3/)

90014 234656

20015 B31454

20816 021854

08017 621854

90020 043670

00021 927063

20022 827451

20823 P24064 FMT3 ASC 3, 4af2)

08024 D44462

80025 824440

D-18 Assembler

PAGE

0028*
2029
8830
2031
en32
2933
0034
2035
2036
2837

2239%
2040
ee41
2042
0243
R044
2045
0346
es47
PO 48
006 49
@350
2851
2052
20953
054
2055
2056
2057
2958
2059
0060
2061
Boé2
8063
0064

B0O66*
0067
PD68
2069
8070
2871
72
2073
2073
2873
2973
9074

2076
298717
2078

2083 #@t LINE FORMULIt DISTANCE, SLOPE, MID-POINT

INPUT THE FIRST TWO POINTS3 FOUR DATA WORDS

20026
Q0027
oople
00031

eeed2
20033
28034
20035
20036

¢0@08@ INPUT NOP

062123R LDA =BS
006404 CLB,sINB
016005 JSB .DIO.
#00023R DEF FMT3
20003 7R DEF =*+4
062124R LDA =B4
066002R LDB .DATA
216012 JSB .lAR.

THE DISTANCE BETWEEN THE TWQ PQINTS:

FIND

oR0 37
00040
00B4)
20042

00043
PRD44
o8B45
PeR4s
20047

20050
-1]
88852

LDA DATA+2

CMA, INA

ADA DATA

SPC 1

JMP %45
PRINT REP 4

NGOP

SPC 1

STA PRINT

SupP

MPY PRINT

S5TA PRINT

SPC)

LDA DATA+3

CMA, INA

ADA DATA+]

STA PRINT+)

MPY PRINT+}

ADA PRINT

5PC 1t

JSB FLOAT

JSB SQRT

DST PRINT

XIF

THE SLOPE OF THE LINE

IFN
062006R LDA DATA+2
0083604 CMA, INA
942004R ADA DATA
#26047R JMP %5

PRINT REP 4

000000 NOP

200000 NOP

000000 NOP

200000 NOP
@72843R STA PRINT
#62807R LDA DATA+3
203004 CMA, INA
042005R ADA DATA+)

Assembler D-19

PAGE @8@3 #@1 LINE FORMULI: DISTANCE, SLOPE, MID~POINT

B828» INPUT THE FIRST TWO POINTSs FOUR DATA WORDS
8029 00026 000BAB INPUT NOP

9030 BOB27 962123R LbA =BS
8031 20837 006404 CLB.INB
8032 00031 016895X JSB .DIO.
8033 00032 0BBO23R DEF FMT3
2834 0BD33 PBPO3TR DEF %+4
0035 00834 062124R LDA =B4
9036 0D0OB3S V66002R LDB .DATA
PB37 00VI6 D16012X JSB .I1AR.

@039* THE DISTANCE BETWEEN THE TWO POINTS:

2040 IFZ

2041 LDA DATA+2
0042 CMA, INA
9943 ADA DATA
0844 SPC 1

2045 JMP *+5
2046 PRINT REP 4

onar NOP

8048 SPC 1

0049 STA PRINT
2959 SuUP

205} MPY PRINT
2952 STA PRINT
9853 SPC 1

0054 LDA DATA+3
8055 CMA, INA
2056 ADA DATA+)
2057 STA PRINT+1
2058 MPY PRINT+1
059 ADA PRINT
2060 SPC 1

8861 JSB FLOAT
9062 JSB SGRT
2063 DST PRINT
8064 X1F

#066* FIND THE SLOPE OF THE LINE

2067 IFN

8268 00037 062006R LDA DATA+2
2069 00048 083004 CMA, INA
6078 @804t B42884R ADA DATA
2071 BRBA2 92604TR JMP %45
8272 PRINT REP 4
0073 00P43 20PRPB NOP

8073 00044 200000 NOP

99073 00845 800000 NOP

#0723 BBB46 000000 NOP

9874 00847 872043R STA PRINT
9976 00050 B8620807R LDA DATA+3
9077 98051 203084 CMA, INA
#8078 080852 042905R ADA DATA+)

D-20 Assembler

SYSTEM INPUT/OUTPUT SUBROUTINES E

The System Input/Outout (SIO) subroutines may be used to
perform basic input/output operations for programs in ab-
solute form.

MEMORY ALLOCATION

These drivers are stored in high memory immediately
preceding the Basic Binary Loader. The Teleprinter driver
must be loaded first; it is stored in the highest portion of
this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic
Tape Unit may then be loaded. The sequence of loading
must fall within this order, depending on your equipment
configuration: Line Printer Driver, Punched Tape Reader
Driver (or Marked Card Reader), Tape Punch Driver, Mag-
netic Tape Driver, and if needed, the MTS Boot.

The drivers are accessed through 15-bit absolute addresses
which are stored in the System Linkage area starting at loca-
tion 1015. The allocation of memory is as follows:

07777 OR 17777 BASIC BINARY LOADER
07700 OR 17777 lee.s—TELEPRINTER DRIVER

PUNCHED TAPE
N\ READER DRIVER

/ \\QTAPE PUNCH DRIVER
MAGNETIC TAPE DRIVER
PROGRAM

INTER-PASS LOADER
AVAILABLE

/ MEMORY/
BASE PAGE
AVAILABLE
00107 MEMORY
00700 SYSTEM LINKAGE

00000—————=" “*3-RESERVED LOCATIONS

t The SIO subroutines are designed for use with FORTRAN,
Assembler, Symbolic Editor, etc.; however, they may be
used with any absolute object program.

Assembler E-1

OPERATION AND CALLING SEQUENCE:

PAPER TAPE DEVICES

All data transmission is accomplished without interrupt con-
trol, and therefore, operations are not buffered by the drivers.
Control is not returned to the calling program until an opera-
tion is completed. Data is transferred to and from buffer
storage areas specified in the user program.

The general form of the paper tape input/ocutput calling sequence
Is: LDA <buffer length) (words or characters)
LDB <buffer address)

JSB 10fB,I (f is Input/Output function)

{(normal return)

Register Contents

When the JSB is performed, the A-Register must contain the
length of the buffer storage area and the B-Register, the ad-
dress of the buffer. Control returns to the location following
the JSB. After an input request is completed, the A-Register
contains a positive integer indicating the number of characters,
or anegative integer to indicate the words transmitted or zeros,
if an End-of-Tape (EOT) condition occurred.

The digit supplied for f in the JSB instruction determines the
paper tape input/output function to be performed. The value of
the operand address is the location in the System Linkage that
contains the absolute address of the driver entry point. The
following are available:

101 Input

102 List Output

103 Punch Output

104 Keyboard Input—ASCII data isread from Teleprinter
and printed as it is received.

If the Teleprinter driver alone is loaded, these locations point
to entry points of this driver. If Punched Tape Reader and
Tape Punch drivers are in memory, location 101 points to the
Punched Tape Reader driver and location 103, to the Tape
Punch driver. H the latter are to be used, they must be loaded
after the Teleprinter driver.

E-2 Assembler

OPERATION AND CALLING SEQUENCE:
MAGNETIC TAPE DRIVER

As with the Paper Tape SIO drivers, all data transmission
is accomplished without interrupt control. Control is not re-
turned to the calling program until an operation is completed.
(Rewind and rewind standby are the only exceptions to this. In
these cases return is made as soon as the command is
accepted.)

The general form of the calling sequence is:

LDA <buffer length> or <file count)
LDB <buffer address) or <(record count)
JSB 107B,I

OCT <command code)

< EOF/EOT/SOT return>

{error return)

<{normal return)

NOTE: Location 107g must contain the address of the
magnetic tape driver,

Register Contents

Before initiating read or write operations, the A-Register must
contain the buffer length. This will be a positive integer if
length is defined in characters and a negative integer if length
is defined in words. The B-Register must contain the buffer
address.

Before initiating tape positioning operations, the A-Register
must contain the number of files that are to be spaced. A
positive integer indicates forward spacing; a negative integer
indicates backward spacing. The B-Register contains the
number of records that are to be spaced. A positive integer
indicates forward spacing; a negative integer indicates back-
ward spacing. The positioning may be defined in terms of any
combination of forward or backwardspacing of files and records
(e.g., space forward two files then backspace three records).
If files only or records only are to be spaced, the contents of
the other register should be zeros.

The registers are not used when entering the subroutine to
perform one of the following operations:

Assembler E-3

Write end-of-file Rewind/Standby
Write file gap Status
Rewind

Linkage Address

107B is the System Linkage word that contains the absolute
address of the entry point for the Magnetic Tape driver.

On return from a read operation, the A-Register contains a
positive value indicating the number of words or characters
transmitted.

On return from all operations except Rewind and Rewind/
Standby the B-Register contains status of the operation (See
Status).

MAGNETIC TAPE OPERATIONS

The magnetic tape driver will perform the following operations.
The pertinent operation is specified by the command code
which appears after the OCT in the calling sequence.

Operation Command Code

Read

Write

Write End-of-File

Rewind (Auto mode)

Position

Rewind/Standby (Local mode)
Gap

Status

Read

One tape record is read into the buffer. The number of
characters or words read is stored in the A-Register. The
value will be equal to the buffer length except when the data
on tape is less than the length of the buffer. One tape record
is read to transfer the number of characters specified into
the buffer. The number of characters in that record (not
the number transferred) will be stored in the A-Register.
If the tape record exceeds the buffer length, the data will
be read into the buffer until the buffer is filled, the remainder
of the record will be skipped. If the length of an input
buffer is an odd number of characters, a read operation will
result in the overlaying of the character following the last
character of the buffer; the subroutine actually transmits
full words only.

IR WD~ O

E-4 Assembler

Three attempts are made to read the record before return-
ing control to the parity error address.

If an EOT condition exists at the time of entry, the command
will be ignored and control will be returned to the EQT/EOF
address.

If the buffer length specified is 0 control will return to the
normal address without any tape movement.

The input buffer storage area can be as large or as small as
needed. The number of characters in the tape record will be
stored in the A-Register.

Write

The contents of the buffer is written on tape preceded by the
record length, Since a minimum of 7 tape characters (12 on
3030) may be written, short records are padded.

If the end-of-tape is detected during the write operation, the
normal return is used. The next write operation, however,
results in a return of control of the EOF/EOT location; no
data is written. If an EOT condition exists at the time of en-
try, the command will be ignored and control willbe returned
to the EOT/EOF address.

Assembler E-§

Write End-of-File

A standard EOF character (17g for 2020, 23g for 3030) is written
on tape. Control returns to the normal location with the EOF
status on the B-Register. No gap is written.

If the end of tape was reached on a previous write command,
control returns to the EOF/EOT location; the character is
written.

Rewind

This command initiates a rewind operation and then immedi-
ately returns control to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,1
OCT 3
<{normal return)

The user need not test status on the rewind operation before
issuing the next call.

Position

This is the general command to move the tape. Both file
and record operations may be defined in the same operation.
Either may be specified for forward or backward spacing.
At the completion of the operation the tape will be positioned
ready for reading or writing.

An attempt to space beyond the End-of-Tape or Start-of-Tape
will terminate the positioning operation and return control
to the EOF/EOT/SOT location,

E-6 Assembler

Rewind/Standby

This causes the tape to be positioned atload point and switches
the device to local status. Control returns to the normal loca-
tion immediately after the operation is initiated.

The calling sequence for a Rewind / Standby operation
consists of:

JSB 107B,I
ocCT 5
<normal return)

An attempt to issue another call on this device results in a
halt (102044). The device must be switched to AUTO before
the program can continue.

Gap

This command causes a 3-inch gap to be written on the tape.

1f the End-of-Tape was reached on a previous write command,
control returns to the EOF/EOT location; the gap is not
written.

Status

This command returns certain status bits in the B-Register.
The driver performs a clear command whenever it is entered
and as a result the only bits that are valid indicators are:

Start-of-Tape
End-of-Tape
Write Not Enabled

Assembler E-7

All other commands (except Rewind and Rewind/Standby)
provide valid status replies on return to the program.

The status reply consists only of bits 8-0 and has the
following significance:

Bits 8-0

1xXXXXXXXX
X1 XXXXXXX
XX1 XXXXXX

XXX1XXXXX

XXXX1XXXX

XXXXX1 XXX

XXXXXX1XX

XXXXXXX1X

Xxxxxxxx1

E-8 Assembler

Condition

Local - The device is in local status

EOF- An End-of-File character (17g for7
track, 238 for 9) has been detected while
reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the
photo sense head.

EOT - The End-of-Tape reflective marker is
sensed while the tape is moving forward. The
bit remains set until a rewind command is
given.

Timing - A character was lost.

Reject - a) Tape motion is required and the
unit is busy. b) Backward tape motion is
required and the tape is at load point. ¢) A
write command is given and the tape reel
does not have a write enable ring.

Write not enabled - Tape reel does not have
write enable ring or tape unit is rewinding.

Parity error - A vertical or longitudinal
parity error occurred during reading or writ-
ing. (Parity is not checked during forward or
backward spacing operations.)

Busy - The tape is in motion or the device
is in local status.

Following is a table summarizing the tape commands:

. |Command Call Return
Operation| ™ e A B A B
Read '] Buffer Buffer Buffer Status

Length Address or
Record
Length
Write 1 Buffer Buffer Buffer Status
Length {Address |Length
Write 2 - - - Status
EOF
Rewind 3 - - - -
(Auto mode)
Position 4 Number |Number - Status
of Files, |of
Direc- Records,
tion Direction
Rewind/ 5 - - - -
Standby
(Local
mode)
Gap 6 - - - Status
Status 7 - - Status

Assembler E-9

Additional Linkage Addresses

Other locations in the System Linkage area contain the fol-
lowing:

100g Used by the standard software system to store a JMP
to the transfer address.

105g First word address of available memory.
106g Last word address of available memory.

The latter two locations may be accessed by an absolute pro-
gram. The user may store the first word of available memo-
ry in 105 by performing the following:

ORG 105B
ABS < last location of user program +1 >

The last word of available memory is established by the driv-
ers; it is the location immediately preceding the first location
used by the last driver loaded.

BUFFER STORAGE AREA

The Buffer Address is the location of the first word of data to
be written on an output device or the first word of a block re-
served for storage of data read from an input device. The
length of the buffer area is specified inthe A-Register in terms
of ASCIH input or output characters or binary output words.
For binary input, the length of the buffer is the length of the
record which is specified in the first character of the record.
ASCH and binary input record lengths are given as positive in-
tegers. The length of a binary output record is specified as
the two's complement of the number of words in the record.

Inaddition to describing the buffer areain the calling sequence,
(or first word of binary input record), the area must also be

specifically defined in the program, for example with a BSS
instruction.

Record Formats
ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an
end-of-record mark which consists of a carriage return,
and a line feed,

E-10 Assembler

For an input operation, the length of the record transmitted to
the buffer is the number of characters designated in the A-
Register, or less if an end-of-record mark is encountered be-
fore the character count is exhausted. The codes for CR) and

arenot transmitted to the buffer. An end-of-record mark
preceding the first data character is ignored.

For an output operation, the length of therecord is determined
by the number of characters designated in the request. An
end-of-record mark is supplied at the end of each output oper-
ation by the driver.

Ifa code followed by a @ is encountered on

input from the Teleprinter or Punched Tape Reader, the cur-
rent record is ignored (deleted) and the next record trans-
mitted. ¥

If less than ten feed frames (all zeros) are encountered before
the first data character from the Punched Tape Reader, they
are ignored. Ten feed frames are interpreted as an end-of-
tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in
memory or on 8-level paper tape. Each computer word is
translated into two tape ‘‘characters’’ (and vice versa) as
follows:

1st Tape cnar 115 |14]13]42]11]10] o
2%mapeciar 71615141312

@

)

For an output operation, the record length is the number of
words designated by the value in the A-Register (the value is
the two’s complement of the number of words). For input
operations, the first word of the record contains a positive
integer in bits 15-8 specifying the length (in words) of the
record including the first word.

-

¥ RUB _OUTD which appears on the Teleprinter keyboard is
synonymous with the ASCII symbol

Assembler E-11

On input operations if less than ten feed frames precede the
first data character, they are ignored; ten feedframes are in-
terpreted as an end-of-tape condition. On output, the driver
writes four feed frames to serve as a physical record sepa-
rator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd
parity) records only. A record count is supplied by the
driver as the first word of the record. This allows automatic
padding of short records to the minimum record length with
automatic removal of the padded portion of the record on
read.

2020 7-LEVEL TAPE
Each Computer word is translated intothree tape ‘‘characters’”
(and vice versa) as follows:

15 n_o* 6
computer word [1 O 1 1 00OV 1 10

e port '\ ; *Bits 10 ond 5 are recorded
rt o —————~———/ twice, in two tape characters
word 2nd 5%'.'¢°' 15t 8,%','a°' as shown ’

TAPE TRACKS

1st tape character
2nd "
k17 "

P =0dd parity bit

3030 9-LEVEL TAPE

Each Computer Word is translated into Two tape ""characters"
by repositioning the bits in the following scheme:

COMPUTER WORD BITS 15 B7 0
Istwordcontents 1000110011011 1101
2nd wordcontents [0 1 1010011101001 0

TAPE TRACK &iigg{gillllllll

ASSIGNMENTS 76539182 g TRACK 41S THE
ODD PARITY BIT

TAPE TRACKS

1st tape character
2nd tape character
3rd tape character
4th tape character

E-12 Assembler

OPERATING AND CALLING SEQUENCE:
MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the Punched
Tape Reader Driver exactly, therefore, only one or the other of
these two drivers may be used in any one SIO System configura-
tion, Further, the driver has no binary read capability; if this
ability is needed, the BCS Mark Sense Card Reader Driver will
have to be used.

Alldata transmission is accomplished without interrupt control.
Execution control is not returned to the calling program until a
complete card has been read.

The general form of the calling sequence is:

ILDA < character count > (positive)
LDB < buffer address >

JSB <101B, I>

<normal return >

Register Contents

Before the JSB is executed, the A-Register must contain the
character count (the buffer length) and the B-Register must con -
tain the buffer address. Control returns to the location follow-
ing the JSB; then the A -Register will contain the number of char-
acters transmitted not including trailing blanks, or, if a trans-
mission error was detected, it will contain all zeros.

Assembler E-13

F FORMATTER

CALLING SEQUENCES

The Formatter is a library subroutine used by FORTRAN
and ALGOL to input or output data. An assembler program
may access the Formatter routine with a 5 to 9 line calling
sequence depending on the form of the call.

I. Format Definition
INPUT OoUTPUT
LDA (unit) LDA (unit)
Formatted CLB,INB CLB
JSB .DIO. JSB .DIO.
DEF (fmt) or ABS 0 DEF (fmt)
DEF (end of list) DEF (end of list)
LDA (unit) LDA (unit)
Binary CLB,INB CLB
JSB .BIO, JSB .BIO.
where
unit refers to the unit reference number of the

device to be called

fmt is the label of an ASC pseudo instruction
which defines the format specifigation

end of list is the location immediately following the last
parameter of the calling sequence; it is to this
location that the Formatter returns control.

ABS O is an option for free field input
formatted L

input/output is in ASCH code

binary L

input/output 1S In binary code

F-0 Assembler

II. Element Definition

INPUT QUTPUT
Real Variable JSB JOR. DLD b'¢

DST x JSB JOR.
Integer Variable JSB J0I LDA i

STA i JSB JO0I.
Array LDA array length

LDB array address
JSB .RAR. (real) or .IAR. (integer)

where
X or i are addresses, real or integer, of the data
array length is the number of elements (not the number of

memory locations) in the block of data.
(Maximum length is equivalent to 60 computer
words.)
III. Terminator
INPUT OUTPUT
(none) JSB .DTA.
Symbols such as .DIO., .IOR., etc., are entry points to the
Formatter; all entry points used in the calling sequence must

be declared external with an EXT pseudo code.

Data stored in memory may be converted internally from one
format to another with the following initial call.

LDA =BO

JSB .DIO.

DEF buffer

DEF (fmt)

DEF (end of list)

.

Element Definition

Terminator
where buffer is the address of the data to be converted.

Assembler F-1

FORMAT SPECIFICATIONS

Below are listed the format conversion and editing specifica-

tions.

rAw

rEw.d

rFw.d

riw

r@w

rKw

nX

nHhj. .. hy }
r‘“hy. .. hy”
r/

where

r

F-2 Assembler

Alphanumeric character

Real number with exponent
Real number without exponent
Decimal integer

Octal integer

Blank field descriptor
Heading and labeling descriptors

Begin new resord

is the number of times the entire format is
repeated

is the number of digits in the format

is the number of digits to the right of the
decimal point (w-d should be greater than or
equal to 4)

is the number of characters or spaces
represents the ASCII characters

translates alphanumeric data to or from
memory. If w is greater than 2 only the last
two characters are processed; if w is 1, the
single character is read into or written from
the right-half of the computer word.

converts data to a real number. On output,data

may consist of integer, fraction, and exponent
subfields.

+
n,..nmn...n- ee
E

Zl+

On output, data appears in floating point form.

Q.xl...xdEiee

Fw

Iw

@w and Kw
thl. . .hn
r‘‘hy. .. hy”’

For output operations real numbers in memory

are converted to character form which will

appear right justified in decimal form. Input

is identical to the E specification input.
DX, X, X.,..X

translates decimal integerstoor from memory
_/: Xl e Xd

translates octal integers to or from memory.

/_\Xl...Xd

provides for the transfer of any combination of
8-bit ASCII characters, including blanks.

also transfers ASCII characters; field length
is not specified, quotation marks are not trans-
ferred.

(For a more detailed description of the Format specifications
see the FORTRAN Programmer’s Reference Manual, Section 7.)

EXAMPLE

Below is an example of a calling sequence to the Formatter that
will output the contents of a block data, SOLVE, such that
each number is printed on the teleprinter in the following

manner:

XXXXXX. XX

SOLVE occupies 10015 memory locations; the data stored there
is in floating point form.

Assembler F-3

P

.10{1]0].

Opavstion

Comantt
i

1

il

T

. [D[T]Al.

JRIARRL]

.DII|0.

D510

.|RIAR|.
.|D|TIAL.

EXT

AISIC] 15], 14121}, [FI8[.|2)

LDJA] |=|BS
CiLB
JISB

DEEIF] |FIRM|T|
DIEIF| [%+5

LIDIA

Li0|B|_ISIOLVIE

JJSiB
JISB

I

FIRMT

SIO[L|VE| [B[S|S] [1]0l0!

F-4 Assembier

ASSEMBLER ERROR MESSAGES 1

During the compilation or assembly of programs, error messages are
typed on the list output device to aid the programmer in debugging
programs. Errors detected in the source program are indicated by a 1- or
2- letter mnemonic followed by the sequence number and the first 62
characters of the statement in error. The messages are printed on the
output device during the passes indicated.

For Extended Assembler, error listings produced during Pass 1 are pre-
ceded by a number which identifies the source input file where the error
was found. Pass 2 and 3 error messages are preceded by a reference to the
previous page of the listing where an error message was written. The first
error will refer to page “O”.

Error
Code Pass Description
CS 1 Control statement error:
a) The control statement contained a
parameter other than the legal set.
b) Neither A nor R, or both A and R
were specified.
¢) There was no output parameter (B,
T, or L.)
DD 1 Doubly defined symbol: A name defined
in the symbol table appears more than
once as:

a) A label of a machine instruction.

b) A label of one of the pseudo

operations:
BSS EQU
ASC ABS
DEC OCT
DEF Arithmetic subroutine call
DEX

Assembler G-1

Error

Code Pass
EN 1
ENQQ® <symbol>2
IF 1
IL 1
IL 20r3

G-2 Assembler

Description

¢) A name in the Operand field of a
COM or EXT statement.

d) A label in an instruction following a
REP pseudo operation.

e) Any combination of the above.

An arithmetic subroutine call symbol
appears in a program both as a pseudo in-
struction and as a label.

The symbol specified in an ENT state-
ment has already been defined in an EXT
or COM statement.

The entry point specified in an ENT state-
ment does not appear in the label field of
a machine or BSS instruction. The entry
point has been defined in the Operand
field of an EXT or COM statement, or has
been equated to an absolute value.

AnIFZ or an IFN follows either an IFZ or
an IFN without an intervening XIF. The
second pseudo instruction is ignored.

Illegal instruction:

a) Instruction mnemonic cannot be used
with type of assembly requested in
control statement. The following are
illegal in an absolute assembly:

NAM EXT

ENT COM

ORB Arithmetic subroutine calls
b) The ASMB statement has an R param-

eter, and NAM has been detected after
the first valid Opcode.

Illegal character: A numeric term used in
the Operand field contains an illegal char-
acter (e.g. an octal constant contains other
than +, -, or 9-7).

Illegal instruction: ORB in an absolute
assembly

Error
Code

Pass

1,20r3

Description

Illegal operand:

a)

b)

c)

d)

e)

f)

Operand is missing for an Opcode
requiring one.

Operands are optional and omitted
but comments are included for:

END
HLT

An absolute expression in one of the
following instructions from a relo-
catable program is greater than 77g.
Memory Reference
DEF
Arithmetic subroutine calls
A negative operand is used with an

Opcode field other than ABS, DEX,
and OCT.

A character other than I follows a
comma in one of the following
statements:

ISZ ADA AND DEF

JMP ADB XOR Arithmetic

JSB LDA IQOR subroutine

DB cpa s
STA CPB
STB

A character other than C follows a
comma in one of the following
statements:

STC MIB
CLC 0TA
LIA OTB
LIB HLT
MIA

Assembler G-3

Error
Code

G-4 Assembler

Pass

g)

h)

i)

B)]

k)

m)

n)

o)

Description

A relocatable expression in the oper-
and field of one of the following:

ABS ASR RRL
REP ASL LSR
SPC RRR LSL

An illegal operator appears in an
Operand field (e.g. + or - as the last
character).

An ORG statement appearing in a re-
locatable program includes an expres-
sion that is base page or common
relocatable or absolute.

A relocatable expression contains a
mixture of program, base page, and
common relocatable terms.

An external symbol appears in an
operand expression or is followed by
a common and the letter I.

The literal or type of literal is illegal
for the operation code used (e.g.,
STA = B7).

An illegal literal code has been used
(e.g., LDA = 077).

An integer expression in one of the
following instructions does not meet
the condition 1<n<16. The integer
is evaluated modulo 24.

ASR RRR LSR

ASL RRL LSL

The value of an ‘L’ type literal is
relocatable.

Error
Code

NO

oP

oP

oV

R?

Pass

1,2,3

1,2,3

1,2, or 3

1,2 or 3

Before 1

Description

No origin definition: The first statement
in the assembly containing a valid opcode
following the ASMB control statement
(and remarks and/or HED, if present) is
neither an ORG nor a NAM statement.
If the A parameter was given on the ASMB
statement, the program is assembled start-
ing at 2000; if an R parameter was given,
the program is assembled starting at zero.

Illegal Opcode preceding first valid Op-
code. The statement being processed does
not contain an asterisk in position one.
The statement is assumed to contain an
illegal Opcode; it is treated as a remarks
statement.

Illegal Opcode: A mnemonic appears in
the Opcode field which is not valid for the
hardware configuration or assembler being
used. A word is generated in the object
program.

Numeric operand overflow: The numeric
value of a term or expression has over-
flowed its limit:

1>N2>16 Shift-Rotate Set

26_1 Input/Output, Overflow, Halt

210_4 Memory Reference (in absolute
assembly)

2151 DEF and ABS operands, data
generated by DEC; or DEX: expressions
concerned with program location counter.

216_1 ocT
An attempt is made to assemble a relocat-

able program following the assembly of
an absolute program.

Assembler G-5

Error
Code

SO

SY

SY

G-6 Assembler

Pass

1,2,3

20r3

1,2,0or 3

1,2,0r 3

Description

There are more symbols defined in the
program than the symbol table can handle.

Illegal Symbol: A Label field contains an
illegal character or is greater than 5
characters. A label with illegal characters
may result in an erroneous assembly if not
corrected. A long label is truncated on
the right to 5 characters.

Illegal Symbol: A symbolic term in the
Operand field is greater than five charac-
ters; the symbol is truncated on the right
to 5 characters.

Too many control statements: A control
statement has been input both on the
teleprinter and the source tape or the
source tape contains more than one con-
trol statement. The Assembler assumes
that the source tape control statement is
a label, since it begins in column 1. Thus,
the commas are considered as illegal
characters and the “label” is too long. The
binary object tape is not affected by this
error, and the control statement entered
via the teleprinter is the one used by the
Assembler.

An error has occurred while reading
magnetic tape.

Undefined Symbol:

a) A symbolic term in an Operand field
is not defined in the Label field of
an Instruction or is not defined in the
Operand field of a COM or EXT
statement.

Error
Code Pass

Description

UN 1,2,0r 3 Undefined Symbol: (continued)

b)

A symbol appearing in the Operand
field of one of the following pseudo
operations was not defined previously
in the source program:

BSS ASC EQU ORG END

Assembler G-7

CONSOLIDATED CODING SHEET J

15 14 13 12 11 10 9 Le 7 6 r 5 4 k] l 2 1 Q
D/1 | AND 001 0 Z/C Memory Address§ ———————»
b/l | XOR 010 oz
D/1 | IOR 011 0 Z/C
D/l | ISB 001 1 Z/C
D/ | JIMP 010 1 2/C
D/l | ISZ o11 1 Z/C
D/1 | AD* 100 A/B Z/C
D/1 | Cp* 101 A/B Z/C
D/1 | LD* 110 A/B Z/C
D/T | ST* i A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 SRG 000 A/B 0 D/E | *LS 000 CLE D/E SL* | *LS 000
*RS 001 *RS Q01
R*L 010 R*L 010
R*R o11 R*R o011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111
NOP 000 000 000 000
15 14 13 12 11 10 9 8 7 [5 4 3 2 1
0 | ASG 000 A/B 1 CL* 01l |CLE 01 { SEZ §$* SL* | IN* SZ* RSS
l CM* 10 | CME 10
l cc* 11 [cCcE 11
15 14 13 12 1 10 9 8 7 8 5 4 3 2 1
10G 000 1 H/C HLT 000 +—————— Select Code ————
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS o11
A/B 1 H/C MI* 100
A8 1 H/C LI* 101
A/B 1 H/C OT* 110
[1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 01 000 001
1 1 cLO 001 000 001
1 H/C 80C 010 000 001
1 H/C SOS o011 000 001
15 14 13 12 11 10] 8 7 6 5 4 3 2 1
1 EAU 000 MPY** 000 010 000 000
DIV** 000 100 000 Q00
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 10 rumber
LSL 000 000 1 0 bits
RER 001 001 0 [1]
RRL 000 001 0 0
Notes: *=AorB.

D/1, A/B, Z/C, D/E, B/C coded: 0/1.
**Second word 18 Memory Address.

Assembler H-1°

Basic Control System Reference Manual

A 2100A 8K corestack with sense amplifiers and

diode decoding matrix is contained on a single plug-
in circuit board.

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION

CHAPTER 2 INPUT/OUTPUT REQUIREMENTS

2.1
2.1.1
2.1.2

2.7.5
2.7.6
2.1.7
2.1.8
2.1.9

2.8

2.8.1
2.8.2
2.8.3

Input/Output Subroutines
Relocating Loader
Prepare Control System
Debugging System

General Calling Sequence
Input/Output Subroutine (.IOC.)
Function, Subfunction, and

Unit Reference
Reject Address
Buffer Storage Area

Error Conditions During Execution

Clear Request

Status Request

Paper Tape System
Record Formats
Calling Sequence

HP 2891 A Card Reader
Data Formats
Calling Sequence
Status Requests
Transmission Log

HP 2778A, 2778 A-001 Line Printer
Modes of Operation
Calling Sequence
Input/Output Control (.IOC.)
Function and Subfunction Codes

Write Function (02)
Control Function (03)
Reject Address
Buffer Storage Area
Status Requests
Clear Request
Error Conditions
Equipment Table Flags
Tilegal Character
Illegal Buffer Length

HP 2767 Line Printer
Modes of Operation
Calling Sequence
Input/Output Control

it BCS

2.8.4

2.8.5
2.8.6
2.8.7

2.8.8
2.8.9

2.9
29.1

2.9.2
29.3
2.10

2.10.1

2.10.2
2.10.3
2.10.4
2.11

2111
2.11.2
2.11.3
2114
2.12

2121
2.12.2

2.12.3

Function and Subfunction Codes
Write Function (02)
Control Function (03)
Reject Address
Buffer Storage Area
Status Requests
Status Return Information
Clear Request
Error Conditions
Equipment Table Flags
Illegal Character
Illegal Buffer Length
Kennedy Incremental Transport
Record Formats
Binary Coded Decimal Records
BCD Record Format
Calling Sequence
Function and Subfunction Codes
Magnetic Tape System — HP 2020
Magnetic Tape Unit
Record Formats
Binary Records
Binary Record Format
Binary Coded Decimal Records
BCD Record Format
Calling Sequence
Function and Subfunction Codes
Buffer Length
Magnetic Tape System — HP 3030
Magnetic Tape Unit
Record Format
Calling Sequence
Function and Subfunction Codes
Buffer Length
Magnetic Tape System — HP 7970
Magnetic Tape Unit
Calling Sequence
Function, Subfunction, Unit-Reference
Codes
Reject Address
Allowable Motion Requests
Read and Write Requests
Rewind or Backspace Record Request
Read Parity Error Conditions
Write Parity Error Conditions
Attempted Write Request
Forward Motion Request
Backward Motion Request

2-36
2-37
2-38
2-38
2-38
2-42
2-42
2-43
2-44
2-44
2-44
2-44
2-45
2-45
2-45
2-45
2-46
2-46

2-417
2-47
2-47
2-47
2-48
2-48
2-49
2-49
2-49

2-50
2-50
2-51
2-52
2-52

2-53
2-53

2-54
2-54
2-55
2-55
2-55
2-55
2-56
2-56
2-56
2-56

2.12.4

2.12.5
2.12.6
213

2.13.1
2.13.2
2.13.3
2.14

2.15
2.16
2.16.1
2.16.2
2.17
2171
2.17.2
2.17.3
2.17.4

Function/Subfunction Code
Request 0307XX
Backspace File Request and
Forward Space File Request
Status Requests
Status Request Information
Clear Request
Control Requests
Data Source Interface Calling Sequences
Binary Output Operation
Binary Input Operation
ASCII Input Operation
Digital Voltmeter Programmer
Calling Sequence
Scanner Programmer Calling Sequence
Instrument Clear and Status Requests
Instrument Clear Request
Instrument Status Request
Mark Sense Card Reader
Calling Sequence
Buffer Length
Status Field
Functions

CHAPTER 3 RELOCATING LOADER

31
3.2
3.3
3.4

3.5

3.6

3.7

External Form of Loader
Internal Form of Loader
Relocatable Programs
Record Types
NAM
ENT
EXT
DBL
END
Memory Allocation
Common Block Allocation
Program Storage
Object Program Record Processing
ENT/EXT Record Processing
DBL Record Processing
END Record Processing
Relocatable Library Loading
End Condition
End-of-Loading Operation
Programming Considerations

2-56

2-57
2-57
2-58
2-59
2-60
2-61
2-61
2-62
2-63

2-64
2-65
2-66
2-66
2-66
2-67
2-67
2-68
2-68
2-69

(7]
]
o=l

C'DCDC'A)CDCD

(rJ

1 [
OO -ITM b WOWWWNHHE

mwww?:wwww

BCS iii

CHAPTER 4

3.8

Loader Operating Procedures
Loading Options
Memory Allocation List
Absolute Binary Output
Separation of List and Binary Output

INPUT/OUTPUT DRIVERS

4.1
4.2
421
4.2.2

General Description
Structure
Initiator Section
Continuator Section

CHAPTER 5 PREPARE CONTROL SYSTEM

5.1
5.2
5.3

5.4
5.5

Initialization Phase

Loading of BCS Modules

Input/Output Equipment Parameters
Equipment Table Statements — EQT
Standard Equipment Table Statements —

SQT

Direct Memory Access Statement—DMA

Interrupt Linkage Parameters

Processing Completion

CHAPTER 6 DEBUGGING SYSTEM

v BCS

6.1
6.2

Operator Communication
Control Statements
Program Relocation Base
Set Memory
Set Register
Dump Memory
Breakpoint Halt
Trace
Run
Restart
Control Statement Error
Halt
Indirect Loop
Output Formats
Standard Breakpoint Message
Dump
Operating Procedures
Example

3-12
3-13
3-13
3-13
3-14

4-1

PPEPODP

=11 N OO LW N

PO

APPENDIX A

APPENDIX B
APPENDIX C

APPENDIX D

APPENDIX E
APPENDIX F
APPENDIX G

APPENDIX H

APPENDIX |

APPENDIX J

HP CHARACTER SET

ASCII Character Format
ASCII — BCD Conversion —
Kennedy 1406/1506
ASCII — BCD Conversion — HP 2020
HP 2761A-007 Mark Sense Card Reader
Character Conversions — Mark Sense
Card Reader

EQUIPMENT TABLE
STANDARD UNIT
EQUIPMENT TABLE
JOC. WITH OUTPUT BUFFERING
Priority Output
Operating Environment
Restrictions

Halt Conditions
1/O Error Conditions

RELOCATABLE TAPE FORMAT
ABSOLUTE FORMAT

HOW TO GENERATE A BASIC
CONTROL SYSTEM

Operating Instructions
PCS ERROR HALTS AND
MESSAGES
HOW TO USE BCS TO RELOCATE
AND RUN PROGRAMS

Operating Instructions

BCS ERROR HALTS AND
MESSAGES

A-1
A-1
A-2
A-3
A-4
A-5
B-1

C-1

D-1
D-1
D-2
D-2
D-2
D-3
E-1

G-1
G-3

]
-1

BCS v/vi

GENERAL DESCRIPTION 1

The Basic Control System (BCS) provides an efficient loading and input/
output control capability for relocatable programs produced by the HP
Assembler, HP FORTRAN, FORTRAN IV, or HP ALGOL. BCS is
modular in design and is constructed to fit each user’s hardware
configuration.

The Basic Control System performs the following functions:
o Loads and links relocatable programs
o Creates indirect and base page addressing when necessary
¢ Selects and loads referenced library routines
o Processes I/O requests and services I/O interrupts

The Basic Control System is comprised of two distinct parts: input/
output subroutines and the Relocating Loader. Associated with the Basic
Control System are two other systems: Prepare Control System and the
Debugging System.

The Relocating Loader loads and links relocatable object pro-
grams generated by the Assembler, FORTRAN, and ALGOL. It
also links the objectprograms with the input/output subroutines
and any library subroutines referred to in the programs. The
Prepare Control System is used to adapt the Basic Control Sys-
tem program to a particular hardware configuration. The De-
bugging System is a relocatable program that BCS loads after
the object program(s); with the debugging program the program-
mer can find errors in his program.

The minimum equipment configuration required for the Basic Control
System (and Prepare Control System) is as follows:

2100 family computer with 4K memory

Teleprinter

L1 INPUT/OUTPUT SUBROUTINES

The input/output package consists of an Input/Output Control
subroutine and driver subroutines for the peripheral devices.
Input/output operations are specified as symbolic calling se-
quences in Assembler language. These requests are translated
into object code calls to the I/O Control subroutine. The sub-
routine interpretsthe call and directs the request to the proper

BCS 11

driver. The driver initiates the operation and returns control
to the calling program. Whenever interrupt occurs, the driver
temporarily resumes control to transfer the next element of
data. When the operation is completed, the I/O Control sub-
routine makes the status of the operation available for checking
by the program.

The input/output package allows device independent program-
ming; a device is specified interms of a unit-reference number
rather than a channel number or selectcode. Furthermore, the
user need not be concerned about how data is transmitted (by
bit, by character, etc.), he need only specify the number of
words or characters and the location in memory where the data
is stored.

1.2 RELOCATING LOADER

The Relocating Loader loads object code programs produced by
the Assembler, FORTRAN and ALGOL. The linking capability
of the Loader allows the user to divide a program into several
subprograms, to assemble and test each separately, and finally
to execute all as one program. Object subprograms produced
by the Assembler may be combined with object subprograms
produced by FORTRAN and ALGOL. The subprograms are
linked through symbolic entry points and external references.

The loader also provides indirect addressing whenever an operand of
an instruction does not fall in the same page as that into which the
instruction is being loaded. This allows a program to be designed without
concern for page boundaries.

An optional feature of the loader allows the user to obtain an absolute
dump of a relocatable program plus the Basic Control System and those
library subroutines that were referenced by the program. The process of
generating the absolute program is such that instructions (not just
common storage) may be allocated to the area normally occupied by
the loader. This feature may also be utilized for a program which has
reached “production” status; absolute format requires less loading time
because an absolute program is loaded by the Basic Binary Loader.

The following information is relevant to the Relocating Loader used in
core memory greater than 4K:

a. When the Relocating Loader is not requested to produce an
absolute version of a program, it sets all unused locations in memory to
1060558 (a unique halt instruction) so that a halt will occur if any
should be executed. This is useful for detecting errors in programs.

1-2BCS

b. A certain portion of the BCS Relocating Loader must always
be resident in core while the BCS is in use. This portion of the Relocating
Loader contains a segment labeled HALT, which is used by the new
version of the .STOP routine in the Relocatable Library. The final halt
instruction for the BCS is directly associated with this entry point for
use in one of two ways. The final halt instruction remains unchanged if
paper tape operation is used, but it is changed to JSB 00106g, I (a call
to the Inter-Pass Loader of the Magnetic Tape System) if the BCS is run
using MTS.

For further information on the BCS and its relation to the Magnetic
Tape System see the Magnetic Tape System manual, HP 02116-91752.

1.3 PREPARE CONTROL SYSTEM

Prepare Control System is a special purpose program which
produces anabsolute version of the Basic Control System from
relocatable BCS subprograms. During the construction of the
absolute BCS, the user also establishes the relationships among
I/O channel numbers, drivers, interrupt entry points in the
drivers, and unit-reference numbers. Prepare Control Sys-
tem is used when the configuration of the hardware is defined
initially or whenever there is a modification or expansion to
the configuration.

1.4 DEBUGGING SYSTEM

The debugging routine provides aids in program testing. Options
provided by the routine will print selected areas of memory,
traceportions of the program during execution, modify the con-
tents of selected areas in memory, modify simulated computer
registers, halt execution of the program at specified break-
points, and initiate execution at any point in the program.

BCS 1-3/14

INPUT/OUTPUT REQUESTS 2

The Basic Control System provides the facility to request in-
put/output operations in the form of five-word calling sequences
in assembly language. The Basic Control System interprets
the call, initiates the operation, and returns control to the
calling program. Whenthe data transfer is complete, the Sys-
tem provides status information which may be checked by the
program. Interrupts which occur during or on termination of
the transfer are processed entirely by the System; interrupt
handling subroutines are not required in the user's program.

2.) GENERAL CALLING SEQUENCE

The general form of the input/output request is:

EXT I0C.
JSB .I0C.
OoCT <function > <subfunction> <unit-reference>
JSB } .
{JMP reject address <error return>
DEF buffer address
DEC }
{OCT buffer length

<normal return>

2.1.1 INPUT/OUTPUT SUBROUTINE (.10C.)

IOC. is the symbolic entry point name of the input/output control
subroutine within the Basic Control System. All input/output operations
are requested by performing a jump subroutine (JSB) to this entry point.
The input/output control subroutine returns control to the calling pro-
gram at the first location following the last word of the calling sequence.
Programs referring to .IOC. must declare it as an external symbol.

BCS 2-1

2.1.2 FUNCTION, SUBFUNCTION, AND UNIT-REFERENCE

The second word of the request determines the function to be
performed and the unit of equipment for which the action is to
be taken. In assembly language, this information may be sup-
plied in the form of an octal constant. The bit combinations
that comprise the constant are as follows:

15 12z N 9 8 7 6 5 0
m% p1 v J m l unit - reference]
. J
sub;\:\ciion
Function

The function (bits 15-12) indicates the basic read /write operation:

Function Name Code (octal)
Read 01
Write 02
Subfunction

The subfunction (bits 11-6) defines the options for certain read/write
operations:

p =1 Print input: The ASCII data read from the Teleprinter
is printed as it is received.

v = 1 - Variable length binary input: The value in bits
15-8 of the first word on an input paper tape in-
dicates the length of the record {including the
first word). If the value exceeds the length of
the buffer, only the number of words specified
as the buffer length are read. If v = 0, the buf-
fer length field always determines the length of
record to be transmitted. If the device does not
read paper tape, the parameter is ignored.

2-2 BCS

m=1 Mode: Thedata istransmittedin binary form ex-
actly as it appears in memory or on the
external device. If m = 0, the data is
transmitted in ASCII or BCD format.

Unit-Reference

The value specified for the unit-reference field indicates the
unit of equipment on which the operation is to be performed.
The number may represent a standard unit assignment or an
installation unit assignment. Standard unit numbers are as
follows:

Number Name Usual Equipment Type
1 Keyboard Input Teleprinter
2 Teleprinter Output Teleprinter
3 Program Library Punched Tape Reader
4 Punch Output Tape Punch
5 Input Punched Tape Reader
6 List Output Teleprinter

Installation unit numbers may be in the range 7g-74g with the
largest value being determined by the number of units of equip-
ment available at the installation. The particular physical unit
that is referenced depends on the manner in which equipment
is defined within the Basic Control System by the installation.
When the Basic Control System configuration is established, an
equipment table (EQT) is created. This table defines the type
of equipment (Teleprinter, magnetic tape, etc.), the channel
on which each unit is connected, and other related details. The
ordinal of the unit's entry in this table is the value specified as
a unit-reference number for an installation unit. Since num-
bers 1-6 are reserved as standard unit numbers, the first unit

BCS 2-3

described in the table is referred to by the number 78; the second,
10g; the third, 11g8; and so forth. The entries for one possible equip-
ment table configuration might establish the following relationships:

Installation unit number

(ordinal) Device I/0 Channel
7 Teleprinter 12 or 12 and 13
10 Punched Tape 10
Reader
11 Tape Punch 11

The standard unit numbers are associated with physical equipment via
a standard equipment table (SQT) and EQT. The SQT is a list of
references to the EQT. SQT is also created by the installation when the
BCS configuration is established. Each standard unit may be a separate
device, or a single device may be accessed by several standard unit
numbers as well as an installation unit number. (For complete details
on the SQT and EQT, see Appendices B and C.)

2.1.3 REJECT ADDRESS

The content of the third word of the calling sequence is normally a
JSB or a JMP to a reject address which is the start of a user subroutine
designed to determine the cause of a reject and take appropriate action.

The Basic Control System transfers control to this address if the input/

output operation can not be performed. On transfer, the system pro-
vides status information that may be checked by the user’s program.

15 14 13 8 7 10

A-Register = F, | equipment type I status 4]
veginer = [<

The contents of the A-Register indicate the physical status of the
equipment. (See STATUS REQUEST.)

The contents of the B-Register indicate the cause of the reject (bits 14-1
are 2eros):

24 BCS

d =1 The device or driver subroutine is busy and
therefore unavailable, or, for Kennedy 1406
Tape unit, a broken tape condition encoun-
tered.

¢ = 1 ADirectMemoryAccesschannel is not avail-
able to operate the device.

d =c = 0 The function or subfunction selected is not
legal for the device.

2.1.4 BUFFER STORAGE AREA

The buffer address is the location of the first word of data to
be written on an output device or the first word of a block re-
served for storage of data read from an input device. The
length of the buffer area may be specified interms of words or
characters. If the length is given as words, the value in the
buffer length field must be a positive integer; if given as char-~
acters, a negative integer.t

In addition to describing the buffer area inthe calling sequence,
the area must also be specifically defined in the assemblylan-
guage program, usually with a BSS or COM pseudo instruction.

2.2 ERROR CONDITIONS DURING EXECUTION

Nlegal conditions encountered during .I0C. request processing are termed
irrecoverable and cause a halt. (The halt is at the absolute location
assigned to the symbol IOERR during Prepare Control System process-
ing.) Diagnostic information is displayed in the A- and B-Registers at
the time of the halt.

The B-Register contains the absolute location of the JSB in-
struction of the request call containing the illegal condition.

The A-Register contains a code defining the illegal condition:

A-Register Explanation
000000 Ilegal request code.

BCS 2-5

Tllegal unit-reference number in

request.

000001

defined as a particular device in

The Standard unit requested is not
the Equipment Table.

000002

Examples:

-) N O N A O N Y IR
] = ﬁ M =[Ol |
00 .
I . B e (IR T4y 1 A A BFWT&T
or] EL 1o e OME (ST O A =1 =Y 0 A
1z i oiEolwuwiwlol _Teeiw] T 7 [T
< W[(O[T D @IS
] | =l 1] QlZ2je)wl Jojiel J-[|2} | =] o |
=4 qlol -1 JTU [_._I_Lﬁ r.ﬂ Oluw Ef
J &= W o0 =g [e[OEFT]| WO[Z[D
U] W] e IET 4OS] [al o= SHloTu
W] < < =E1O] dl 48! 1ol0 WS ele
BT (1V] -4 [aY{ MA@ S =3 -d 4 S o)
pd(e) & @) P15 (= N = N TV [OV 1 = A 7)) [a)[«) (TR
[wf= Q wi tojol “Tujunl jul 1740 Tl Jop=l |
) QII[Z [) (= oY I [) S (=) (@) [oY[IV)] .
[0 WwiZ|O =2 D 2] <c|uit 2=
W wier T mnrv OOBWTSMEUP o 1m0
I | | =1 Jn]|o
e TLTCF& W\T I N = | A L e G Dlulniodo
Ol =20 1 1~ SBOWA dw] _[ola AL
@ Ol 1 ST ool o o (D IE
Wiwl T Joleel gt 1 1 I JO-TW] OO QRN
e 417710 R g |uijm] SEWO]O[2 wiZ[o|g[E I
W= =l A Z[E=]aln]o] [~ 20>
i - 2] NFD=1O[]~ Q@ [0) g T[=
1] <07 (%] u [[Gl=a v 04 <
- ([m] Y2 o dx|n|Z[2]0]_ [t W[J[ClaE
Sl Al (Ql=1@ [P TOTZ e TZTZ IO WS>l
Ol Ol T (1] =Wl 18 alo = [Z[H=[0
wi>I& wWlZ- TGO Z T u. 2w =W wiolElZ]Z
[a117) D[OISOl 0. olojoSala
-] j
N [1 [
- o] 1] ol = 5 4 =
3 S Ser |
<t =4 o]
=[] —=[O[2[Z[0 ~[O] I ola|J 2] - i@
= DES A B) W< L
E
=[] D[ajw]o o) == AN = G [W [« W [T] L= 4 [+ [[:Y
=407 Ao Jalota s Si= g0 RIS
wiam hel(e] k1] IR ANEIBEIEIC AR [l i)
= L
g1 1= | W 7 -
< = [
U) = S 3]
= @ (14

“©

26 BCS

2.3 CLEAR REQUEST

The CLEAR request can be used to terminate a previously issued input

or output operation before all data is transmitted. It has the following
form:

EXT .I0oC.
JSB .I0C.
ocT <function> <unit-references>

<normal return>

The second word consists of the following:

15 12 1N 65 0

‘ function W/ % unit-reference]

The function has the following value:
Function Name Code (octal
Clear : 00

The only other parameter required is the unit-reference number. If the
unit-reference number is specified as 00 (i.e., the second word of the
calling sequence is OCT 0), all previous input and output operations are
terminated. This request, the system CLEAR request, makes all devices
available for the initiation of a new operation. On return from a system
CLEAR request, the contents of the A- and B-Registers are meaningless.

BCS 27

Example:

[T [] [LT HANAN LTI
I ERNAREA L L I '
L [RNERER REREEN N B
EapM lusiel 1.17j0kcl.] 1 1 T] IREAD jaND] PIRINT ESISAIGE| 10F| 'ONE
_A o] [oalo] TTTT]TNE [FIROM ITHE] TEILEPRINTER].] WHE
JMP| REV [TlconTrRIOU REITURNS] IAFTER INITTATING
DEIF] Mse { |1 T T|THE] REQUESIT,| [THE IS8 MIGH[T
DEC] [3l6] [[i | TRANSIFER Tio ja] SUBRIOUTIINE] WHICH]
JsB| [TIMER|] | | IcouLD| ICHECK THE| [TIME RILLIOWED! | ||
LT Flor Al MES'SIAGE, Tio] BE [COMPLIETED. |
I NI T
L . SREn ‘ B ‘ T IBEE
ClLRIRDO [v/sB| [.ITlocl.1 [T || [TFl THE MESISAGE [1S| INQT FURNISHED
TeeT LT T T WITHIN A SPPECITFIC, TIME ILT IT,‘T%Ew
T TH 7T IREQUEIST, TS| CLEARED! 8], THE] [SEICIOIND,
L 11 :Mg‘po‘uwesw‘ To CToc T T
N RN ERER AN RN RN D RNNEN EERE
Tt RN R RN BN IERERRRRE

2.4 STATUS REQUEST

A request may be directed to .IOC. to determine the status of
a previous input/output request or to determine the physical
status of one or all units of equipment. The request has the
following form:

JSB .1I0C.
OCT <function> <unit-reference>

<normal return>

The second word of the request has the following form:

0

15 12 1 6 5
[funcfimW 4 unit - reference J

The function has the following value:

Function Name Code (octal)

Status 04

2-8 BCS

The calling sequence requires no other parameters. A reject
location is not necessary since the status information is always
available, If the unit-reference number is specified as 00 (i.e.,
the second word on the calling sequence is OCT 40000), the
request is interpreted as a system request.

If information is requested for a single unit, the Basic Control
System returns to the location immediately following the re-
quest with the status information in the A and B registers:

15 1413 8 7 o]

A-Register = [a l equipment fype_l status 1

B-Register = lml fronsmissian lag

equipment type

Availability of device:

The device is available; the previous op-
eration is complete.

The device is available; the previous op-
eration is complete but a transmission
error has been detected.

The device is not available for another
request; the operation is in progress.

This field contains a 6-bit code that iden-
tifies the device referenced:

00-07 ~ Paper Tape devices
00 2752A Teleprinter
01 2737A Punched Tape Reader
02 2753A Tape Punch

10-17 — Unit Record devices
15 Mark Sense Reader

BCS 29

status

Device

Teleprinter reader or
Punched Tape Reader

Tape Punch
Kennedy 1406

Incremental Tape
Transport

HP 2020 and 3030
Magnetic Tape Units =

2-10 BCS

20-37 - Magnetic Tape and Mass Storage
devices
20 Kennedy 1406 Incremental

Tape Transport

21 HP 2020A Magnetic Tape Unit
22 HP 3030A Magnetic Tape Unit

40-77 — Instrumentation devices
40 Data Source Interface
41 DVM Programmer
42 Scanner Programmer
43 Time Base Generator

The statusfield indicates the actual status
of the device when the data transmission

is complete.

The contents depend on the

type of device referenced:

Bits 7-0

XX1XXXXX
XX1XXXXX
XxX1xXxXX
XxxX1xxx
XXXXXXX1

1XXXXXXX

X1XXXXXX

XX1XXXXX

XXX1XXXX

Condition

End-of-Tape (10 Feed Frames)

Tape supply low

End-of-Tape mark sensed

Broken tape; no tape on write
head

Device busy

End-of-file record (178 for
2020, 23g for 3030) is de-
tected or written.
Start-of-tape marker sensed
End-of-tape marker sensed

Timing error on read/write

transmission log =

XXXX1xXx I/O request rejected:
- a. tape motion required but
controller busy
b. backward tape motion re-
quired but tape at load point
c. write request given but reel
does not have write enable
ring.

XXXXX]1XX Reel does not have write enable
ring or tape unit is rewinding.

XXXXXX1X Parity error on read/write

XXXXXXX1 Unit busy or in LOCAL mode.

This bit defines the mode of the data
transmission:

0 ASCIor BCD
1 Binary

This field is a log of the number of char-
acters or words transmitted. The value
is given as a positive integer and indi-
cates characters or words as specified in
calling sequence. The value is stored in
this field only when the request is com-
pleted, therefore, when all data is trans-
mitted or when a transmission error is
detected.

BCS 2-11

If a system status request is made, the information in the A and
B registers is as follows:

1514 0
A-Register = [[/777777777777777777777]
B-Register = {p— 3
b= System Status

0 No device is busy
1 At least one device is busy

2.5 PAPER TAPE SYSTEM

2.5.1 RECORD FORMATS

The Paper Tape System operates on ASCII and binary records.

ASCI! Records

An ASCII record is a group of characters terminated by an end-of-record
mark which consists of a carriage return, @ ,and a line feed,

If an odd number of characters is input, the Jast word transmitted to the
buffer is padded with an ASCII blank.

For an input operation, the length of the record transmitted to
the buffer is the number of characters or words designated in
the request, or less if an end-of-record mark is encountered
before the charagcter or word count is exhausted. The codes
for and @ are not transmitted to the buffer. An end-
of-record mark preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters or words designatedin the request.
An end-of-record mark is supplied at the end of each output
record by the input/output system.

2-12BCS

If the last character of an ASCII output record to the teleprinter or
punch is <, however, the end-of-record mark is omitted. This allows
control of teleprinter line spacing. For example, the user may write a
message (the < is not printed) and expect the reply to be typed on the
same line. The reply must be terminated with the @ and

If a (RUB OUT) code followed by a €B , TP is encountered on

input from the teleprinter or Paper Tape Reader, the current record is
ignored (deleted) and the next record transmitted. ((RUB OUT) appears

on the teleprinter keyboard and is synonymous with the ASCII
symbol @)

If less than ten feed frames (all zeros) are encountered before
the first data character from a paper tape input device, they
are ignored. Ten feed frames are interpreted as an end-of-
tape condition

Binary Records

Abinary record is transmitted exactly as it appears in memory
or an 8-level paper tape. The record length is specified by
the number of characters or words designated in the request.
The first character of a binary record must be non-zero. On
input operations, less than ten feed frames preceding the first
data character are ignored. Ten feed frames are interpreted
as an end-of-tape condition (see STATUS REQUEST). On out-
put, the system writes four feed frames to serve as a physical
record separator.

Binary input records may be variable in length. The first word
of the record contains a number in bits 15-8 specifying the
length of the record (including the first word). The entire
record including the word count is transmitted to the buffer.
If the actual length exceeds the size of the buffer, only the num-
ber of words equivalent to the buffer length is transmitted.

BCS 213

NOTE: Although binary transmission is normally stated in words as
opposed to characters, if an odd number of characters is
requested on input the last word transmitted to the buffer is
padded with binary zeros.

2.5.2 CALLING SEQUENCE

EXT .1oc.

JéB .Ioc.
<function> <subfunction> <unit-reference>
JSB .
{ JMP } <reject address> <error return>
<buffer address>
DEC
{ OCT <buffer length>

<normal return>

Function and Subfunction Codes

Allowable combinations of function and subfunction codes are
as follows:

Octal value of

Operation Bits 15-6
Read ASCI record 0100
Read ASCI record 0104
and print
Read binary record 0101
Read variable length 0103

binary record

2-14 BCS

Write ASCII or BCD 0200
record

Write binary record 0201

An illegal combination of codes is rejected.

Buffer Length

Character or word transmission may be specified for any paper tape
device. The buffer length for data that may be printed on the tele-
printer should be no more than 72 characters (36 words) or else the
teleprinter will overprint at the end of line.

Examples:
-, e, s . s » s « "
EXT| |.[T0lc]. DEICILAIRE] [.ITloC. | als] [E[xTERNAL].
LITINE[| [BIS'S| [3l6, ESERIVE! ISTIORIAGE! AREAS]:| [3/6
CloM [BKB[([1]00)) ORrDls| [FioR] ILITINE] JaNiD] [Tloo] WORRDS|
(TN ITIRE] ‘COMMON [BiLjoICIK} | [FIOIR| BB
| I
. : | i
READT] [JisB] [.|Tioc!. READ [712[aSiCTI] CHARACTERS| [FIROM
lolciT| [1iojolo’s) [THE] Is{TIANDAIRD T NPU[T| T]. s|TORE
JMP| IRE[VIAD AT ILTNEL | 'TIF] REQUE]ST| [I;S| REWEICTED,
IDEF] [LITINE TRIANSIFER [T|0| RIEJjAID]. :
IDEC! [H72 w
WRI[TI [uslg] |.]Tjolcl. RITE| [1100 BINARY WORDS| ION] UNIT
T o f2ohhn 1], THE| THIRD] [DEVICE DESICRT ;
JMP| [REVAB TN ITHE| EQT].| OATIA TS| [CURRENTLY] [
DEF] [BKB! SITIORE[D] [TIN [THE[iCloMMON BILOCK! :
CEER0ER SITARTITING AT LioclaT/IION BKB[.
i

NOTE: In READI and WRITI, the leading 0 of the second word of
the calling sequence need not be written in the source
language since it is supplied in the object code as a result of
using the OCT pseudo instruction.

BCS 2-15

2.6 HP 2891A CARD READER

2.6.1 DATA FORMATS

The HP 2891A Card Reader driver (D.11) provides three card reading
functions to read any type of punched card, as described in the
following paragraphs.

Hollerith to ASCII (Octal Equivalents) Conversion

Hollerith characters are converted to ASCII octal equivalents which are
then placed into a buffer word according to the character’s column
number. All characters in odd-numbered columns are placed into the
left byte (bits 15-8), and those in even-numbered columns are placed
into the right byte (bits 7-0). The following table shows how the octal
equivalent of each character appears in the two possible positions within
a buffer word.

Hollerith to ASCII Octal Equivalents

ASCIT ASCII
Character Octal Equivalent Character Octal Equivalent *
- Bits 15-8 Bits 7-0 Bits 15-8 Bits 7-0

(name) Hollerith ~ ASCII (offset) {true) (name) Hollerith ASCII (offset) (true)

A A 404 101 (space) 200 040
B B 410 102 ! ! 204 041
c c 414 103 (quote) » » 210 042
D D 420 104 # # 214 043
E E 424 105 $ $ 220 044
F F 430 106 % % 224 045
G G 434 107 & & 230 046
H H 440 110 || (apostrophe) ' : 234 047
1 1 444 111 ((240 050
J J 450 112)) 244 051
K K 464 13 - * 250 052
L L 460 114 + + 254 053
M M 464 115 || (comma) . R 260 054
N N 470 116 || (hyphen or minus) - - 264 055
[[474 117 || (period) . . 270 056
P P 500 120 i / 274 057
Q Q 504 121 : : 350 072
R R 510 122 : : 354 073
s s 514 123 360 074
T T 520 124 - = 64 075
u U 524 125 370 ~16
v v 530 126 ? ? 374 017
w w 534 127) @ 400 100
X X 540 130 (cent) ¢ 554 133
Y Y 544 131 (not mark) 564 135
z z 550 132 (vertical bar *) 570 136
0 300 060 (underscore**) - 574 137
(1] 1 304 061 0-82 560 134
2 2 310 062 *numeric Y
3 3 314 063 **numeric W
4 4 320 064
5 5 324 065
6 6 330 066
7 7 334 067
8 .8 340 070
9 9 344 o711

2-16 BCS

Consecutive characters (including blanks) are placed into consecutive
buffer characters.

Read Hollerith to ASCIl Function

The function code 0100 (READ HOLLERITH TO ASCII CON-
VERSION) reads a card containing “ ASMB” in columns 1 through 4:

“A” = 101g which appears as 4048 in “offset-octal” bits 15—8 of
the first buffer word:

15 12 9 6 3 0
[o 300 o0n]]

“8” = 1238 in “true-octal” bits 7T—0 of the first buffer word:

15 12 9 6 3 0
L OR DBRD OmE |

Thus the first packed word of the buffer is:

15 12 9 6 3 0
(o ®0CC 000 mE0om osD osw |

“M” = 1158 which appears as 464g in “offset-octal” bits 15—8
of the second buffer word, and “B” = 102g in ‘“true-octal” bits
7—0 of the second buffer word:

15 12 9 6 3 0
[0 mO0D em0 e0O8 000 080}

NOTE: Bits 8, 7, and 6 contain the octal sum of the least
significant digit in the “offset-octal” value in bits 15—8
and the most significant digit in the “true-octal” value
in bits 7—0.

BCS 2-17

Packed Binary

The Read Packed Binary function is used for cards punched in relocatable
binary format by either an assembler or a compiler. The figure below
shows how data is packed four card-columns into three buffer-words.
One 80-column card fills 60 words of the user’s buffer. Column 1 rows
12-5 in each card contain the Record Length octal value x, where

0 <x <748. See Appendix E Relocatable Tape Format.

Read Packed Binary Function

e/c___l—g
o1 g
- [
é }\ 1 8
7 1 1 7
c ! 1 — L MEMORY
COLUMNS 5 o R T 5 MWORDS
4 |||095755432|o}_\\ 4
3765432 10lbKiBR T~ e6rgalein O (23456780913
2327081413 T11098 2345678921101 234512
Y] i 87654 121101 2348678012101]/
2101234567889 1514 13 12 11/ 95;65432/0
ROWS 8iTs
NOTE: Column 1 rows 12-5 concain record NOTE: Word 1 bits 15-8 contain record
lergth octal value (bits 15-8). length octal vaiue (12-5).
CARD LAYCUT ale USER BUFFER LAYOUT
erc. e
H
o ——
r z ex.
2= ———— T ”
- -
g - = = --‘L\\o eo e efe . ;
s = L= —] o8 _ o o 5 MEMORY
COLUMNS 2 - - - = Ny . e o o o o 2 “Worps
- Ommmm 5432 m . D o o o |
3 765432|0|5-|3-:’\\eceoou-oo-45675o 3
232 olslamiaiito9 g — | 2305678901 23452 '
/|sianpemicom7 654 20! ezaec7BoleUC I |/ ¢
2Ho123456769 15143120110987 6543210
ROWS 8ITs
SAMPLE CARD DATA SAMPLE BUFFER STORAGE

2-18 BCS

Column Image Binary
The Read Column Image Binary function places each 12-row card

column into one 16-bit word of the user’s buffer, right-justified. The
four left bits (15-12) are set to 0, as shown below.

Read Column image Binary Function

{12 EDGE)

= 5 g

LRI

133450 T0venuaun asu P D T I T
[TR RN AR R R NN R RN R RN RN RN N R RN R AR RN R RN RURRRRRR RN N Y
AR RN I IR 22022222222222222220223220222722222222222222001212210202222
ERRER] B
AR L T L L
35S IEE IS eI E IS ENNI55059553355558555958
O O O A T L TR XY
R R R R R RN R R R R R R R R N R R R RN R NN R R R R ER SRR RN R RSO

03303332333333233931223923331233333332333132033333313333933333 190

I T L R R N N R RN NN NN R NIRRT
TA9I990II0498790309989599099990999999958999999399901949
H FREH nan

[SEE1 EX1]
Yiatsnres

N e

| (9 EDGE) |
| COLUMNS 1 THROUGH 80 |

CARD DATA READ

ROW ASSIGNED: | rwowe) Jizno T2 3743 6 70 9]
rroa ONE COLUMMN
BHMISIZNI09 8 T7T68 432 | 0 BITS

BUFFER WORD ASSIGNMENTS

ALL BUFFER WORDS

CARD BUFFER
COLUMN WORD
1 000Ce00N00000D0D0f 1st
2 0o000D®DEODCDODDO| 2nd
3 00p0DDMDDOD®ODDODD} 3rd
4 00DOEOOONDO0O0DODDO] 4th
S 00D0D0O8QO0SC0O000AEO] Sth
b 00000WM000000000M]| 6th
7 000000800D80D00080) 7th
8 000080008 DDDODDDD]Y 8th
9 000000@00R00CO0O0NO]) Sth
10 0000080000 CD00DO]10th
etc. etc.

BUFFER WORDS AFTER DATA TRANSFER

BCS 2-19

2,6.2 CALLING SEQUENCE

A calling sequence must be executed for each card read.

EXT

JSB
OCT

I0C.

I0C.
<function><subfunction><unit reference number>

JMP <reject address>
DEF <buffer address>

DEC
OCT

[Omit for Clear or Status
requests.]

<buffer length>

<normal return>

where:

function — in bits 15-12 } Function and Subfunction Codes

subfunction *- in bits 11-6

headings below,

unit-reference number — bits 5-0

reject address —

JOC. returns control to the user at this location if the
function or subfunction request is rejected by the
initiator section. The A-Register contains 1 and
B-Register contains a cause-of-reject code:

A. If the card reader is busy or inoperable, or if the
driver is busy, the B-Register contains 100000g.

b. If the subfunction requested is invalid for the
card reader, the B~-Register contains 0; or if DMA
is required but a DMA channel is currently not
available, the B-Register contains 1.

buffer address — address of the first word of the user’s buffer.

buffer length — a positive integer for 16-bit buffer words, or a negative

220 BCS

integer for 8-bit buffer characters (half words). An
odd number of characters specified is incremented by

one (i.e., “—3” sets two buffer words, {3+1] /2 = 2).
A 0 buffer length for either Read binary function
feeds a card but ignores the data. A 0 buffer length
for Read Hollerith to ASCII causes an immediate
normal return with no action performed.

NOTE: Buffer characters (a negative integer) should be specified only
with the READ HOLLERITH to ASCII function.

Function and Subfunction Codes

The allowable function and subfunction codes for the .IOC. calling
sequence are shown below.

Octal Code
Function and Subfunction (bits 15-6)
Read Hollerith to ASCII octal equivalent 0100
conversion. Two characters per buffer
word; see table on pages 2-16 and 2-17
and figure on page 2-18. Trailing
blanks are suppressed.
Read packed binary. Four 12-row card 0103
columns packed into three 16-bit
buffer words; see figure on page 2-19.
One 80-column card fills 60 sixteen-
bit buffer words.
Read column image binary. Each card 0101
column stored in one 16-bit buffer
word right-justified; see figure on page
2-20. Bits 15-12 are set to 0.
Clear request. 0000
Dynamic Status request. See Status. 0300
Status request. See Status. 0400

2.6.3 STATUS REQUESTS
Two types of status requests can be made: normal, which returns the

status of the Card Reader for the last time it was referenced, and dynamic,
which returns the actual status of the card reader.

BCS 2-21

A normal status request returns the current contents of EQT entry words
2 and 3 for the Card Reader in the A- and B-Registers, respectively.
The table below shows the meanings of status bits 7-0 in the A-Register
of EQT entry word 2. This driver returns an equipment type code of
11 in bits 13-8.

Status Bit Meanings
Bit
(when set to 1) Status Indicated

0 Reader not ready, or in TEST
mode.

1 Illegal ASCII character(s), or hard-
ware read trouble.

2 Card Reader in TEST mode.

3 Timing error, last column.

4 Pick failure.

5 Hopper empty.

6 Stacker is full.

7 End of file scratch is set and the
feed hopper is empty.

When the user’s calling sequence requests dynamic status, the driver
returns only the status word in the A-Register (B-Register is unspecified).
The status information is shown in the preceding table.

2.6.4 TRANSMISSION LOG

The transmission log in EQT entry word 3 for the Card Reader is a
positive integer. It reports the number of buffer words or characters
transmitted and the data transfer mode. (When bit 15 = 1, the mode is a
Read Binary function; when bit 15 = 0, the mode is Read Hollerith to

2-22 BCS

ASCIIL.) According to the Read function requested, the transmission
log count has one of three maximum values:

Function Maximum Transmission Log Count
Read Hollerith to ASCII 80 characters or 40 words.
Read Packed Binary 60 words.

Read Column Image Binary 80 words.
The number of words or characters transmitted is determined by:

Function Transmission Log Method

Read Hollerith to ASCII The number of buffer char-
acters requested, or the num-
ber of columns on the card,
whichever is less, minus trail-
ing blanks. (A totally blank
card returns a zero.)

_Read Packed Binary The number of buffer words

’ requested, or the octal num-
ber recorded in rows 12-5
of the first card column,
whichever is less.

Read Column Image Binary The number of words re-
quested or the number of
columns on the card, which-
ever is less.

BCS 223

2.7 HP 2778A, 2778A-001 LINE PRINTER

2.7.1 MODES OF OPERATION

This driver has three modes of operation: Plus, Normal, and TTY. The
modes are selected by issuing the proper control subfunction or by
selecting one of the following unit numbers at BCS configuration
(PCS) time:

Unit No. Mode
0 (Default Unit #) Normal
2 Plus
4 TTY

For example, the Plus mode may be set at PCS time by supplying the
following Equipment Table entry:

nn, D.12,U2
where nn is the channel number (select code) for the device.

In the Normal and Plus modes, the first character of the print buffer is
used as control and is not printed. Instead, the second character of the
buffer is printed in column one of the line printer paper.

In the Normal mode, if the first character is a “‘+”, the driver interprets
it as a blank (i.e., single space). In the Normal mode an attempt is made
to drive the printer as a “‘space then print” device. Thus, if the command
character says space 3 lines, the driver subtracts one and spaces 2 lines
(one space was sent to terminate the last line, so the total is 3).

The Plus mode interprets a ““+”’ in column one and overprints the current
line on top of the last line. The driver sends a hold command at the end
of each line and a single space before each line without a “+”” in column
one. The net effect is that the printer runs as a ““space then print” device
at approximately half-speed.

The TTY mode makes the Line Printer act like a teleprinter and prints
the first character (in column one) of the buffer. Line space control for
the TTY mode may be executed by using the print or control subfunction
field. The TTY mode, if set, overrides the Plus and Normal modes and
drives the printer as a ‘““print then space” device. Two methods of spacing
are permitted by using the print subfunction field.

224 BCS

The driver, in all modes, handles a line ending with a left arrow (<) by
printing the first character in the buffer of the next request where the
left arrow would have appeared had it been printed.

2.7.2 CALLING SEQUENCE

The general form of the input/output request is:

EXT 10C.

JSB J10C.

OCT <function><subfunction><unit-reference>
JMP <reject address><error return>

DEF <buffer address>

DEC
ocT } <buffer length>

<normal return>

2.7.3 INPUT/OUTPUT CONTROL (.10C.)

All line printer input/output operations are requested by performing a
JSB to entry point .JIOC. The input/output control subroutine returns
control to the calling program at the first location following the last
word of the I/O request.

2,7.4 FUNCTION AND SUBFUNCTION CODES
The second word of the I/O request determines the function to be per-
formed and the line printer unit-reference for which the action is to be

taken. The bit combinations that comprise the control word are as
follows:

15 12 11 6 5 0

function subfunction unit-reference

BCS 2-25

The function (bits 15-12) is the basic input/output operation; it may be
any of the following:

Function Name Code (Octal)

Clear 00
Write 02
Control 03
Status 04
Write Function (02)
Subfunction Bits
(Ignore the x’s) Subfunction Description
00x XXX Normal and Plus mode — first character is car-

riage control, the ASCII character in the Allow-
able Motion Request table on page 2-30. The
second character is printed in column one of
the line printer.

01x XXX TTY mode — first character is data. The

— carriage control character is the low 6 bits of
the status word (second word of equipment
table). The status word is set with an extended
carriage control explained below.

11x ddd TTY mode — first character is data. Carriage

_ - control is tape level corresponding to ddd in
the Allowable Motion Requests table on page
2-30.

10x xx0 Extended carriage control — first word in the

_ buffer is sent as a carriage control command to
the line printer. The first word is an octal code
in bits 5-0, as defined in the Extended Carriage
Control Code table on page 2-33. The buffer
length (I/O request fifth word) should be
set to 1.

10x xx1 Extended carriage control —first word of buffer
- is set into status word to be used as TTY car-
riage control. The first word is an octal code in
bits 5-0, as defined in the Extended Carriage
Control Code table on page 2-33.

2-26 BCS

Control Function (03)

Subfunction Bits
(Ignore the x’s)

00x

00x

00x
00x

cco

000

111

110
010

CCcc

Subfunction Description

Dynamic Status Request

Clear TTY mode and Plus mode (and set
Normal mode)

Set TTY mode
Set Plus mode
If not one of the above codes, CC1CCC will be

sent to the line printer. (See the Allowable
Motion Requests table on page 2-33.)

2.7.5 REJECT ADDRESS

Control is transferred to the third word of the I/O request if the input/
output operation cannot be initiated. On transfer, the system provides
status information which may be checked by the user’s program. The
A-Register is set to 0 to indicate that the operation is initiated, or is
set to 1 to indicate that the operation is rejected. The B-Register con-
tains the cause-of-reject code:

a.

If the printer is busy or inoperable, or if the driver is busy, the
B-Register contains 100000g.

If the subfunction requested for the printer is invalid, the
B-Register contains 0; or if DMA is required but a DM A channel
is currently not available, the B-Register contains 1.

BCS 227

2.7.6 BUFFER STORAGE AREA

The buffer address is the location of the first word of data to be printed.
The length of the buffer area may be specified in terms of words or
characters. If the length is given as words, the value in the buffer length
field must be a positive integer; if given as characters, a negative integer.

A length

of zero causes a blank line to be printed.

2.7.7 STATUS REQUESTS

Either of the following types of status requests may be made:

a.

228 BCS

Normal status —

JSB 10C.
oCT 0400 <unit-reference>
<normal return>

Dynamic status —

JSB J0C.
OoCT 0300 <unit-reference>
<normal return>

The dynamic status request is used to obtain the actual status
of a line printer unit. The normal status request returns the
status of the line printer unit for the last time it was referenced.
The dynamic status request goes to the driver for its operation;
it returns only the status word in the A-Register with nothing
in particular in the B-Register. The EQT status table entry is
updated by this request.

Allowable Motion Requests (HP 2778A, 2778A-001)

ASCIL
Print Subfunction Control Subfunction* Character in
ddd code (octal) CCO CCC code (octal) Column One Action
0 Double space T
(7 67 1 Top of form §
6 66 2 Bottom of form t
5 65 3 Next sixth page ¥
Printer 4 64 4 Next quarter
Carriage page ¥
Controls W 3 63 5 Next half page 1
2 62 Next triple space
line ¥
1 61 7 Next double space|
line ¥
L 1] 60 8 Next single space
line ¥
9 Advance 55 lines
Advance 54 lines
H Advance 53 lines
< Advance 52 lines
= Advance 51 lines
> Advance 50 lines
? Advance 49 lines
@ Advance 48 lines
47 A Advance 47 lines
46 B Advance 46 lines
45 C Advance 45 lines
44 D Advance 44 lines
43 E Advance 43 lines
42 F Advance 42 lines
41 G Advance 41 lines
40 H Advance 40 lines
I Advance 39 lines
J Advance 38 lines
K Advance 37 lines
L Advance 36 lines
M Advance 35 lines
N Advance 34 lines
o Advance 33 lines
P Advance 32 lines

BCS 2-29

Print Subfunction
ddd code (octal)

ASCII

Control Subfunction* Character in
CCO CCC code (octal) Column One

Action

27
26
25
24
23
22
21
20

04
03
02
01

P2~ N E<CHNIO

(Blank)
t

(aposl:.rophe)
(
)

*

s
(comma)

(pell-iod)
?

* The x {priority bit 9) has been set = 0 for this table.
+ These control requests include an automatic page eject.

Advance 31 lines
Advance 30 lines
Advance 29 lines
Advance 28 lines
Advance 27 lines
Advance 26 lines
Advance 25 lines
Advance 24 lines
Advance 23 lines
Advance 22 lines
Advance 21 lines
Advance 20 lines
Advance 19 lines
Advance 18 lines
Advance 17 lines
Advance 1 line

Advance 15 lines
Advance 14 lines
Advance 13 lines
Advance 12 lines
Advance 11 lines
Advance 10 lines
Advance 9 lines

Advance 8 lines
Advance 7 lines
Overprint next 1
line

In Plus mode: over-
print this line

In Normal mode:
Advance 1 line
Advance 4 lines

Advance 3 lines
Advance 2 lines

Advance 1 line

2-30 BCS

Extended Carriage Control Code (HP 2778A, 2778A-001)

Octal Code Octal Code
(in bits 5-0) Action (in bits 5-0) Action

7 Top of Form + 37 Advance 31 lines
76 Bottom of Form } 36 Advance 30 lines
%5 Next sixth page 1 35 Advance 29 lines
T4 Next quarter page ¥ 34 Advance 28 lines
73 Next half page ¥ 33 Advance 27 lines
72 Next triple space line ¥ 32 Advance 26 lines
kit Next double space line § 31 Advance 25 lines
70 Next single space line 30 Advance 24 lines
87 Advance 55 lines 27 Advance 23 lines
66 Advance 54 lines 26 Advance 22 lines
65 Advance 53 lines 25 Advance 21 lines
64 Advance 52 lines 24 Advance 20 lines
63 Advance 51 lines 23 Advance 19 lines
62 Advance 50 lines 22 Advance 18 lines
61 Advance 49 lines 21 Advance 17 lines
60 Advance 48 lines 20 Advance 16 lines
57 Advance 47 lines 17 Advance 15 lines
56 Advance 46 lines 16 Advance 14 lines
55 Advance 45 lines 15 Advance 13 lines
54 Advance 44 lines 14 Advance 12 lines
53 Advance 43 lines 13 Advance 11 lines
52 Advance 42 lines 12 Advance 10 lines
51 Advance 41 lines 11 Advance 9 lines
50 Advance 40 lines 10 Advance 8 lines
47 Advance 39 lines 7 Advance 7 lines
46 Advance 38 lines 6 Advance 6 lines
45 Advance 37 lines 5 Advance 5 lines
44 Advance 36 lines 4 Advance 4 lines
43 Advance 35 lines 3 Advance 3 lines
42 Advance 34 lines 2 Advance 2 lines
41 Advance 33 lines 1 Advance 1 lines
40 Advance 32 lines 0 Advance O line
1 These actions include an automatic page eject.

BCS 2-31

Status Return Information

15 14 13 8 7 0
A-Register: r a | Equipment Type l Status |

15 14 0
B-Register: rM I Transmission Log j

a = Availability (A-Register bits 15 and 14):

0 = The device is available; the previous operation is complete.

1 = The driver is available; the operation could not be initiated
because the device is not ready.

2 = The device is not available for another request; an operation

is in progress.
Equipment Type (A-Register bits 13-8):
12g = HP 2778A (or 2778A-001) Line Printer

Status (A-Register bits 7-0):

Bits Meaning

5-0 TTY termination code with bits 3-5 inverted
6 Left arrow (<) last time flag; if true, bit 6 = 1
i Asterisk (*) last time flag; if true, bit 7 =1

M = data transmission mode (B-Register bit 15):
Always 0 = ASCII
Transmission Log (B-Register bits 14—0):
This field is a log of the number of characters or words transmitted.

The value is given as a positive integer and indicates characters or
words as specified in the I/O request.

2-32 BCS

2.7.8 CLEAR REQUEST

The clear request terminates a previously issued input or output
operation and sets all busy flags to ‘“not-busy.” A clear request has the
following form:

EXT J0C.

JSB 10C.
OCT 0000 <unit-reference>

On return, the contents of the A- and B-Registers are meaningless. The
clear request checks for multi-unit operation based on the device; i.e.,
the I/O channel number. The driver is cleared only if the clear request is
for the current operation I/O channel.

If a clear request is issued while operating the driver in the plus mode,
either of the following two events may occur:

1. If the driver is busy, the clear request will print and space
one line.

2. If the driver is not busy, the clear request will not print and
space one line.

In either case, the next print request following the clear request prints
without spacing (‘‘overprint next line” has been set by the driver); i.e.,
if the line printer paper is resting at Top-Of-Form and the driver is not
busy, the first line of the next print request prints on the first line of the
paper. However, if the line printer has just printed a line prior to the
clear request and the driver is not busy, the first line of the next print
request overprints the last line printed. To alleviate this problem, a
control request may be issued prior to the print request.

2.7.9 ERROR CONDITIONS
Equipment Table Flags

Word 2 of the equipment table contains no hardware status in bits 7-0.
See Status Return Information for the meaning of these bits.

BCS 2-33

Illegal Character

Shoulid an illegal character be encountered, the driver will output an “@”
character. A legal character is defined as =408 and <1378 (all ASCII
characters are legal), and all other octal numbers are considered to be
illegal characters.

illegal Buffer Length
Should an illegal buffer length be encountered, the driver will use 132

characters (or 66 words) as a legal length. A legal buffer length is defined
as <132 characters (or <66 words).

2-34 8CS

2.8 HP 2767 LINE PRINTER

2.8.1 MODES OF OPERATION

The HP 2767 line printer driver has three modes of operation: Plus,
Normal, and TTY. The modes are selected by issuing the proper control
subfunction or by selecting one of the following unit numbers at BCS
configuration (PCS) time:

Unit No. Mode
O (Default Unit #) Normal
2 Plus
4 TTY

For example, the Plus mode may be set at PCS time by supplying the
following Equipment Table entry:

nn, D.16,U2
where nn is the channel number (select code) for the device.

In the Normal and Plus modes, the first character of the print buffer
is used as control and is not printed. Instead, the second character of
the buffer is printed in column one of the line printer paper.

In the Normal mode, if the first character is a ‘“‘+”, the driver interprets
it as a blank (i.e., single space). In the Normal mode an attempt is made
to drive the printer as a “space then print”’ device. Thus, if the command
character says space 3 lines, the driver subtracts one and spaces 2 lines
(one space was sent to terminate the last line, so the total is 3).

The Plus mode interprets a “+” in column one and overprints the current
line on top of the last line. The driver sends a hold command at the end
of each line and a single space before each line without a “+” in column
one. The net effect is that the printer runs as a “space then print”
device.

The TTY mode makes the Line Printer act like a teleprinter and prints
the first character (in column one) of the buffer. Line space contro! for
the TTY mode may be executed by using the print or control subfunction
field. The TTY mode, if set, overrides the Plus and Normal modes and
drives the printer as a ‘“print then space’ device. Two methods of spac-
ing are permitted by using the print subfunction field.

BCS 2-35

The driver, in all modes, handles a line ending with a left arrow («) by
printing the first character in the buffer of the next request where the
left arrow would have appeared had it been printed.

2.8.2 CALLING SEQUENCE

The general form of the input/output request is:

EXT J0cC.

JSB I0C.

OCT <function> <subfunction><unit-reference>
JMP <reject address><error return>

DEF <buffer address>

DEC }
OCT

<normal return>

<buffer length>

2.8.3 INPUT/OUTPUT CONTROL (.10C.)

All input/output operations are requested by performing a JSB to entry
point .IOC. The input/output control subroutine returns control to the
calling program at the first location following the last word of the
1/0 request.

2.8.4 FUNCTION AND SUBFUNCTION CODES

The second word of the I/O request determines the function to be per-
formed and the line printer unit-reference for which the action is to be
taken. The bit combinations that comprise the control word as follows:
15 12 11 6 5 0
L function r subfunction l unit-reference J

2-36 BCS

The function (bits 15-12) is the basic input/output operation; it may be

any of the following:

Function Name Code (Octal)
Clear 00
Write 02
Control 03
Status 04
Werite Function (02)
Subfunction Bits

(Ignore the x’s)

00x

01x

11x

10x

105

XXX

XXX

dad

Subfunction Description

Normal and Plus mode — first character is car-
riage control, the ASCII character in the Allow-
able Motion Requests table on page 2-41. The
second character is printed in column one of
the line printer.

TTY mode — first character is data. The car-
riage control character is the low 6 bits of the
status word (second word of equipment table).
The status word is set with an extended car-
riage control explained below.

TTY mode — first character is data. Carriage
control is tape level corresponding to ddd in
the Allowable Motion Requests table on page
2-41.

Extended carriage control — first word in the
buffer is sent as a carriage control command to
the line printer. The first word is an octal code
in bits 5-0, as defined in the Extended Car-
riage Control Code table on page 2-44. The
buffer length (I/O request fifth word) should
be set to 1.

Extended carriage control — first word of buf-
fer is set into status word to be used as TTY
carriage control. The first word is an octal code
in bits 5-0, as defined in the Extended Carriage
Control Code table on page 2-44.

BCS 2-37

Control Function (03)

Subfunction Bits

(Ignore the x’s) Subfunction Description

00x 000 Dynamic Status Request

00x 111 Clear TTY mode and Plus mode (and set Nor-
mal mode)

00x 110 Set TTY mode

00x 010 Set Plus mode

CCx ccce If not one of the above codes, CC1CCC will be

sent to the line printer (See Allowable Motion
Requests Table on page 2-41).

2.8.5 REJECT ADDRESS

Control is transferred to the third word of the I/O request if the input/
output operation cannot be initiated. On transfer, the system provides
status information which may be checked by the user’s program. The
A-Register is set to 0 to indicate that the operation is initiated, or is set
to 1 to indicate that the operation is rejected. The B-Register contains
the cause-of-reject code:

a. If the printer is busy or inoperable, or if the driver is busy, the
B-Register contains 100000g.

b. If the subfunction requested for the printer is invalid, the B-
Register contains O; or if DMA is required but a DMA channel is
currently not available, the B-Register contains 1.

2.8.6 BUFFER STORAGE AREA

The buffer address is the location of the first word of data to be printed.
The length of the buffer area may be specified in terms of words or
characters. If the length is given as words, the value in the buffer length
field must be a positive integer; if given as characters, a negative integer.
A length of zero causes a blank line to be printed.

2-38 BCS

Allowable Motion Requests (HP 2767)

Print Subfunction Control Subfunction**
ddd code (octal)

CCx CCC code (octal)

ASCIT
Character in
Column One

Action

Printer
Carriage {
Controls

w oo oo

w

67
66
65
64

63
62

61

60

47
46
45
44
43
42
41
40

W N = O

o

N

oy

v O Z 2RI OM®MBEDOW > O

Double space F
Top of form {
Bottom of form ¢
Next sixth page §
Next quarter
page ¥

Next half page

Next triple space
line ¢

Next double space
line ¥

Next single space
line

Advance 55 lines*
Advance 54 lines*
Advance 53 lines*
Advance 52 lines*
Advance 51 lines*
Advance 50 lines*
Advance 49 lines*
Advance 48 lines*
Advance 47 lines*
Advance 46 lines*
Advance 45 lines*
Advance 44 lines*
Advance 43 lines*
Advance 42 lines*
Advance 41 lines*
Advance 40 lines*
Advance 39 lines*
Advance 38 lines*
Advance 37 lines*
Advance 36 lines*
Advance 35 lines*
Advance 34 lines*
Advance 33 lines*

Advance 32 lines*

BCS 2-39

ASCH
Print Subfunction Control Subfunction** Character in

ddd code (octal) CCx CCC Code (octal) Column One Action

27 Q Advance 31 lines*
26 R Advance 30 lines*
25 S Advance 29 lines*
24 T Advance 28 lines*
23 U Advance 27 lines*
22 v Advance 26 lines*
21 w Advance 25 lines*
20 X Advance 24 lines*
Y Advance 23 lines*

Z Advance 22 lines*

I Advance 21 lines*

\ Advance 20 lines*

1 Advance 19 lines*

1 Advance 18 lines*

« Advance 17 lines*

(Blank) Advance 1 line *

' Advance 15 lines*

» Advance 14 lines*

Advance 13 lines*

04 $ Advance 12 lines*
03 % Advance 11 lines*
02 & Advance 10 lines*
01 ’ Advance 9 lines*

(apostrophe)

(Advance 8 lines*
) Advance T lines*
* Overprint next line
+ In Plus mode: over-
print this line

+ In Normal mode:
Advance 1 line*
Advance 4 lines*

(co,mma)
- Advance 3 lines*
. Advance 2 lines*
(period)
i Advance 1 line*

*Add six lines for any multiple skips crossing the paper perforations.
The HP 2767 pine printer will not print in three lines before and after the
page perforations. Continuous listings are not possible with this printer.

240 8CS

Extended Carriage Contol Code (HP 2767)

Octal Code
(in bits 5-0)
i
76
15
74
73
72
71
70
67
66
65
64
63
62
61
60
57
56
55
54
53
52
51
50
47
46
45
44
43
42
41
40

Action
Top of form t
Bottom of form +
Next sixth page ¥
Next quarter page ¥
Next half page 1

Next triple space line +
Next double space line
Next single space line §

Advance 55 lines
Advance 54 lines
Advance 53 lines
Advance 52 lines
Advance 51 lines
Advance 50 lines
Advance 49 lines
Advance 48 lines
Advance 47 lines
Advance 46 lines
Advance 45 lines
Advance 44 lines
Advance 43 lines
Advance 42 lines
Advance 41 lines
Advance 40 lines
Advance 39 lines
Advance 38 lines
Advance 37 lines
Advance 36 lines
Advance 35 lines
Advance 34 lines
Advance 33 lines

Advance 32 lines

Octal Code

(in bits 5-0)

37
36
35
34
33
32
31
30
27
26
25
24
23
22
21
20
17
16
15
14
13
12
11

=
(=]

S = N W e,

1These actions include an automatic page eject.

Advance 31 lines
Advance 30 lines
Advance 29 lines
Advance 28 lines
Advance 27 lines
Advance 26 lines
Advance 25 lines
Advance 24 lines
Advance 23 lines
Advance 22 lines
Advance 21 lines
Advance 20 lines
Advance 19 lines
Advance 18 lines
Advance 17 lines
Advance 16 lines
Advance 15 lines
Advance 14 lines
Advance 13 lines
Advance 12 lines
Advance 11 lines
Advance 10 lines
Advance 9 lines
Advance 8 lines
Advance 7 lines
Advance 6 lines
Advance 5 lines
Advance 4 lines
Advance 3 lines
Advance 2 lines
Advance 1 line

Advance 0 line

BCS 2-41

2.8.7 STATUS REQUESTS
Either of the following types of status requests may be made:

a. Normal status —

JSB J0C.
OCT 0400 <unit-reference>
<return>

b. Dynamic status —

JSB .10C.
OCT 0300 <unit-reference>
<return>

The dynamic status request is used to obtain the actual status
of a line printer unit. The normal status request returns the
status of the line printer unit for the last time it was referenced.
The dynamic status request goes to the driver for its operation;
it returns only the status word in the A-Register with nothing
in particular in the B-Register. The EQT status table entry is
updated by this request.

Status Return Information

15 14 13 8 17 0
A-Register: ! a | Equipment Type Status j

15 14 0
B-Register: l M] ' Transmission Log |

a = Availability (A-Register bits 15 and 14):

0 = The device is available; the previous operation is coin-
plete.
1 = The driver is available; the operation could not be

initiated because the device is not ready.

2 = The device is not available for another request; an opera-
tion is in progress.

Equipment Type (A-Register bits 13-8):

168 = HP 2767 Line Printer
242 BCS

Status (A-Register bits 7-0):

% Meaning

5-0 TTY termination code with bits 3-5 inverted.
6 Left arrow (<) last time flag; if true, bit 6 = 1.
7 Asterisk (*) last time flag; if true, bit 7 = 1.

M = data transmission mode (B-Register bit 15):
Always 0 = ASCII
Transmission Log (B-Register bits 14-0):
This field is a log of the number of characters or words trans-

mitted. The value is given as a positive integer and indicates
characters or words as specified in the I/O request.

2.8.8 CLEAR REQUEST

The clear request terminates a previously issued input or output opera-
tion and sets all busy flags to ‘“not-busy’. A clear request has the follow-
ing form:

EXT I0C.
JSB I10C.
OCT 0000 <unit-reference>

On return, the contents of the A- and B-Registers are meaningless. The
clear request checks for multi-unit operation based on the device; i.e., the
I/O channel number. The driver is cleared only if the clear request is for
the current operation I/O channel.

If a clear request is issued while operating the driver in the plus mode,
either of the following two events may occur:

1. If the driver is busy, the clear request will print and space one
line.

2. If the driver is not busy, the clear request will not print and
space one line.

BCS 243

In either case, the next print request following the clear request prints
without spacing (“‘overprint next line” has been set by the driver); i.e., if
the line printer paper is resting at Top-Of-Form and the driver is not
busy, the first line of the next print request prints on the first line of the
paper. However, if the line printer has just printed a line prior to the clear
request and the driver is not busy, the first line of the next print request
overprints the last line printed. To alleviate this problem, a control
request may be issued prior to the print request.

2.8.9 ERROR CONDITIONS

Equipment Table Flags

Bits 14-9 of word one of the equipment table contain the line count of
the HP 2767 Line Printer; i.e., if the carriage is resting on line 20, the
bits contain 20B. Word 2 contains no hardware status in bits 7-0. See
Status Return Information for the meaning of these bits.

lllegal Character

Should an illegal character be encountered, the driver will output an
“@” character. A legal character is defined as =408 and <137g (all
ASCII characters are legal), and all other octal numbers are considered
to be illegal characters.

lllegal Buffer Length

Should an illegal buffer length be encountered, the driver will use 80
characters (or 40 words) as a legal length. A legal buffer length is defined
as <80 characters (or <40 words).

244 BCS

2.9 KENNEDY INCREMENTAL TRANSPORT

2.9.1 RECORD FORMATS
Binary Coded Decimal Records

A BCD record is a group of BCD characters terminated (on magnetic
tape) by a record gap. A request to write a BCD record results in the
translation of each 7T-level ASCII character in the buffer area into a 6-
level BCD character on magnetic tape. (See Kennedy Incremental Trans-
port BCD Record format heading below and the Kennedy ASCII-BCD
Conversion on page A-2.) The translation process does not alter the
original contents of the buffer.

The length of the record is determined by the number of characters or
words designated in the request. A record gap is supplied at the end of
each record by the input/output system.

If the last character in the buffer area is <, however, the record gap is
omitted. The < is not written on tape.

A WRITE request specifying a buffer length of zero causes a record gap
only to be written.

BCD Record Format - Kennedy Incremental Transport

15 14 8 7 0
First computer word FJ 100000 1J 11 00110 ﬂ A(101) and
in buffer M(115) in
Second ASCII First ASCII ASCII (octal)
character character

TRANSLATION (see APPENDIX A)

{ 4

5 0 5 0

10001 [too100]

A(61) in BCD M(44) in BCD

(octal) (octal)

TAPE TRACKS P 6 1 P=Even Parity bit

First tape character 1110001 A
Second tape character 0100100 M RECORDED DATA
Third* tape character 0100111) P*
Fourth* tape character 0010010] S*

*From Second computer
word in buffer.

BCS 245

2.9.2 CALLING SEQUENCE

EXT IOC.

JSB I0OC.

OCT <function> <subfunction> <unit-reference>
ji’g, <reject address> <error return>

DEF <buffer address>

DEC

OCT <buffer length>

<normal return>

2.9.3 FUNCTION AND SUBFUNCTION CODES

Allowable function codes for the 1406/1506 Kennedy Incremental Tape
Transport are as follows:

WRITE (ASCII Mode only) 0200
WRITE End-of-file 0301
CLEAR 0000

246 BCS

2.10 MAGNETIC TAPE SYSTEM (HP 2020 MAGNETIC
TAPE UNIT)

2,10.1 RECORD FORMATS

Binary Records

A binary record on magnetic tape is a group of 6-level tape ‘“‘characters”
recorded in odd parity and terminated by a record gap. The record
length is determined by the number of characters or words in the buffer
as designated in the request.

NOTE: 0Odd parity: a seventh bit is recorded on tape if the number
of 1 bits in the six levels is an even decimal number (0, 2,
4 or 6).

Even parity: a seventh bit is recorded on tape if the number
of 1 bits in the six levels is an odd decimal number (1, 3 or
5).

Each computer word is translated into three tape ‘“‘characters’ (and vice
versa) as shown in the figure on page 2-51.

For output operations, the minimum buffer length is three computer
words.

Binary Record Format (HP 2020)

15 11 10%* 6 5% 0
ComputerWord [1011001110110001]
———
Third part of e s *Bits 10 and 5
word Second part of are recorded
word R . twice, in two

First part of tape characters,
wOor, as shown.

TAPE TRACKS P 6 1 P=0dd parity bit
First tape character 010110 04
Second tape character 10111014

Third tape character 011000 14

BCS 247

Binary Coded Decimal Records

A BCD record on magnetic tape is a group of BCD characters recorded
in even parity and terminated by a record gap. A request to write a BCD
record results in the translation of each 7-level ASCII character in the
buffer area into a 6-level BCD character on magnetic tape. (Refer to the
figure on page 2-52 and the table on page A-3.) A request to read a BCD
record results in the translation of each BCD character into an ASCIIL
character after the block has been read.

The length of the record may not be more than 120 characters. A record
gap is supplied at the end of each record.

BCD Record Format (HP 2020)

1514 876 0
First computer word A(101) and
i utfor [[1000001[J1001101] M{118) in
ASCII (octal)
Second ASCII First ASCIL
character character
TRANSLATION (see APPENDIX A)
4 i
5 0 5 0
110001] 100100
A(61) in BCD M(44) in BCD
(octal) (octal)
TAPE TRACKS P 6 1 P=Even Parity bit
First tape character 1110001| A
d ta h
Second tape character 101 00100 M RECORDED DATA
Third* tape character 0100111 P*
Fourth* tape character 001001 0] s8*
*From second computer word in
buffer.

248 BCS

2.10.2 CALLING SEQUENCE

EXT I0C.

JSB 10C.

OCT < function><subfunction><unit-reference >
JSB .

IMP <reject address><error return>>

DEF <buffer address>

DEC

OCT } <buffer length>

<normal return>

2.10.3 FUNCTION AND SUBFUNCTION CODES

All allowable combinations of function and subfunction codes are as
follows:

QOctal value of

Operation Bit 15-6
Read BCD record and convert to ASCII 0100
Read binary record 0101
Write BCD record after converting from ASCII 0200
Write binary record 0201
Write End-of-File (EOF) mark 0301
Forward space one record 0302
Backspace one record 0303
Rewind to start of tape (SOT) the LOAD 0304
Point, Ready (AUTO mode)
Rewind to start of tape (SOT) the LOAD 0305

Point, Unload (LOCAL mode)

2.10.4 BUFFER LENGTH

A WRITE request for the HP 2020 Magnetic Tape Unit must have a
minimum buffer length of seven ASCII characters (four words). If less
than seven characters are specified, spaces will be added to fill the seven
characters.

BCS 249

2.11 MAGNETIC TAPE SYSTEM (HP 3030 MAGNETIC
TAPE UNIT)

The 3030 Driver operates the HP 3030 9-channel magnetic tape control-
ler. It initiates, continues and completes any tape operations requested
through input/output control. As a module of the Basic Control System,
the driver conforms to the general specifications for performing input/
output under control of the Input/Output Control (I0C) module.

Two consecutive I/O channels are required with the data channel assigned
to the higher priority of the two. The other channel is the command
channel. Data is transferred to or from memory by a DMA channel.

The name of the Driver is D.22. The entry points are D.22 (Initiator
Section) and C.22 (Continuator Section).

When configuring a BCS tape with the 3030 driver using PCS, the only
requirement is a link from the command channel interrupt location to
the entry point C.22 of the driver Interrupt Processor.

If an error is detected on a WRITE operation, the tape is backspaced over
the record; three inches of tape are erased and the record is rewritten.
This will continue until end-of-tape is sensed. If an error is detected on
aREAD operation, the driver will attempt to read ten times before abort-
ing the operation.

2.11.1 RECORD FORMAT

Each computer word is translated into two tape ‘“‘characters” by reposi-
tioning the bits as shown in figure below.

2-50 BCS

Record Format (HP 3030)

First tape character
Second tape character
Third tape character
Fourth tape character

COMPUTER WORD BITS 15 87 0
First word contents 1000110010111101
Second word contents 01101001111010010
TAPE TRACK 765391szllllllll
ASSIGNMENTS TRACK 4
765391682]|ISTHE
ODD
PARITY
BIT

9 4 1

101000001
101011111
100111010
011101100

2.11.2 CALLING SEQUENCE

EXT I0C.

JéB I0C.

oCT <function><subfunction><unit-reference >
JSB .

IMP } <reject address> <error return>

DEF <buffer address>

DEC

OCT } <buffer length>

<normal return>

BCS 2-51

2.11.3 FUNCTION AND SUBFUNCTION CODES

All allowable combinations of function and subfunction codes are as

follows:
Operation

CLEAR

READ (binary only)

WRITE (binary only)

DYNAMIC STATUS

WRITE END-OF-FILE (EOF) MARK
BACKSPACE ONE RECORD
FORWARD SPACE ONE RECORD

REWIND TO START OF TAPE (SOT, or the
LOAD POINT), READY (AUTO mode)

REWIND TO START OF TAPE (SOT, or the
LOAD POINT), UNLOAD (LOCAL mode)

2.11.4 BUFFER LENGTH

Code

0000
0101 (or 0100)
0201 (or 0200)
0300
0301
0302
0303
0304

0305

Character transmission is not applicable since the transmission is via a
DMA channel. The minimum data block is twelve tape characters. Out-
put blocks with a block length less than twelve characters are padded

with zeros.

2-52 BCS

2.12 MAGNETIC TAPE SYSTEM (HP 7970 MAGNETIC

TAPE UNIT)
2.12.1 CALLING SEQUENCE
EXT I0C.
JéB I0C.
OCT <function><subfunction><unit-reference>
JMP <reject address>
DEF <buffer address>
DEC <buffer length>

<normal return>
where:

function (specified in bits 15-12)
subfunction (specified in bits 11-6)

unit-reference
(specified in bits 5-0)

reject address
buffer address

buffer length

Specifies the type of input/
output operation being re-
quested: Clear, Read,
Write, Control, Status.

Specifies the unit-reference
number of the device used
for input/output opera-
tions.

JOC. returns control to
the user at this location.

Address of the first word
of the user’s buffer.

The value in the buffer
length field is specified in
words (positive integer) or
characters (negative inte-
ger). A buffer length of
zero causes the driver to
take no action on a write.
A zero buffer length on
binary read causes the
driver to make a forward
skip of one record, while a
zero buffer length on
ASCII read causes no ac-
tion to be taken by the
driver.

BCS 2-53

2.12.2 FUNCTION SUBFUNCTION, UNIT-REFERENCE CODES

The second word of the request determines the function to be performed
and the MT unit-reference for which the action is to be taken.

15 12 11 7 6 5 Q
[Function 1 [M] unitreference |
[

o

Subfunction

If DMA is being used, the maximum I/O request must be no greater than
the equivalent of 16,383 words.

NOTE: Setting the mode (m) bit 6 (on) causes the computer to
transmit binary data as it appears in memory or on magnetic
tape. Clearing the mode bit 6 (off) causes the computer to
transmit ASCII data as it appears in memory or on tape.

2,12.3 REJECT ADDRESS

If the input/output operation cannot be performed, control is transferred
to the third word of the calling sequence. When control is transferred,
the computer systerh provides status information which can be checked
by the user’s program. The contents of the A-Register indicate the physi-
cal status of the equipment, and the contents of the B-Register indicate
the cause of reject.

a. If bit 15is 1, the driver is busy (unavailable).

b. If bit 0 is 1, a DMA channel is not yet available to operate the
device.

c. If both bit 15 and bit 0 are 0, then the subfunction selected is
illegal.

2-54 BCS

Allowable Motion Requests

Operation Octal value of bits 15-6
Read ASCII record (RRF) 0100
Read Binary Record (RRF) 0101
Write ASCII record (WCC) 0200
Write Binary record (WCC) 0201
Write End-of-file mark (GFM) 0301
Backspace record (BSR) 0302
Forward space record (FSR) 0303
Rewind (REW) 0304
Rewind/Off Line (RWO) 0305
Erase four inches of tape (GAP) 0306
MTS Relocating Loader Skip record 0307
Forward Space Record (FSF) 0320
Backspace File (BSF) 0321
Status 0400
Clear 0000
Read and Write Requests

Bit 6 is only an indication of the request type; it does not imply two
physical modes on the magnetic tape unit.

Rewind or Backspace Record Requests

This request performs no action if the tape unit addressed is at load-
point. The status word indicates the SOT condition before and after the
request is made.

Read Parity Error Conditions

The driver attempts to read a given record up to three times before
declaring an irrecoverable parity error. If there is an irrecoverable parity
error, the last try is transmitted to the user buffer and a normal comple-
tion return occurs. The status word indicates the parity and/or timing
error.

BCS 2-55

Write Parity Error Conditions

The driver tries to rewrite a given record until either the record is success-
fully written or the end-of-tape is encountered.

Attempted Write Request

If a write request is made to a magnetic tape unit without a write enable
ring, the driver makes an immediate completion return to the caller.
Status bit 14 is set in the status word, causing the Formatter to print
*EQR and halt. To proceed, insert a write enable ring in the magnetic
tape.

Forward Motion Request

If forward motion is requested when the tape unit is at end-of-tape, the
MT driver ignores the request and makes an immediate completion re-
turn. The exceptions to this situation are:

a. Write End-of-file mark request, and

b. Read record request.

Only one of these privileged requests can be made once the EOT has been
encountered; after that, they are ignored by the driver.

Backward Motion Request (Rewind and Backspace Record and Back-

space File)

This request restores the privileged nature of the write-end-of-file and
read record requests.

Function/Subfunction Code Request 0307XX

Present in BCS MT drivers, the function/subfunction code request enables
the Relocating Loader to operate within the Magnetic Tape System. If
the request is followed by other I/O requests, they are treated as if the
magnetic tape were not file-protected. The file protect feature is turned
on again when the tape unit is rewound.

This request is identical to the forward space record request with the

additional capability of spacing records within files 1 and 2 (even when
the MT unit is in the protected file mode).

256 BCS

Backspace File Request and Forward Space File Request

These two requests cause the tape unit to go forward or backward until a
file mark (EOF) is detected. Data is not transferred, and a parity error in
any file record sets the parity error status bit.

The backspace file request positions the tape in front of a file mark or at
load point, whichever comes first.

If the end-of-tape marker is sensed during execution of a forward space
(record) request, the tape stops at the end of the current record. A status
request should be used to check for this condition.

2.12.4 STATUS REQUESTS

As soon as tape movement operations for rewind and rewind/standby are
initiated, the magnetic tape unit is available. The “A” field of a status
reply is set to 00, enabling a system status request to indicate ‘“not busy”
for this EQT entry.

The normal status request returns the tape unit to the status when it was
last referenced.

JSB .I0C.
OCT 0400 <unit-reference>
<return>

The dynamic status request is used to obtain the actual status of a mag-
netic tape unit. It goes to the driver for operation and returns only the
status word in the A-Register. The contents of the B-Register are not
significant.

JSB 10cC.
OCT 0300
<return>

BCS 2-57

Status Request Information

A-Register contents:

15 14 13 8 1 0
[a Equipment Type | Status |

Bits 15-14 indicate the availability of the device (a):

If 0, the magnetic tape unit is available; previous operation is com-
plete.

If 1, the magnetic tape unit is available; previous operation was
ignored because either a write request was made without a
write enable ring, or a tape motion request was made when the
tape unit was off-line.

If 2, the magnetic tape unit is not available for another request; an
operation is now in progress.

Bits 13-8 indicate the equipment type, i.e., specified as 23g.

Bits 7-0 indicate the status of the device.

|2

Condition

File Mark Sensed (EQF)

Load Point Status (BOT)

End-of-tape (EOT)

Data Timing Error

Command Rejected by the Controller
File Protected (no write enable ring)
Parity and/or Timing Error

O H N Wbk ot O~

Tape unit not on-line
NOTE: Bit 3 cannot be set using the driver.
B-Register contents:

15 14 0
{ m l Transmission Log j

2-58 BCS

Bit 15, m, indicates the mode of data transmission (from the request)

If bit 15 = 0, ASCII code transmission
If bit 15 = 1, binary code transmission

Bit 14-0 indicate the transmission log, a field that is the number of
characters or words transmitted. The value is given as a positive integer
and indicates characters or words as specified in the calling sequence of
the read or write request. The driver cannot read or write an odd number
of characters for this tape because the controller is a word device.

Minimum record length is one word.

An end-of-file mark record returns the user request length in the trans-
mission log after being read, therefore allowing the binary read operation
to operate properly through the Formatter. A write end-of-file mark re-
turns one in the transmission log.

Control requests with a subfunction between 02 and 07 set the trans-
mission log to zero.

Function requests of type 03 set m = 1.

2.12.5 CLEAR REQUEST

The clear request terminates a previously issued input or output opera-
tion before all data is transmitted. This request checks for multi-unit
operation based on the device (i.e., I/O channel number). The driver is
cleared only if the clear request is for the current operation I1/O channel
and physical unit number.

EXT J0C.
JSB J10C.
OCT 0000 <unit-reference>

On return, the contents of the A- and B-Registers are not significant.

BCS 2-58

2.12.6 CONTROL REQUESTS

A request directed to .IOC. may also control the positioning of a reel on
a magnetic tape device. The calling sequence is similar to the input/
output request, but consists of only three words:

EXT I0C.

JSB 10C.

OCT < function><subfunction><unit-reference >
ﬁ/ﬁ) } <reject address><error return>

<normal return>
The second word of the request has the following composition:

15 1211 9 8

6 5 0
[function V A subfunction J unit-reference _}

The function defines the calling sequence as a tape control request:

Function Name Code (octal)
Position Tape 03

The subfunction defines the type of positioning:

Subfunction (octal) Operation
0 dynamic tape status
1 write end-of-file
2 backspace one record
3 forward space one record
4 rewind
5 rewind and standby

As soon as tape movement operations (rewind, and standby) are initiated,
the device is considered to be available; the “a” field of a status reply is
set to 00 (see STATUS Request). The input/output driver is thus free to
process requests for other devices. To obtain the actual status of the
device when one of these commands has been issued, the dynamic tape
status request is used. If the tape movement operation is still in progress
the ““a” field is set to 10.

2-60 BCS

2.13 DATA SOURCE INTERFACE
CALLING SEQUENCES

2.13.1 Binary Output Operation

A binary output operation causes the removal of ‘hold-off.”” The calling
sequence is as below:

JSB .10C.

OoCT <function><subfunction>< unit-reference >
jgg., } <reject address><error return>

oCcT 0 dummy buffer

OCT 0 buffer length

<normal return>

Example:

3 10 15 o E-) » 21 40 45 50
[J]sle] T-]xlo |] T
o] 12loj 115 HolLp] [olF[FI"L |oN] JulN]i [T] IRIEIF] [#1]s)
JIMP[[REE]]alD [
olcT! |8 DU FIFIER
olc|T

BCS 2-61

2.13.2 Binary Input Operation

A binary input operation must have a 2-word buffer. Thirty-two bits
(4 BCD characters) are read directly into the 2-word buffer.

JSB .I0OC.
OCT <function><subfunction><unit-reference>
JSB

JMP
DEF <buffer address>
DEC 4 (for 4 characters) or DEC-2 (for 2 words)

} <reject address><error return>

buffer address BSS 2

Example:

z
__!

=
<
=]
o
=z
=
4
3
E]
m
l
£
=3
o

Rl P B (=)

2-62 BCS

2,13.3 ASCII Input Operation

An ASCII input operation must have an 8 word buffer. Eight BCD char-
acters are converted into 16 ASCII characters in the following format:

rf.dgd4d3dod1dQE-ssangg

range — a negative power of 10

function

six digit data value

range expressed as an exponent of two digits
two blanks

function expressed as a two-digit number

IOC.
<function><subfunction><unit-reference>

<reject address>
<buffer address>
-16
buffer address 8
Example:
T [T

=11

[RlElAl N UINDLT [RIELFT Tele(s

a1l $2 el)

=lclM[O]m
AR =1=)

BCS 2-63

2.14 DIGITAL VOLTMETER PROGRAMMER
CALLING SEQUENCE

A WRITE request for the Digital Voltmeter Programmer requires that a
one-word buffer be specified. This word contains the voltmeter program:
sample period (bit 7-6), function (bits 5-3), and range (bits 2-0). If bit
15 contains a 1, an encode command is sent to the Voltmeter (bit 15
will always be O if the configuration includes a Scanner).

JSB .I0C.

OCT <function><subfunction><unit-reference>
JSB .

IMP } <reject address><error return>

DEF <buffer address>

OCT 1

<normal return>
buffer address OCT voltmeter program

Example:
= e N ; N -]m Ic,._n..) 'w]
325 2;@?6 + \MKRITE lo]N CHANN]EL 16l [| ;
JMP| [Rlelv]alD | Al
|1 tolele) el 11T 111 AN 1 1]
TR H T T
| 1] EENEN
: | I | HERERY !
ulF I | lojclT] 1lg|d@lala eniclolple] [tlol lojviM lPROGR\AMZ 1]
1 l .Oﬁ secﬁe;él;,\‘wc v!ous, il
1lo[vioiL[T] Rl) | Pl
e e e T T
SENRNRERSRRRNENRERAURRURNRRURSRRRAR AR

2-64 BCS

2.15 SCANNER PROGRAMMER CALLING SEQUENCE

A WRITE request for the Scanner Programmer requires a 2-word buffer.
The first word contains the channel number for the start of the scan.
The second word contains the scanner program: the function (bits 4-3)
and the delay (bits 2-0). The driver subroutine converts the binary
channel number value produced by the Assembler to the BCD format
required by the device.

buffer address

Example:

4SB .IOC.

OCT <function><subfunction><unit-reference>

JSB .

IMP } <reject address><error return>
DEF <buffer address>

DEC 2

<normal return>

OCT xx starting channel number

OCT xx Scanner Program

Jjsie] |-i1fojc]-]] 1T
o[c[T] [2[o[1[4]8 WR{1TIE] ToIN] UIN[1[T] [2fo
JMP| RIEJVIAID,
DIEF] [BUIFIF
plelc] 2!
BluFIF] | loic]T] [1lela cIHANNIEIL] Ttjolo B
olcit] [2]3 RIojG[R|AMI:| olHIMIS], [2[7|mis| IDJELIAlY
L
T 1l T

2-65 BCS

2.16 INSTRUMENT CLEAR AND STATUS REQUESTS

2.16.1 INSTRUMENT CLEAR REQUEST

A CLEAR request on one of the instrument drivers follows the standard
form:

JSB .I0C.
ocT <function><unit-reference >
<return>

where the function code = 00.
The request will result in the following conditions:

Data Source Interface A CLEAR request causes no action. It is
included for compatibility only.

Digital Voltmeter A CLEAR request to this driver will re-

Programmer move the present program from the DVM
but the program will not be destroyed.

Crossbar Scanner A CLEAR request will inhibit the STEP

or RESET command on the Scanner pro-
grammer driver.

2.16.2 INSTRUMENT STATUS REQUEST

No status information is available from the instrument drivers.

266 BCS

2.17 MARK SENSE CARD READER

The BCS Mark Sense Card Reader Driver D.15 operates the HP 2761A-007
Mark Sense Card Reader by initiating, continuing, and completing any
operations through the Input/Output Control (.IOC.) subroutine within
the Basic Control System (BCS). As a module of the BCS, this driver
conforms to the general specifications for performing those controls.

The Initiator section of this driver interprets the function from the call-
ing sequence, stores the buffer address and length, and signals the Mark
Sense Card Reader to feed a card. An interrupt occurs for each clock
mark printed on the 9-edge of the card to cause a JMP to the Continuator
section of the driver. The Continuator then performs these tasks:

1. Saves the previous contents of all registers to be used by the
Continuator section.

2. Examines bits 15-12 to check the validity of data. If the data is
invalid, it determines why and sets status in the EQT table.

3. Ensures that only one card will be fed.

4, Stores the number of characters or words transmitted in the
transmission log.

5. Restores the previously saved contents to the registers.

6. Terminates the transfer when the end-of-card is detected.

2.17.1 CALLING SEQUENCE

EXT J0C.

JSB I0C.

OCT <function><unit-reference >
JSB .

IMP } <reject address ><error return>
DEF <buffer address>

DEC

OCT } <buffer length>

<normal return>

BCS 2-67

2.17.2 BUFFER LENGTH

The length can be specified for either words (a positive integer) or for
characters (a negative integer) for any of the three reading functions. If
either of the READ binary functions are requested and the buffer length
specified is for an odd number of characters, the length will be effectively
incremented by 1. Thus if 3 characters are specified, the buffer will be
set for 2 computer words (i.e., (3+1)/2=2). If the buffer length is specified
to be zero, a card is fed, but its data is ignored.

2.17.3 STATUS FIELD

The Status field indications are:

Bits 7-0 Condition
XXXXXXX1 Hopper empty or stacker full.
xxxxxx1x Reader not READY.
XXxxx1xx Pick failure.

The equipment type code is 15.

The transmission log has the following maximum values:

Function Maximum Value
Read, Hollerith to ASCII 80 characters
Read, column image binary 80 words
Read, packed binary 60 words

BCS 2-68

2.17.4 FUNCTIONS

Contents of
Function bits 15-6

Read, Hollerith to ASCII (octal equivalent) 0100
conversion with two characters per
computer word, as described in
Appendix A.

NOTE: In translating Hollerith to
ASCII trailing zeros are
suppressed.

Read, packed binary; four 12-row card columns 0103
packed into three 16-bit computer words.
Thus one 80-column card fills 60 words
of the user’s buffer. The packing format
is described in the Small Programs Manual
“BCS MARK SENSE DRIVERS, D.15”
(HP 12602-90021).

Read, column image binary; each card column
is placed right justified into one 16-bit
word. The four left bits (15-12) are set

to zero, as shown in the Small Programs
Manual.

CLEAR request; allows the current card to 0000
finish feeding.

STATUS request. 0400

BCS 2-69/2-70

RELOCATING LOADER 3

The Loader is the module of the Basic Control System that provides the
capability of loading, linking, and initiating the execution of relocatable
object programs produced by the Assembler, FORTRAN, and ALGOL.
It is available in 4K and non-4K versions. ALGOL programs and the
Relocatable Library stored on magnetic tape require the non-4K loader,

3.1 EXTERNAL FORM OF LOADER

The Loader, part of the tape titled ‘“Configured BCS,” is stored in an
absolute record format on an external medium (on magnetic tape or 8-
level paper tape) with the Input/Qutput Control subroutine (.IOC.) and
the equipment driver subroutines. It is loaded by the Basic Binary
Loader.

3.2 INTERNAL FORM OF LOADER

The Loader islocated in high~-numbered memory along with the
Input/Output Control subroutine and the equipment driver sub-
routines. The Loader uses .IOC. for input/output operations;
it refers to the Standard input and output units. The binary ob-
ject program is read from the Standard Input unit; comments
to the user (¢7g., Loader diagnostics) are written on the Tele-
printer Qutput unit; and library routines referenced by the ob-
ject program are assumed to be on the Program Library unit.

3.3 RELOCATABLE PROGRAMS

The process of assembling or compiling a set of symbolic source program
statements results in the generation of relocatable object code. Relocat-
able code assumes a starting location of 00000. Location 00000 is
termed the relative, or relocatable origin. The absolute origin (also
termed the relocation base) of a relocatable program is determined by

BCS 3-1

the Loader. The value of the absolute origin is added to the zero-relative
value of each operand address to obtain the absolute operand address.
The absolute origin, and thus the values of every operand address, may
vary each time the program is loaded.

A relocatable program may be made up of several independent-
ly assembled or compiled subprograms. Each of the subpro-
grams would have a relative origin of 00000. Each subprogram
is then assigned a unique absolute origin upon being loaded.
Subprograms executed as a single program may be loaded in
anyorder. The absolute origins will differ whenever the order
of loading differs.

The operand values produced by the Assembler, FORTRAN, or
ALGOL maybe program relocatable, base page relocatable, or
commonrelocatable. Eachofthese segments ofthe program has
a separate relocation base or origin. Operands that are refer-
ences to locations in the main portion of the program are in-
cremented by the program relocation base; those referring to
the base page, by the base page relocation base; and those re-
ferring to common storage, by the common relocation base.

If the Loader encounters an operand that is a reference to a location in
a page other than the “current” page or ‘‘base’” page, a link is established
through the base page. A word in the base page is allocated to contain the
full 15-bit address of the referenced location. The address of the word in
the base page is then substituted as an indirect address in the instruction
in the “current” page. If other similar references are made to the same
location, they are linked through the same word in the base page.

34 RECORD TYPES

The Loader processes threetofive record types for a program.
These record types are produced by the Assembler, FORTRAN,
or ALGOL in the following sequence:

NAM Name record

ENT Entry point record
EXT External name record
DBL Data block record
END End record

3-2BCS

The NAM, DBL, and END records exist for every object pro-
gram; ENT and EXT appear only if the corresponding pseudo
instructions are used in the source program.

NAM

The NAM record contains the name of the program and the
length of the main, base page, and common segments. The
NAM record signifies the beginning of the object program.

ENT

The ENT record defines the names of 1 to 14 entry points with-
in this program. Each of the four-word entries in the record
contains the name, the relocatable address of the name; and
anindicator which specifies whether the address is program or
base page relocatable.

EXT

The EXT record containsfrom 1 to 19 three-word entries which
specify the external references defined in the program. The
three words allow a maximum of five ASCII characters for the
symbol and a number used by the Loader to identify the symbol.

DBL

A DBL record contains 1 to 45 words of the object program.
It indicates the relative starting address for the string of words
and whether this portion of the object code is part of the main
program or base page segment. For each of the words there
is also arelocation indicator which definies the relocation base
to be applied to each operand value. Possible relocation fac-
tors are:

Absolute Operand is an absolute expression or
constant. There is no relocation base.
15-bit Program Operand is a 15-bit value to which is
Relocatable added the program relocation base.
15-bit Base Page Operand is a 15-bit value to which is
Relocatable added the base page relocation base.

8CS 33

15-bit Common
Relocatable

External Symbol
Reference

Memory Reference
Instruction

Operand is a 15-bit value to which is
added the common relocation base.

Operand is a reference to an external
symbol. Value is supplied when the
Loader determines the absolute loca-
tion of the linkage word in the Base Page
which contains the 15-bit address of
the related entry point.

A memory reference instruction in the
form of a two-word group which con-
sists of the instruction code, a full 15-
bit operand address, and a relocation
indicator for the operand address.
The relocation indicator can define the
operand address to be program, base
page, or common relocatable.

The END record terminates the block of records in an object
program. The END record may contain a 15-bit address which
is the location to which control is transferred by the Loader
to begin program execution.

3.5 MEMORY ALLOCATION

The Loader loads the object program into available memory.
Available memory is defined as that area of memory not allo-
cated for hardware and system usage. Available memory is
divided into two segments:

Available Memory in Base Page — used for the operand
linkage area, program blocks origined into the Base Page
by the Assembler pseudo instruction ORB, and for pro-
gram blocks assigned to the Base Page by the Loader when
the amount of program available memory is insufficient.

Program Available Memory — used for the main body of
the program and may be used by the common block should
the area used by the Loader be insufficient.

34 8CS

Prior to loading the object program, memory is allocated as

follows:

07777 OR 17777
07700 OR 17700

02000

00000

< BASIC

INPUT/OUTPUT CONTROL
AND
EQUIPMENT DRIVER
SUBROUTINES

BINARY
LOADER

BASIC
CONTROL
SYSTEM

RELOCATING LOADER

PROGRAM
AVAILABLE
MEMORY

N\

BASE PAGE
AVAILABLE
MEMORY

/

NN

SYSTEM
LINKAGE

/

RESERVED

LOCATIONS

N = 0(4K), 1(8K), 2(12K), 3(16K), 6(24K}, 7(32K}

Assuming Program Z is to be loaded and executed — after load-
ing, the memory might be allocated as follows:

07777 OR 17777
07700 OR 17700

NON-RELEASABLE
PORTION OF
LOADER

PROGRAM
RELOCATION
BASE

02000

BASE PAGE
RELOCATION
BASE

00000

INPUT/OUTPUT CONTROL
AND

EQUIPMENT DRIVER
SUBROUTINES

BASIC
BINARY
LOADER

BASIC
CONTROL

X

PROGRAM
AVAILABLE
MEMORY

_

\

PROGRAM Z

SYSTEM

LINKAGE AREA

SYSTEM

AR ~
\ BASE PAGE

AVAILABLE

MEMORY

BASE PAGE PROGRAM Z SEGMENT

LINKAGE

RESERVED
LOCATIONS
AND
INTERRUPT

N = 0{4K), 1{8K), 2(12K), 3{16K), 5(24K), 7(32K)

4

PROCESSING

BCS 3-5

Options selected during PCS processing can define the equipment driver
subroutines and other routines as external routines which must be satis-
fied at run-time. If selected, these routines would be allocated to the
available memory areas, and the length of the absolute segment of BCS
reduced accordingly.

If several programs are to be loaded and executed together,
the following might occur:

Assume three programs, A, B, and C, comprise a run-
ning program. Programs A and B share a common block,
a portion of which is also shared by C. Programs B and
C contain segments which are designated to be allocated
to the Base Page. Allocation is as follows:

07777 OR 17777 BASIC
07700 OR 17700 BINARY
LOADER
BASIC
CONTROL
SYSTEM
NON-RELEASABLE | _ __ _ _ . _ __ _____ _
PORTION OF
LOADER COMMON AREA FOR A & B ONLY COMMON
- —CONMONARRAFRE, B & —~1 [8LOCK
PP EErrs 4 PROGRAM
COMMON PROGRAM C AVAILABLE
RELOCATION MEMORY
BASE PROGRAM B
PROGRAM A
02000 BASE PAGE
LINKAGE AREA | AVAILABLE
NSNS MEMORY
BASE PAGE PROGRAM C SEGMENT SYSTEM
BASE PAGE PROGRAM B SEGMENT / LINKAGE
RESERVED
00000 . LOCATIONS
ND
N = 0{4K), 1{8K), 2(12K), 316K}, 5{24K), 7(32K) INTERRUPT
PROCESSING

Common Block Allocation

The first common length declaration (i.e., the first program
containinga common segment) processed by the Loader estab-
lishes the total common storage allocation in high memory
overlaying the major portion of the area occupied by the Loader.
Subsequent programs must contain common length declarations

368CS

which are less than or equal to the length of the first declara-
tion.

To allocate the common area, the Loader subtracts the total
length of the block from the address of the last releasable word
in the Loader. The resulting memory address +1 is the origin
of the common block. This value is used throughout the entire
loading process as the common relocation base.

Program Storage

The program length is compared with the amount of available memory.
If sufficient space is available, the program is loaded and the upper and
lower bounds recorded. If the program has a base page segment, or if the
program consists entirely of coding to be stored in the base page, the
length of the segment is compared to the amount of available base page
memory. If there is enough space in this area, the segment is loaded and
the bounds recorded. Whatever is loaded first is usually originated at
absolute location 02000 (page 1, module 0). The initial base page segment
is usually originated immediately following the area set aside for reserved
locations, interrupt processing, and system linkage. Subsequent main
program and base page segments are loaded into the next available higher
numbered areas contiguous with the previously loaded segments.

Providing the memory allocation list option is selected, the name of
each program, its upper and lower bounds, and its base page upper and
lower bounds are printed after the program is loaded. The format is as
follows:

<program name >
11111 uuuuu (main program bounds)

11111 uuuuu (Base Page bounds)

If the Loader finds that the main program segment about to be loaded
can not fit in the memory area available for the main segment, it compares
the segment’s length to the length of available memory in the base page.
If there is sufficient space, the main segment will be loaded in the base
page. The next segment will be loaded in the main program area if it will
fit, or in the base page if not (providing there is sufficient space in the
base page). When all available base page space has been used, loading is
terminated.

BCS 3-7

For example, assume that several programs are to be loaded in sequence
A, B, C, D, E, and have sizes such that they can not all fit in the main
program available memory.

BASIC
BINARY
" LOADER
BASIC
CONTROL
SYSTEM
COMMON BLOCK
PROGRAM
A LB AM M AR AALBM AR A AR LRLRRN AVAILABLE
PROGRAM D MEMORY
PROGRAM B
PROGRAM A
LINKAGE AREA BASE PAGE
S S S O O S SIS OSSN SSS— AVAILABLE
PROGRAM E MEMORY
PROGRAM C EELEAN?;E
¥ RESERVED
LOCATIONS
™~ AND
INTERRUPT
PROCESSING

3.6 OBJECT PROGRAM RECORD PROCESSING

ENT/EXT Record Processing

The Loader constructs and maintains a Loader Symbol Table
which contains entry points and external symbols which are de-
clared in the programs and entry point names of any BCS sys-
tem subroutines that have beendefined as relocatable., As each
entry point is encountered its relocated (absolute) address is
recorded in the table. As each external reference is proc-
essed, a link word is established in the Base Page. The gen-

3-8 BCS

eral processing of the entries in an ENT and EXT record involves search-
ing the loader symbol table to locate a match between the symbols. When
a match is found, the absolute entry point address is stored in the base
page link word.

The Loader assumes that there is a user program, BCS system routine, or
Relocatable Library routine entry point for every external reference. If
none exists, the external reference is undefined and considered to be in
error. A list of undefined external symbols is printed at the end of the
loading operation. If duplicate entry points are detected, a diagnostic is
issued. For duplicate entry points, only the first routine is accepted.

Each entry in the Loader Symbol Table occupies five words.
The Table is positioned before the beginning of the Loader and
extends backwards toward low-numbered memory. If suffi-
cient space is not available in the main program portion of
memory to store a five-word entry, a diagnostic message is
issued and the loading operation is terminated.

DBL Record Processing

Aload address for the data or instruction words in a DBL rec-
ord is relocated by adding either the program relocation base
or the base page relocation base. The resulting value is the
absolute address for storing the first word. The second word
is stored at address +1, the third at address +2 and so forth.
A relocation base is added to each operand address as speci-
fied by the relocation indicator.

The processing for an external reference word involves a
search of the Loader Symbol Table for the related entry. When
found, the address of the link location in the Base Page is ex-
tracted and stored as an indirect address in the instruction.

When a memory reference instruction is processed, the Load-
er first applies the proper relocation base, (program, base
page, or common) to the 15-bit operand address. If the re-
sulting absolute operand address references the Base Page,
the address (bits 09-00) is set into the operand field and the
instruction is stored in memory at the current load address.
When the absolute operand address and the current load ad-
dress are in the same page, the operand address is truncated
to bits 09-00 and set as the instruction operand address. I

BCS 39

the operand address is in a page other than the current load
address page, the operand address is stored in the Linkage
area of the Base Page and a reference to this location set as
an indirect address in the operand field of the instruction.

A memory overflow condition can occur when insufficient space
is available in the base page to allocate a linkage word. A
diagnostic message is issued and the loading operation is ter-
minated.

END Record Processing

When an END record is encountered, the Loader determines if
it contains a transfer of control address. If it does, the ad-
dress is saved.

If loading is from the Relocatable Library and no undefined external
references exist, the end-of-loading operation is performed.

If loading is from the standard input unit or Relocatable Library unit and
if undefined external references exist, the Loader requests the next
record. If the next record is a NAM record, processing of the next pro-
gram begins. If the result of the request is an end-of-information indica-
tion, an End condition exists.

Relocatable Library Loading

Loading from the Relocatable Library differs from loading user programs.
Only those programs in the library that contain entry points matching
undefined external symbols in the loader symbol table are loaded. After
each library program is loaded, the loader symbol table is checked for
undefined symbols. If none exist, the loading operation is complete and
the program is ready to be executed.

End Condition

When the Loader requests input and end-of-tape occurs on the input
device, an End condition exists. The Loader acknowledges this.condition
by writing the message “LOAD” on the teleprinter. The user responds to

3-10 BCS

this message by setting switches 2-0 of the Switch Register. (See “Loader
Operating Procedures.”) Four replies are available:

a. Load next program from standard input unit. External BCS system
subroutines are considered to be part of the program and must be
loaded from the standard input unit (unless they are made part of
Relocatable Library tape).

b. All programs are loaded; proceed to the end-of-loading operation.

c. Terminate loading operation. This forces program execution even
through there may be undefined external references.

d. Load from Relocatable Library; all user programs are loaded.

End-of-Loading Operation

The end of loading is signaled by the second or fourth response
to an End Condition. The Loader then searches the Loader
Symbol Table for any undefined external references. Any such
undefined external symbols are written on the Teleprinter Out-
put unit and the "LOAD'" message is repeated.

When the loading operation is completed or when the user has requested
termination of the loading process, the Loader produces a memory

allocation list. (This list may be omitted; see “Loader Operating Pro-
cedures.”) The format of the list is as follows:

<symbol 1> aaaaa

<symbol 2> aaaaa

<symbol n> aaaaa

The symbols are the entry points in the user’s program, the Basic Control
System, or the Relocatable Library and the a’s are their absolute ad-
dresses.

If a common block was allocated, the lower and upper bounds
of the block are listed as follows:

*COM 11111 uuuuu

BCS 3-11

The bounds of the Linkage Area are listed as follows:
*LINKS 11111 uuuuu

Thel'sare the absolute lower bounds and the u's are the abso-
lute upper bounds.

3.7 PROGRAMMING CONSIDERATIONS

When a program has been completely loaded, its execution is
initiated by performing a Jump Subroutine to the transfer ad-
dress (from the last END record containing an address). The
initial contents of the transfer address should be aNOP, OCT0,
ete., not the first executable instruction of the program,

3.8 LOADER OPERATING PROCEDURES

The exact operating procedures for the loader depend on the
available hardware configuration and the construction of the
Basic Control System through use of the Prepare Control Sys~
tem routine. The user should know the assignment of input/
output equipment and memory size before using the Loader.t

3-128CS

Loading Options

The Basic Control System Loader loads one or more tapes containing
relocatable programs. The message “LOAD” is typed when an end-of-
tape condition is encountered. The user then loads the next tape, indicates
loading from the Relocatable Library, specifies that loading is complete,
etc. When all programs are loaded and no undefined external references
remain, the Loader types the message “*LST” allowing the user to by-
pass part of the memory allocation list. Following the response, the
Loader types the message “*RUN.” The user then initiates program
execution.

Memory Allocation List

A memory allocation list can be obtained for the programs being loaded.
The list includes the name, main program bounds, and base page bounds
for each program. At the completion of the loading operation, this por-
tion of the list may be followed by a list of all entry points and their
absolute addresses, the bounds of the common block, and the bounds
of the linkage area. The Switch 15 setting determines the contents of
the list.

To obtain the bounds for each program on a tape, Switch 15
must be set to 0 before the tape is loaded (in response to the
"LOAD'" message). To bypass the program bounds listing, set
Switch 15 to 1 before loading the tape. The switch setting may
be altered whenever the "LOAD" message is typed.

To obtain the entry point list, the common bounds, and the linkage area
bounds, set Switch 15 to 0 in response to the message “*LST”, which is
printed after all programs are loaded. To bypass this portion of the list,
set Switch 15 to 1.

Absolute Binary Output

When it is necessary to utilize the area occupied by the Loader for pro-
gram storage or when an absolute version is desired for “production
stage” programs, the user may specify that an absolute binary tape be
punched. The process involves a simulated loading operation; however,
the absolute program is punched on tape rather than being loaded.

The absolute records produced consist of the relocated programs (in-

cluding all relocatable subroutines), the linkage area and all referenced
segments of the Basic Control System. These include:

BCS 3-13

Input/Output control subroutine (.IOC.)
All input/output equipment drivers
Memory Table (.MEM.)

System Linkage Area

Interrupt Processing area

Absolute location 2 and 3

In addition, the Loader Symbol Table, the common and linkage
area bounds are punched in ASCII format on the end of the bi-
nary tape. Ten inches of feed frames separate the binary in-
structions and the ASCH data. This feature provides a record
of the memory allocation.

At the completion of the "loading' process the Loader types the
message ""END'',

To execute the program, it must be loaded using the Basic Bi-
nary Loader. To initiate execution, set 000002 into the P-
Register and press RUN. The Loader has stored the transfer
address of the program in locations 2 and 3 as follows:

2 contains JMP 3,1
3 contains <transfer address>

Separation of List and Binary Gutput

If the absolute binary output option is selected and the Tele-
printer isused asbothalist and punch device, the Loader halts
before and after each line is printed to avoid punching the line
and altering the binary output.

The halts and related procedures are as follows:

T-Register
Contents Explanation Action
102055 A line is about to be Turn punch unit OFF,
printed. Press RUN.
102056 Aline hasbeenprinted. Turn punch unit ON,
Press RUN.

3-14 BCS

INPUT/OUTPUT DRIVERS 4

4.1 GENERAL DESCRIPTION

An 1/0 driver, operating in the BCS environment, is respon-
sible for controlling all data transfer between an 1/O device
and the cpu. It operates under control from the program.IOC.
Its operating parameters are the user I/0 request and the in-
formation contained in the device associated Equipment Table
entry.

4.2 STRUCTURE

An 1/O driver is a relocatable program segmented into two closed sub-
routines, termed the “initiator” and ‘‘continuator’ sections. The entry
point names for these two sections must be “D.nn”’ and “I.nn”, respec-
tively. The numeric value “nn” in the names is the equipment type code
assigned to the device. For example, D.00 and 1.00 are the entry points
for the teleprinter driver; “00” is the equipment type code assigned to
a teleprinter.

NAM DRIVER D. nn

D.nn

Initiator Section

I.nn

Continuator Section

BCS 41

4.2.1 INITIATOR SECTION

This section is called directly from IOC with calling param-
eters including the address of the second word of the user I/0
request and the address of the EQT entry for the referenced
device. IOC sets these parameters in A and B and performs a
JSB to the entry point "D. nn". Return toIOC from this section
must be indirectly through D. nn.

On entry to D. nn,

(A) = Address of word 1 of 4-word EQT entry
(B) = Address of word 2 of 1/0 request

The initiator section of any driver must perform the functions
described below.

1) Reject the IOC request and return to IOC (see step 6)if
any of the following conditions exist:
a. the driver is busy operating another device
b. the referenced device is busy or inoperable

the user request code or other parameters illegal
for the device

d. a DMA channel is not available and DMA is re-
quired for data transfer.

2) Extract the parameters from the user I/0 request and
save them within the driver storage.

3) Configure all I/Q instructions in the driver to include
the channel number for the reference device.

4) Indicate equipment in operation:

a. set the "a" field in the EQT entry to 2 (busy) for
the device called
b. set an internal driver 'busy' flag for the driver

c. seta 'busy"” flag in IOC if a DMA channel is used

4.2 BCS

(To set a DMA flag in IOC:

Within the IOC program the two entry points
DMAC 1, DMAC 2 contain the DMA channel loca-
tions (6 and 7 or 7 and 6). The signbit of the chan-
nel used must be set to 1 to indicate that the chan-
nel is busy.)

5) Initialize operating conditions and activate the device.

6) Return to IOC with the A and B registers set to indi-
cate initiation or rejection and the cause of the reject:

(A) = @, operation initiated
=1, operation rejected - reason in B-register

(B) = 100000, the device is busy or inoperable, or
the driver is busy
= gggdgdgdl, a DMA channel is required but no
channel is available
= §003gg, the request code or sub-function is
not legal for the device

4.2,2 CONTINUATOR SECTION

This sectionis entered by device interrupt to continue or com-
plete an operation. It may also be called from the Initiator
Section to begin an operation. The entry point to this section
is I.nn. There are no parameters on entry.

The continuator section of any driver must perform the func-
tions described below.

1) Save allregisters which will be used by the continuator
section.

2) Perform the inputor output of the next data item. If the
transfer is not completed, restore the "'saved' register
and return control to the program.

NOTE: A driver for a device which inputs or outputs data
independent of program control such as DMA would
not include step 2. The device is activated by the
initiator section (step 5), and the data transfer is
immediately accomplished. The continuator section
for such drivers merely completes the input or out-
put operation.

BCS 4-3

3) Whendatatransfer is completed (end-of-operation) or if
a device malfunction is detected, set the following in-
formation in the EQT entry:

The number of words or characters trans-
ferred (corresponding to the request)is set as
a positive value in word 3. Bit 15 of word 3
is set to @or 1 to indicate the mode of transfer.

The device status, actual or simulated, is set
in bits 07-00 of word 2 and the "a" field (bits
15-14) in word 2 set to:

0 - device available (not busy)
1 - device available; the operationis com-
plete but an error has been detected

Bits 13-08 of word 2 must not be altered.

4) Clear all '"busy" indicators. Clear the driver busy flag.
If a DMA channel was used clear the flag in IOC.

5) Restore all registers saved at the entry.

6) Return indirectly through the entry point I. nn, with the
following exception:

If end-of-operation occurs for an output or function request,
the driver returns to the entry point “.BUFR” in .IOC. This
enables the buffered version of .IOC. to perform the automatic
output buffering function. The standard version of .IOC. at this
entry point just performs a normal return to the point of inter-
ruption. The calling sequence to .BUFR is:

EXT .(BUFR

() JSB .BUFR
(P+1) NOP (holds return address from I. nn)
(P+2) NOP (holds EQT entry address)

44 BCS

PREPARE CONTROL SYSTEM S

The Prepare Control System (PCS) program processes relo-
catable modules of the Basic Control System and produces an
absolute version designed to work on a specific hardware con-
figuration. It creates operating units of the Input/Output Con-
trol subroutine (.IOC.), the equipment driver subroutines, and
the Relocating Loader. It also establishes the contents of cer-
tain locations used in interrupt handling. Options are available
to define the equipment driver modules and other BCS system
subroutines as relocatable programs to be loaded with the
user's object program.

The Prepare Control System is an absolute program which is loaded by
the Basic Binary Loader. It operates on a minimum configuration of 4K
memory and a 2752A teleprinter. However, if a Paper Tape Reader and a
Paper Tape Punch are available, the Prepare Control System will utilize
these devices. PCS requests their assignment during the initialization
phase.

After the Initialization phase is completed, each module of BCS
is loaded and processed by PCS. The order in which the mod-
ules are processed is not significant except that the BCS Loader
must be the last module loaded. Two modules, the Input/Out-
put Control subroutine and the Loader, require that parameters
be entered via the Keyboard Input unit after being loaded.

5.1 INITIALIZATION PHASE

During the Initialization phase, the system requests the channel assign-
ments of the Paper Tape Reader and the Tape Punch if available. The
operator supplies this information. Next the system requests the first
and last words of available memory. The first word is the location in the
base page following the locations required for interrupt processing (the
interrupt locations and the locations containing the addresses of the
Interrupt Processors). This location defines the start of the BCS system
linkage area. The last word of available memory is usually the location
prior to the protected area (e.g., 7677 for 4K memory, 17677 for 8K
memory).

BCS 5-1

Example:

HS INP? message
18 reply
HS PUN? message
11 reply
FWA MEM? message
39 reply
LWA MEM? message
176717 reply

5.2 LOADING OF BCS MODULES

After the initialization phase is completed, the system types “LOAD.”
The BCS modules are loaded using the Paper Tape Reader (if available)
or the teleprinter, The modules may include .IOC., the equipment drivers,
and the Relocating Loader. They can be loaded in any order provided
that the Relocating Loader is last. The message is repeated after each
module is loaded until the Loader has been processed. Diagnostics are
printed if certain error conditions occur during the loading.

The absolute lower and upper bounds of each program within BCS are
listed after the program is loaded. The format is as follows:

<program name>
1111 uwuuuu
Equipment driver subroutines and interrupt processing sections that are
to be used in relocatable form are identified during PCS processing but

are not loaded. At the completion of the processing, PCS requests the
missing subroutines. The proper response identifies each as external.

52 BCS

5.3 INPUT/OUTPUT EQUIPMENT PARAMETERS

After the Input/Output Control module is loaded, PCS requests
the information needed to construct the Equipment Table (EQT)
and Standard Equipment Table (SQT).t

Equipment Table Statements

PCS first types the messages "TABLE ENTRY" and "EQT".
The operator responds by supplying the Equipment Table en-
tries in the following format:

nn, D.ee [,D] [,Uu]

nn The channel number (select code) for the device. For
a device connected to two or more channels, nn is the
lower numbered channel.

D.ee The Basic Control System symbolic name for the re-
lated equipment driver subroutine. ee is the equipment
type code used by BCS. Driver names are as follows:

D.00 — 2752 A Teleprinter

D.01 — 2737 A Punched Tape Reader
D.02 — 2753 A Tape Punch

D.15 — Mark Sense Reader

D.20 — Kennedy 1406 Incremental Tape Transport
D.21 — 2020 Magnetic Tape Unit
D-22 — 3030 Magnetic Tape Unit
D-40 — Data Source Interface

D.41 — Integrating Digital Voltmeter
D.42 — Guarded Crossbar Scanner
D.43 — Time Base Generator

D A Direct Memory Access channel is required toc oper-
ate the device.

Uu The physical unit number u (0-7) for addressing the de-
vice if it is attached to a multi-unit controller.

The same response is used regardless of whether the related
subroutinedriver is to be relocatable or absolute (part of BCS).
If the driver is not encountered during processing, PCS prints
the following:

170 DRIVER?
D.EE

BCS 5-3

A response of “!” indicates that the driver is to be in relocatable form.
(Any other response at this time is an error.) Drivers which use DMA
or reference IOERR in the .IOC. may not be used externally.

The order in which the EQT statements are submitted defines
the position of the entry in the Equipment Table. It also es-
tablishes the unit-reference number that the programmer uses
in writing input/output requests to .IOC. The first statement
entered describes the unit which is to be referenced as number
78; the second statement, number 10g; the third statement,
number 11g; etc. Numbers 1 through 6 are reserved for Stand-
ard unit definition in the Standard Equipment Table.

The statement "/E" is entered to terminate the EQT input.
Example:

Unit-Reference Number

*TABLE ENTRY Message

EQT? Message

10,D.01 Statement ki
11,D.02 Statement 10
12,D.00 Statement 1
/E Terminator

Standard Equipment Table Statements

In constructing the Standard Equipment Table, PCS types a
mnemonic for the Standard unit and waits for the reply. The
reply consists of the unit-reference number for a device pre-
viously described in the Equipment Table.
Example:

SaT? message

~KYBp? message to assign Keyboard Input

11 reply: unit-reference number for Teleprinter
~TTY? message to assign Teleprinter Qutput
11 reply: unit-reference number for teleprinter message
~LIB? to assign Relocatable Library

54 BCS

=PUNCH?
10

=INPUT?

7

~LIST?

11

reply: unit-reference number for Punched Tape
Reader

message to assign Punch Output

reply: unit-reference number for Tape Punch

message to assign Input

reply: unit-reference number for Punched Tape
Reader

message to assign List Output

reply: unit-reference number for Teleprinter

Direct Memory Access Statement

After the equipment tables are completed, PCS requests infor-
mation about the availability of DMA channels to be controlled
by the Input/Output Control and equipment driver subroutines.
PCStypes the message "DMA ?" and the operator responds with
the available DMA channel numbers. The format of the reply

1S:

¢ (¢l

N is 6 if one channel is available

cqy is 7 if the second channel is available

If no DMA channel is available, the reply is 0 (zero).

Example:
DMA?

627

message

reply for two channels

If the reply contains any characters other than 0, 6 or 7, it is an error
and a diagnostic is issued.

BCS 5-5

5.4 INTERRUPT LINKAGE PARAMETERS

After the Relocating Loader isloaded, PCS requests the param-
eters needed to set the Interrupt Linkage for Input/Output proc-
essing. The information required for each device includes:

The interrupt location within the Reserved Location area
in low core.

The entry point name of the interrupt processing section
in the equipment driver subroutine for the device.

The address of the word in the Base Page which is to con-~
tain the 15-bit absolute address of this entry point name.

The same response is used regardless of whether the subrou-
tine driver is to be relocatable or absolute (part of BCS). If
the entry point was not encountered during processing, PCS
prints the following:

*UN NAME

A response of ! indicates that the driver is to be in relocatable form.
(Any other response at this time redefines the linkage.) Drivers which use
DMA or reference IOERR in .IOC. cannot be used externally.

Given this information, PCS sets in the interrupt location a
Jump Subroutine (Indirect) to the word holding the absolute ad-
dress for the entry point of the Interrupt Processor.

Location Content
10 JSB 20B,1
20 DEF I1.01

10 is the interrupt location

20 holdsthe address of the entry point, I.01, of the Inter-
rupt Processor.

56 BCS

PCS types the message "INTERRUPT LINKAGE ?"" The oper-
ator responds with a message in the following format:

a;, ag I.ee

a, The addressinlow core of the interrupt location for the
device (channel).

a, The address in the Base Page of the word to contain the
absolute address of the Interrupt Processor entry point.

I.ee Theentrypointname of the Interrupt Processor section
of the equipment driver subroutine. ee is the equipment
type code used by BCS. Entry point names are as fol-
lows:

1.00 — 2752A Teleprinter

1.01 — 2737 A Punched Tape Reader

1.02 — 2753 A Tape Punch

1.15 — Mark Sense Reader

1.20 — Kennedy 1406 Incremental Tape Transport
1.21 and C.21% — 2020 Magnetic Tape Unit

1.22 and C.22% — 3030 Magnetic Tape Unit

1.43 — Time Base Generator

The statement ""/E" is entered to terminate the Interrupt Link-
age parameter input.

Example:

INTERRUPT LINKAGE? message

10,20, 1.81 reply: The Paper Tape Reader uses in-
terrupt location 10. The absolute
address for entry point 1.01 is
location 20 in the base page.

11,21,1.82 reply: The Tape Punch uses inter-
rupt location 11. The ad-
dress of 1.02 is at location
21,

T Both the magnetic tape systems are connected to two channels; the lower
numbered channel transfers data (1.21, 1.22); the higher numbered chan-
nel transfers commands (C.21, C.22).

BCS 5-7

12,22,1,00 The teleprinter uses interrupt lo-
cation 12. The address of 1.00 is
at location 22.

/E Terminates linkage param-
eters.

The response to the "INTERRUPT LINKAGE?" message may
have the following form if a constant, for example a halt, is to
be set in the interrupt location.

a,c

a The address in low core of the interrupt location for the
device (channel).

¢ Theconstant inoctal form that is to be stored at locationa.

Example:

INTERRUPT LINKAGE? message

275102827 reply: A halt executed when inter-
rupt occurs on channel 27.

26,0

reply: A NOP is executed when in-
terrupt occurs on channel
26; the program resumes
normal execution.

5.5 PROCESSING COMPLETION

When the Interrupt Linkage parameters have beensupplied, PCS
performs the following functions:

1. Prints the message *UNDEFINED SYMBOL followed by the entry

point names of all system subroutines which have been referenced
as externals but not loaded. At this point, PCS may continue and

5-8 BCS

the missing subroutines loaded or, the symbols may be added to the
Relocating Loader’s Loader Symbol Table. Undefined symbols are
assigned as value of 77777 for an absolute address.

2. Completes the construction of the Loader Symbol Table.

Sets the Memory Table (symbolic location . MEM.) inthe
Relocating Loader to reflect the final bounds of available
memory.

Following this, PCS prints a list of all Basic Control System
entry points and the bounds of the System Linkage area in the
Base Page.

Example:

+«SA8Te. 17472
+EQT. 17500
«10C. 17515
DMAC) 17676
DMAC2 17677
IOERR 17656

XSeT 17674
XEQT 17675
D.oo 16745
1.09 17107
b.01 16406
1.01 16521
D.@2 16115
1.082 16226
+LDR. 15413
HALT 16110
MEM. 16118
LST 14182

*SYSTEM LINK
00939 90271

The final step in PCS processing is the punching of an absolute binary
tape of the configured Basic Control System. This tape can be loaded by
the Basic Binary Loader. When the tape is to be punched, BCS types the
message *BCS ABSOLUTE OUTPUT. At the completion of the PCS run,
the message *END is typed. The tape is punched using the tape punch
unit, if available, or the teleprinter.

BCS 5-9/5-10

DEBUGGING SYSTEM 6
L ___]

The debugging routine for BCS provides the following programming aids:

Print (dump) selected areas of memory in octal or ASCII
format

Trace portions of the program during execution

Modify the contents of selected areas in memory

Modify simulated computer registers

Instruction and operand breakpoint halts

Initiate execution at any point in program

Debugging routine restart

Specifying relocatable program base

The Debugging routine supervises the operation of a program
in the check-out (debugging) phase through the use of an inter-
pretive mode of execution with simulated A, B, E overflow and
P registers.

The Debugging routine is a relocatable program. It is loaded
into memory after the user's relocatable programs and before
the library subroutines are loaded. The Debugging routine
makes use of the input/output control subroutine, I0C.

6.1 OPERATOR COMMUNICATION

All communication between the debugging routine and the user is done
through the standard keyboard input and standard teleprinter output
units normally assigned to a teleprinter.

After the program is loaded, the Debugging routine pauses to
allow the first type-in. The operator then types one or more
control statements to direct the operation of the Debugging
routine, Each statement must be terminated by an end-of-
statement mark which consists of a carriage return, @ ,and
a line feed . The last statement of the set must be a Run
statement.

When an operation requested by a control statement is com-
pleted, a pause occurs (except for the Trace operation). The
operator may then continue by typing a Run statement, or he
may enter new control statements. To regain control at any

BCS 6-1

other time, the operator must use Switch 15. Caution must be
used, however, when input/output operations are in progress;
setting the switch causes a message to be typed. This action
may disrupt any incomplete I/O operation.

6.2 CONTROL STATEMENTS

The basic format of the control statement is a single alpha-
betic character representing the requested operation followed
by a parameter list containing the arguments for the operation
separated by commas. The statement is of variable length and
is terminated by . The numeric fields in the param-
eter list must be in octal; leading zeros may be omitted.

Program Relocation Base

M, a
This statement defines the program relocation base, a, as the
absolute origin in memory of the user's relocatable program,
This address may be obtained from the listing produced by the
Relocating Loader during loading. If not specified, a value of
zero is assumed. The value is addedto all address parameters
entered by the operator.

Specification of this value allows subsequent reference in the control
statements to addresses as shown on the program listing produced by
the Assembler or the FORTRAN compiler. If this control statement is
not used, program address parameters for other control statements must
be absolute. DEBUG does not check for memory address greater than
the core size; therefore, locations in the base page may be altered if
the program relocation base is too high.

Example:
M, 2098
Set Memory

Sy a, vi, V2,---,Vn

The above statement allows the user to set one or more values
into locations defined by the first address, a. The value speci-
fied for vy is stored in location a; the value for vy, in location
a+1; and so forth. To specifythat an existing value in memory
is to remain unchanged, two consecutive' commas are used in
the control statement. Any number of values may be entered
via one control statement provided the length of the statement
does not exceed 72 characters.

8-2 BCS

Example:

S, 5,062006
S, 30, 136100, 026040
S, 40, 136101, 026050

Set Register

w,r,v
This statement sets the value, v, into register, r, where the
register is defined as follows:
r = A, A-Register
= B, B-Register
= E, E-Register
= Q,Overflow

Since the Debugging routine simulates the register, the results
of a Set Register operation are not reflected on the computer
front panel.

Examples:

W,B,2
W, A, 102000
W, E, 1

Dump Memory

D’ A’ a’l, a‘2
D,B,al,a2

The second parameter indicates the format of the print-out: A specifies
ASCII, B specifies octal. The address aj designates the location of the
word or the first of a series of words that is to be dumped. If the second
address, ag, is greater than aj, a block of memory, a3 through ag, is
printed. If a9 is the same as aj, only one location is printed.

After the data is printed, the Debugging routine waits for the
operator to enter another control statement.

Example:
D, A, 430,477
BCS 6-3

Breakpoint Halt

B,1,a
B,0,a

The first form specifies the address, a, of an instructionbreak-
point. Before the instruction at address a is executed, the De-
bugging routine writes a standard breakpoint message (See Qut-
put Formats).

The second form specifiesthe address, a, of an operand break-
point. When the Debugging routine detects an effective operand
address equal to the value of a, it writes a standard breakpoint
message. The operand breakpoint occurs before the memory
reference is completedand the register contents inthe message
are the contents during the instruction execution and not at
completion.

After the breakpoint message is transmitted, the Debugging
routine waits for the user to enter another control statement.

One or both types of breakpoint halts may be selected. Once
selected, a breakpoint address remains in effect until a new
address is selected, until a Restart statement is entered, or
until the selection is terminated by the statements:

Trace
BJI7¢ Or B)O’g

T, 31[,3.2]

When the Trace operation is specified, the execution of the instruction
located at address a1, or the execution of every instruction within the
area aj through ag, causes the printing of a standard breakpoint message.
(See “Output Formats.”) The printing occurs before each instruction is
executed. Each time the aj - ag area is reached, the prinfing resumes; no
pause occurs on completion as in the other debugging routine operations.

The area to be traced mustnot contain calls to the input/output
control routine, IOC. The Trace operation uses IOC to print
the breakpoint message. An attempt to trace I/O operations
will result in I/O errors.

The trace of the area remains in effect until a new area is se-
lected or until the selection is terminated by the statement:

T1 g
64 BCS

To enter a new Trace control statement while the program is in
operation, Switch 15 must be used.

Run
R[,a]

This statement is used to initiate the execution of the program being de-
bugged. It can also be used to continue execution after a pause in execu-
tion (caused by setting switch register bit 15 to 1 or by breakpoint halt).
If the letter R only is entered, execution starts with the next sequential
instruction in the user’s program. To start at another location, the
operator enters the address, a.

Restart
A

This statement, consisting of the letter A" is used to abort
the current operation andrestart. This results in all debugging
routine and input/output operations in progress being cleared.

6.3 CONTROL STATEMENT ERROR

If an incorrect control statement is entered, the following mes-
sage is typed:

"ENTRY ERROR"
This indicates that the character representing the operation is

invalid, or that an illegal parameter has been typed. To re-
cover, type in the correct control statement.

6.4 HALY

Any halt operations coded within the user’s program result in a typeout
consisting of the letter H followed by the standard breakpoint message.
The operator can then type in one or more control statements or can
reinitiate program execution (with the R control statement).

BCS 6-5

6.5 INDIRECT LOOP

The debugging routine counts levels when indirect addressing is detected.
When ten consecutive levels of indirect addressing have occurred, an
indirect address loop is assumed and the following is typed out:

"INDIRECT LOOP™
L <standard breakpoint message>

6.6 OUTPUT FORMATS

The Debugging routine operations may produce either of two
printed outputs: the standard breakpoint message andthe mem-
ory dump.

Standard Breakpoint Message

Each standard breakpoint message has the following format:

<id>P=v,I=v,A=v,B=v E=v50=v6MA=v7MC=v

1 2 3 4 8
The <id>is aletter identifying the operation producing the out-
put:

id = I, Instruction breakpoint
0, Operand breakpoint

T, Trace

= 8, Switch 15 set up

= L, Indirect Loop

= H, Halt in object program

1o

The v's are octal values of registers and memory locations as
follows:

P - P-Register (instruction address)
I - Instruction (contents)

A - A-Register

B - B-Register

E - E-Register

O - Overflow
MA - Effective operand address of a memory reference in-
struction
MC - Contents of effective address of a memory reference
instruction

66 8CS

Dump

The Dump output record format consists of the contents up to
8 consecutive words preceded by the address of the first word:

addr. word1 word2 P word8
Qctal: aaaaa 000000 000000 ... 000000
ASCH: aaaaa cc ce cc

Octal words consist of 6 octal digits; ASCII words arelisted as
two ASCH characters. The contents of eight or more consecu-
tive words are not written or they are the same as the last
word of the previous record. Instead, a record containing only
an asterisk is produced. 4

6.7 OPERATING PROCEDURES

The following procedures indicate the sequence of steps for use
of the Debugging routine.

A. Set the Teleprinter to LINE and check that all equipment to
be used is operable.

B. Load Basic Control System using the Basic Binary Loader.

C. Set a starting address of 2 and zero the Switch Register.
D. Establish Relocating Loader parameters. (If relocation base is to be

entered during operation of the debugging routine, the address must
be obtained during loading by setting Switch 15 to 0.)

E. Load user relocatable object programs.

F. Load Debugging program (treated as a relocatable pro-
gram). t

G. Load Relocatable Library routines.

1 The Debugging routine need not be loaded as the last reloca-
table program. If loadedin any other order, however, the ab-
solute address assigned tothe symboliclocation DEBUG must
be entered manually as the starting address for the program.

BCS 6-7

H. Press RUN,

I. The program pauses to allow the operator to type in the
control statements.

J. The program may be restarted atany point by entering the
absolute address assigned to the symbolic location DEBRS

into the P-Register, and pressing RUN.

6.8 EXAMPLE

The routine employed in this example is a simple loop which
totals the contents of a block of data. In order to imbue it with
a practical aspect, assume that program "TOTAL" computes
personal expenses for a 31-day month. Data (each day's ex-
penses) is read in from the Punched Tape Reader. The sum is

printed out on the Teleprinter.

The program is written and assembled as below. To check it
out a data tape, consisting of a series of 10's is prepared:

10

10

10

PAGE @002

2001 00000
2002 00000
2803 00001
2004 Q@282
2095 009003
0006 00004
2007 00005
2008 00006
0009 00007
0010 @9910
2011 00011

90012
2012 00013
2013 00014
9014 00015
2015 00016
0016 000817
9017 00020

6-8 BCS

CR @D
CR@D
€B® @D

31

200000

962162R
B872156R
P62163R
00640 4

216884X
900000

90001 4R
B16086X
216001X
1860855R
216005X
@66055R
P46164R
@76855R
@36156R
926003R

START

NAM TOTAL
NOP

LDA =D-31
STA CTR
LDA =85S
CLB,INB
JsSB .Di0.
ABS @

DEF *+5
JSB .10R.
DST INPUT, 1

JSB +RAR.
LDB INPUT
ADB =B2

STB INPUT
ISZ CTR

JMP START+3

INPUT THE DATA

8819
9029
9921

2922

2024
8025
2826

0027
2028
2829
9339
2831

90833
0034
#9835
2936
2837
20938

29839
2949
20841

2943
29 44
29045
8346
0947
2948
2949

2950
*k

00021
29922
28823
08024
80025
00026

90827
008390
90831
00032
#8833
99034
90035
20036
20837
009490
20941

20042
98043
00044
20045
20046
00047
00050
800651
99052
98053

99054
99055
90956
38154
00156

00157
00160
00161

90162
90163
D164
00165
29166

#62162R
#72156R
916002X
908016 SR
916091X
900154R

016002X
100054R
016003X
800154R
816081X
900154R
8660854R
84616 4R
876054R
B36 156R
#2690 35R

96216 AR
906 400

216904X
@08157R
908053R
9160082X
990154R
2169006 X
9160087X
182077

P00056R
009856R
000000
0006808
000000

824106
834056
8310851

177741
200005
299092
000000
900000

NO ERRORSx*

SUM

+MON
INPUT
MONTH
ANSW
CTR

OUTPT

LDA
STA
DLD

DST

DLD
FAD
DST

LbB
ADB
STB
1Sz
JMP

LDA
CLB
JS8
DEF
DEF
DLD

JsB
JsB
HLT

DEF
DEF
BSS
BSS
BSS
EXT
ASC

END

=D=-31
CTR INITIALIZE
=F @9

ANSW

«MON, I
ANSW
ANSW

«MON

=B2 ADDITION LOOP
'MON

CTR

Sum

=B2

«DIO.

OUTPT

*+5

ANSW OUTPUT THE RESULT

'IOR'
.DTA‘
778B

MONTH

MONTH

62

2

1
eDIOeseRARe 5>« IORs , «DTA.
35 (F 8.2)

START

BCS 6-9

The "TOTAL' object tape is loaded by the Basic Control Sys- ‘
tem. The debugging system is loaded next and then the library
tape. The program is executed using the Debugging System by
the following instructions:

M, 2000 Set program relocation base

Bs1,53 Breakpoint instruction is 53, the location of the terminating
halt in the program.

Rs1 Initiate execution at statement 1

12.90
H P=00053 1=102077 A=17771117 B=006115 E=0 0=1

The correct answer for the test data would be "31, 00", not the
10. 00 that was output.

The procedure below illustrates one method for detecting errors
in the program.

M.2000 Set program relocation base

Dump a portion of the storage area MONTH

DsB» 56,70
DUMP-~BASE = @2000

Pov56 950503 000333

00060 901253 000000 0POOP0O VO4A267 917700 0PO000 B53070 011770
223070 082256

Read in the data:

Bs1,21

Rs 1

1 P= 9002) [=062162 A=000000 B=002154 E=@ 0=0 MA=@8162 MC=17774}
Check to see that the data has been stored in memory:

D>B» 56,70
DUMP--BASE = 02000

80056 050000 000010
20060 250000 020210 950000 000010 950000 000010 PSP00D 000919

P00 V50002

610 BCS

Knowing that the data has been stored in MONTH, perform the
first addition: N

8,1,35
Rs21
I P= 00835 1=066054 A=050000 B-000010 £=0 0=0 MA=02054 MC=0820856

Check to see that the first day's expenses have been stored at
ANSW:

Ds>B,» 1545155
DUMP--BASE = 02000

20154 050000 000010
The first addition was executed. Perform the remaining addi-
tions by looping:
B, 1,42

R» 35
1 P= 00042 1=062164 A=050000 B=002154 £E=0 0=0 MA=00164 MC=000002

Check final total in ANSW.

DsB» 1545155
DUMP--BASE = 02000

0a154 350000 000010

Here, if not previously, the error should be detected; the pro-
gram does not perform more than the first addition. The label
sum has been placed in the wrong instruction. It should be in
location 27 preceding the "DLD . MON, I'* instruction.

BCS 6-11/6-12

HP CHARACTER SET A

ASCII CHARACTER FORMAT

by 0 0 0 o)) ' |
bg o o | ! o o ! !
bs L2 t 0 i 0 1 0 !
by
b3
bz
30

o|o|o|o{NuLL{DCo | & o @ e
olojoli(somMloc, | + [t | a] a | "“I“
olo[1]oleoaloca] » | 2 | 8 [= | | | 3]
oo [|Eomiocs | # | 3 [¢ | s | | |"n
o| jofolEeor [S| § 4 o T ._u:::::
0|1 !0j1|WRU[ERR| % 5 E v N S
o [Jolmulswc] a6 [¢ [v A0
O 1|1]1[BELL|LEM j(arosy| 7 [d w s | N
JofofolFEal So | (| & | w | x | 1T)ET
olol gl se L v s v v [N 0]
o el Flse I =1 - 1o 1z 1 e77]7]
{0+ 17 Vas 83 [* x T 170171
i Tolol FF T 54 Jicomn < L v | ACK
e [eR ss| -1 = 1w 3 [| TO
1]rJols0 se] - | >~ [+ | | Jesc
T st s, [72 [o [« [4 Joec

Standord 7-bit set code positional order ond notation are shown below with by the high-order
ond b, the low-order, bit position.
b, be by b, by b, b

EXAMPLE: The code for "R” is: 1 ¢ 1 ¢ 0 1

LEGEND
NULL Nutl/idle DC,-DC; Device Control
SCM Start of message DCa4(Stop) Device control (stop)
EOA End of address ERR Error
ECM End of message SYNC Synchronous idle
EOT End of transmission LEM Logical end of medio
WRU "Who are you?" So-Sr Separotor (information)
RU "Are you...?" 5 Word separator (space, normally
BELL Audible signal non-printing)
FEo Format effector < Less than
HY Horizontal tabulation > Greater than
SK Skip (punched card) 4 Up orrow (Exponentiation)
LF Line feed - Left arrow (Implies/Replaced by}
Vias Vertical tabulation A Reverse slant
FF Form feed ACK Acknowledge
CR Carrioge return 0] Unassigned control
SO Shift out ESC Escape
Sl Shift in DEL Delete/Idle
DCo Device control reserved for

data link escape

BCS A1

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCII-BCD Conversion

Symbol BCD ASCI| Equivalent Symbol . BCD ASCI} Equivalent
4 (octal code) (octal code) 4 (octal code) (octal code)
(Space) 20 g4g A 61 191
! 52 o941 B 62 192
13 @43 C 63 193
$ 53 p44 D 64 194
% 34 P45 E 85 195
& &g 46 F 66 186
' 14 @47 G 67 g7
(34 750 H 78 g
) 74 #51 i 71 m
* 54 752 J 4 112
+ Py #53 K 42 13
, 33 #54 L 43 114
- 4 955 M 44 115
. 73 756 N 45 116
/ 21 @57 O 46 117
p 47 12
g 12] Q 50 121
1] 261 R 51 122
2) g62 S 22 123
3 93 263 T 23 124
4 o4 64 u 2 125
5 75 265 \% 25 126
6 g6 P66 w 26 127
7 o7 767 X 27 130
8 19 978 Y 30 131
9 n a71 z 3N 132
15 972 [75 133
; 56 273 \ 36 134
< 76 074] 55 135
= 13 275
> 16 276
? 72 g77
@ 14 199

Other symbols which may be represented in ASCII are converted to spaces in BCD (20)

A-2 BCS

HP 2020 ASCII — BCD Conversion

ASCI BCD ASCIT BCD
Symbol (ctal code) (Octal code)|SY™POl (Octal code) (Octal code)
(Space) 44 29 A 141 61

! 11 52 B 142 62
" 42 37 c 103 63
43 13 D 104 64
$ 44 53 E 105 65
% 45 34 F 166 66
& 46 60t G 187 67
! 47 36 H 118 70
(50 75 1 111 71
) 51 55 J 112 41
* 52 54 K 113 42
+ 53 6 L 114 43
) 54 33 M 115 44
55 49 N 116 45
. 56 73 o 117 46
/ 57 21 P 120 41
Q 121 50
2 R 122 51
1 o ;11 § 123 22
4 64 B4 \' 126 25
6 66 26 X 134 27
7 67 o1 Y 131 30
i 1 [133 75 1
< 74 %6 - 137 32
= 75 35
> 76 16
? 77 72
e 199 14

t BCD code of 60 always converted to ASCII code 53 (+).
1 BCD code of 75 always converted to ASCII code 50 (() and
BCD code of 55 always converted to ASCII code 51 ()).

BCS A-3

HP 2761A-007 Mark Sense Card Reader

Data read from Mark Sense Cards is converted from the same Hollerith
codes used for punched cards to ASCII codes (octal equivalents) and
packed two characters per computer word. The first character and every
other character after it are placed in the upper half (bits 15 thru 8) of
successive words in the buffer. The second character and every other
character after it are placed in the lower half (bits 7 thru 0) of those same
successive words. Thus, each character has the potential of either one of
two representations in a computer word, depending on its position within
the reading sequence. Both of these potentials are listed for each charac-
ter available from Mark Sense Cards in Table A-3, starting below.

For example, if the word HEMP were being read the ASCII octal equiva-
lent for H as the first character is 044000, which is stored as

15 87 0
| 0100 100 000 000 000]

Next, the ASCII octal equivalent for E as the second character is 000105,
which is stored as

15 87 0
[[0100 100 001 000 101]

The first packed computer word then, is

15 87 0
0100 100 001 000 101]

Finally, the next two characters M (046400) and P (000120) are stored
in the next packed computer word as

15 87 0
I 0100110101010 OOO]

BCS A4

CHARACTER CONVERSIONS-MARK SENSE CARD READER

Hollerith or ASCII First Character Second Character
Character Octal Equivalent Octal Equivalent
A 040400 000101
B 041000 000102
C 041400 000103
D 042000 000104
E 042400 0600105
F 043000 000106
G 043400 000107
H 044000 000100
1 044400 000111
J 045000 000112
K 045400 000113
L 046000 000114
M 046400 000115
N 047000 000116
(0] 047400 000117
P 050000 000120
Q 050400 000121
R 051000 000122
S 051400 000123
T 052000 000124
U 052400 000125
\% 053000 000126
W 053400 000127
X 054000 000130
Y 054400 000131
Z 055000 000132
0 030000 000060
1 030400 000061
2 031000 000062
3 031400 000063
4 032000 000064
5 032400 000065

BCS A-5

CHARACTER CONVERSIONS-MARK SENSE CARD READER

Hollerith or ASCII First Character Second Character
Character Octal Equivalent Octal Equivalent

6 033000 000066

7 033400 000067

8 034000 000070

9 034400 000071

(space) 020000 000040

! 020400 000041

7 (quote) 021000 000042

021400 000043

$ 022000 000044

% 022400 000045

& 023000 000046

> (apostrophe) 023400 000047

(024000 000050

) 024400 000051

* 025000 000052

+ 025400 000053

, (comma) 026000 000054

— (hyphen or 026400 000055
minus)

. (period) 027000 000056

/ 027400 000057

: 035000 000072

; 035400 000073

< 036000 000074

= 036400 000075

> 037000 000076

? 037400 000077

@ 040000 000100

¢ (cent)or| 055400 000133

(not mark) or } 056400 000135

| (vertical bar*) or * 057000 000136

_ (underscore**) or < 057400 000137

0-8-2 or\ 056000 000134
*NUMERIC Y
#**NUMERIC W

BCS A-6

EQUIPMENT TABLE B

The Equipment Table (EQT) provides information for the input/
output control routine, .IOC., and the equipment driver sub-
routines. The table contains an entry for each peripheral de-
vice attached to a Computer configuration.

The table is constructed as a block of entries assembled by the
Prepare Control System routine. The first word of the table,
at the symbolic entry point . EQT., contains the number of en-
tries in the table. An entry in the table is referenced accord-
ing to its position. The numbers 1 through 6 are reserved for
Standard units (see Standard Equipment Table). The number
Tg appearing in a program refers to the 1st table entry; the
number 10g, the second, and so forth. The numbers may be
in the range 7g-T4g with the largest value being determined by
the number of units of equipment available at the installation.

The 4-word entry for each device contains the following infor-
mation:

The channel number of the device (10g-76g)

A Direct Memory Access channel indicator if pertinent

Absolute address of equipment driver subroutine

Equipment type identification code.
The above information is static for each installation; it is not
altered by .IOC. The entry also contains dynamic information
which is supplied by the equipment driver subroutine. This in-
formation includes:

Status of operation (i.e., in progress or complete)

Status of equipment

Number of charactersor words transmitted when the oper-
ation is completed.

BCS B-1

The format of the entry is as follows:

15 14

98 65

l—d—W/////////ﬂA unit l channel

15 14

87

I a | equipment type I status

o o

15 14

transmission log

]

L

driver address

L e L]

unit =

channel =

equipment type =

B-2 BCS

Direct Memory Access channel indicator

1 DMA channel is tobe used for each data
transmission operation

0 DMA channel not required

Physical unit number (0-7) used to address
the device if it is attached to a multi-unit
controller.

The channel number (select code) for the
physical device (also the low core location
containing a JSB to the related interrupt
subroutine.)

Availability of device:

0 The device is available; the previous
operation is complete.

1 The device is available; the previous
operation is complete but a transmis-
sion error has been detected.

2 The device is not available for another
request; the operation is in progress.

This field contains a 6-bit code that identi-
fies the device:

00-07 — Paper Tape devices
00 Teleprinter
01 Paper Tape Reader
02 Tape Punch

status =

transmission log =

driver address =

10-17 — Unit Record devices
15 Mark Sense Reader

20-37 — Magnetic Tape and Mass Storage
devices
20 Kennedy 1406 Incremental Tape
Transport
21 2020 Magnetic Tape Unit
22 3030 Magnetic Tape Unit
40-77 — Instrumentation devices
40 Data Source Interface
41 Integrating Digital Voltmeter
42 Guarded Crossbar Scanner
43 Time Base Generator

The status field indicates the actual status
of the device when the data transmission is
complete. The contents depend on the type
of device (see Status Table).

This bit defines the mode of the data trans-
mission:

0 ASCI or BCD
1 Binary

This field is alog of the number of charac-
ters or words transmitted. The value is
given as a positive integer and indicates
characters or words as specified in the
calling sequence. The value is stored in
this field only when the input/output request
has been completed, therefore, when all
data is transmitted or when a transmission
error is detected.

Absolute address of the entry point for the
associated driver subroutine for the device.

BCS B-3

STATUS TABLE

Status Bit
Device 7 6 5 4 3 2 1 0
2752A Teleprinter End of
Input
Tape
2737A Punched Tape End of
Reader Tape
2753A Tape Punch Tape
Supply
Low
Kennedy 1406 Incre- End of
mental Tape Transport Tape BT bB
2020A Magnetic Tape End of 1/0
Unit EQF | ST Tape TE R Nw | PA | DB
3030 Magnetic Tape End of 1/0
Unit EQF{ ST Tape TE R NwW | PA | DB
Mark Sense Reader PF |RNR| HE or
SF

BT = Broken Tape
DB = Device Busy
EOF = End of File

ST = Start of Tape

TE = Timing Error

I/OR = I/O Reject

NW = No Write (write enable ring missing or tape unitis rewinding)

PA = Parity Error
HE = Hopper Empty
SF = Stacker Full

RNR = Reader Not Ready

PF = Pick Fail
B4 BCS

STANDARD UNIT EQUIPMENT TABLE C

The Standard Unit Equipment Table (SQT) allows reference to
input/output devices designated as Standard units. The Table
contains six 1-word entries. Eachentry corresponds to a par-
ticular Standard unit and contains a pointer to the Equipment
Table. The Standard units are as follows:

Number Name
1 Keyboard Input
2 Teleprinter Output
3 Program Library
4 Punch Output
5 Input
6 List Qutput

The number defines the position in the SQT at which the device
is listed. Each Standard unit may be a different device, or a
single physical device may represent several Standard units.
The value of the pointer in the SQT is the position of the physi-
cal unit'sentry in the EQT, with the lowest value being 78'

BCS C-1

D 10C WITH OUTPUT BUFFERING

I0C with Output Buffering is an extension of the standard ver-
sion and provides for automatic stacking and buffering of all
output and function requests. This involves moving an output
requestand associated buffer into available memory and adding
the request location into a thread of stacked requests for the
referenced unit. At the completion of an output operation, the
next entry in the stack for the unit is initiated by IOC. The
processing of output/function requests for a particular unit is
according to the order of the requests (first in/firstout). This
version of IOC requires the use of the program MEMRY to per-
form the allocation and release of blocks of available memory.
If available memory is exhausted when an allocation is at-
tempted, IOC repeats the call until space is made available,
i.e., previous blocks are released.

PRIORITY OUTPUT

A “‘priority” write or function request has been added for use with the
Buffered version of IOC. A priority request is processed immediately
without the request and buffer being moved to available memory. The
current operation in the stack is suspended, the priority request processed
and the suspended operation re-initiated. The priority feature is useful
for writing messages or diagnostics for immediate action or for perform-
ing output without reserving a segment of available memory for request/
buffer storage. (All output performed by the BCS Relocating Loader is
done as priority requests for the latter reason.) If two or more priority
requests are called in immediate succession (without intervening status
checks), the last requested operation is performed with the previous ones
being “lost.”

A "Priority" request (i.e., Write function) is indicated by set-
ting bit §9 of Word 2 of the request call = 1. Bit g9 = 0 means
normal operation with the Standard IOC and means the request
will be stacked and buffered with the extended version.

D-0 BCS

Example: 'Priority' Write to Teleprinter

JSB .IOC.
OCT 21992
JMP REJ
DEF BUFFR
DEC -37

OPERATING ENVIRONMENT

I0C with Qutput Buffering provides for writing a data block on
more than one oufput device in parallel and does not restrict
output rates to the lowest speed device. Because all requests
and buffers are moved into available memory for subsequent
processing, peak load output processing is not delayed due to
device speed or saturated buffer storage within the bounds of
user programs. System I/O saturation occurs when available
memory is exhausted.

RESTRICTIONS

The routines used to allocate/release blocks in available memory and to
initiate stacked output requests operate with the Interrupt System dis-
abled. Therefore, the use of medium/high speed synchronous 1/O devices
(e.g., HP 2020 Magnetic Tape) under program control is not recommended
because of possible data loss.

An 1/0 driver routine operating under the extended version of
I0C may not be used to control more than one like device. This
is because the buffering control routine in IOC only checks for
stacked requests referencing the uniton whichan operation was
just completed.

HALT CONDITIONS
Irrecoverable error conditions are identical to the Standard

version of IOC. The location of the halt is at the entry point
"IOERR". These conditions are:

BCS D-1

A-Register B-Register Meaning

a Location at Request Request Code Illegal
1 Location at Request Unit Reference Illegal
0 ") Write request for an

input only device.

I/O ERROR CONDITIONS

The routine .BUFR in the version of I0C with Qutput Buffering
checks for error conditions of the end of each output operation.
If any error conditions and End-of-Tape or Tape Supply Low,
etc. conditions are present, IOC halts to allow the condition to
be corrected. Processing is continued by pressing RUN,

192979
Word 2 of EQT entry (Status word)
Hardware 1/0 address of unit

Halt: (T)
(A)
(B)

An addition has been made to this routine to handle requests for
buffered output of records too long to be buffered with the amount
of memory available. If such a request is made, the following
occurs:

a, IOC outputs the contents of any buffers which have been
previously “stacked" for the referenced I/0 device.

b. The computer halts to inform the user that his program
cannot buffer output records of the length requested. The
contents of the registers are as follows:

(T) = 102001

(A) = Maximum length record that can be buffered
with the amount of memory available.

1

(B)

Memory location of the output request which
caused the halt,

The user restarts the program by pushing the RUN button. The
output request is honored immediately without buffering, IOC
waits until the output operation is complete before returning
control to the program. This ensures that the data area is not
modified before the complete record is output, and that the out-
put results are identical to those produced if buffered output of
the record had occurred.

D-2 BCS

RELOCATABLE TAPE FORMAT

NAM RECORD
CONTENT
15 87 0151312 015 0
/)
1
RECORD 2
£
LENGTH & CHECKSUM
7k
/ /
woro 1 ¥ WORD 2 WORD 3
15 87 015 87 015 87 0
s Y M B L
WORD 4 WORD 5 WORD 6
1514 015 015 0
LENGTH OF LENGTH OF LENGTH OF
MAIN PROGRAM BASE PAGE COMMON
SEGMENT SEGMENT SEGMENT
(OR ZERO) (OR ZERO) (OR ZERO)
A/C
WORD 7 WORD 8 WORD 9

tEach word represents two frames arranged as follows:
Bit 8 — -~ Bit 0

- Feed Holes

Bit 15 — «— Bit 7

EXPLANATION

RECORD LENGTH = 9 WORDS
IDENT = 001

CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
IN RECORD EXCLUDING
WORDS 1 AND 3,

SYMBL: FIVE CHARACTER
NAME OF PROGRAM

A/C: BINARY TAPE PROCESSOR
= 0 |F ASSEMBLER
PRODUCED
= 11F COMPILER
PRODUCED

BCS E-1

ENT RECORD

CONTENT
15 87 0151312 43 035 0
/ 4]
| E
2 ;
RECORD £
e E R CHECKSUM
T 1
E
/ AS
WORD 1 WORD 2 WORD 3
15 87 015 87 015 87 10
s Y M B L
Ly
WORD 4 WORD 5 WORD 6
15 015 87 015 87 0
\
RELOCATABLE
ADDRESS
o s Y M B
SYMBL
WORD 7 WORD 8 WORD 9
15 87 1015 015 0
L RELOCATABLE
ADDRESS
/
R
WORD 10 WORD 59

E-28CS

EXPLANATION

RECORD LENGTH = 7-59 WORDS
IDENT =010

ENTRIES: 1 1o 14 ENTRIES PER
PROGRAM; EACH ENTRY
1S FOUR WORDS LONG.

SYMBL: 5 CHARACTER ENTRY
POINT SYMBOL

R: RELOCATION INDICATOR
= 0 IF PROGRAM RELOCATABLE
= 1 IF BASE PAGE
RELOCATABLE

WORDS 4 THROUGH 7 ARE
> REPEATED FOR EACH
ENTRY POINT SYMBOL.,

EXT RECORD

CONTENT
15 87 0151312 54 015 0
y [
// ‘
! N
ﬁﬁ%ﬁ, e x CHECKSUM
N |
T E
A s
WORD 1 WORD 2 WORD 3
15 87 015 87 015 87 0
SYMBOL
S M 8 L D
NO.
WORD 4 WORD 5 WORD 6
15 87 015 015 87 0
SYMBOL
s L 1D
NO.
WORD 7 WORD 60

EXPLANATION

RECORD LENGTH = 6-60 WORDS
iDENT = 100

ENTRIES: 1 TO 19 PER
RECORD; EACH ENTRY
IS THREE WORDS LONG

SYMBL: 5 CHARACTER
EXTERNAL SYMBOL

SYMBOL iD. NO.: NUMBER
ASSIGNED TO SYMBL FOR
USE IN LOCATING
REFERENCE IN BODY
OF PROGRAM,

WORDS 4 THROUGH 6 REPEATED
FOR EACH EXTERNAL
SYMBOL (MAXIMUM OF
19 PER RECORD).

Computer

Museum

BCS E-3

DBL RECORD

CONTENT
15 87 0151312 765 015
) /)
) NO, OF
RECORD D .
LENGTH £ INST, CHECKSUM
N WORDS
N
7/c
WORD 1 WORD 2 WORD 3
514 0151312109 76 43 1015
4
Y
/ OCATABLE /
REL
LOAD Rlrlrlr] =l v
1 ADDRESS /
/ /
WORD 4 WORD 5 INSTRUCTION WORD
R = 000
1514 0 1514 0 1514
/
4 15817 PROGRAM | 1] 15-81T BaSE PAGE | /] 15-8IT cOMMON
)] ReLOcATABLE RELOCATABLE | (A "RELOCATABLE
/ VALUE VALUE é VALUE
INSTRUCTION WORD INSTRUCTION WORD INSTRUCTION WORD
R = 001 R =010 R =011
1514 110 0 151411109 2101514
i i
y ! /
€] ExTERNAL 3¢
19 symeow i 5 M; RELOCATABLE
u? 1.D.NO. U E R VALUE
¢ ¢ 7
c c //
o/ o= 2/¢

INSTRUCTION WORD
R =100

E-4 BCS

INSTRUCTION WORDS
R=10)

EXPLANATION

RECORD LENGTH = 5-60 WORDS
IDENT =011
Z/C: BASE/CURRENT PAGE LOADING
=0 FOR BASE PAGE
=1 FOR CURRENT PAGE

NO. OF INST, WORDS: 1 TO 45
LOADABLE INSTRUCTION
WORDS PER RECORD

RELOCATABLE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW.

R's: RELOCATION INDICATORS:

000 = ABSOLUTE

001 = 15-BIT PROGRAM
RELOCATABLE

010 = 15-81T BASE PAGE
RELOCATABLE

011 = 15-BIT COMMON
RELOCATABLE

100 = EXTERNAL REFERENCE

101 = MEMORY REFERENCE

R} IS RELOCATION INDICATOR FOR
INSTRUCTION WORDy; Ry, FOR
{NSTRUCTION WORD2; ETC-MEMORY
REFERENCE INSTRUCTIONS USE

TWO WORDS, WITHIN THE TWO-
WORD GROUP, "MR" INDICATES
RELOCATABILITY OF OPERAND
SPECIFIED IN SECOND WORD:

00 = PROGRAM RELOCATABLE
01 = BASE PAGE RELOCATABLE
10 = COMMON RELOCATABLE

D/I: INDIRECT ADDRESSING

0 = DIRECT
1 = INDIRECT

Z/C: BASE/CURRENT PAGE LOCA-
TION OF OPERAND ADDRESS
AS DETERMINED 8Y LOADER.

0 = BASE PAGE
1 - CURRENT PAGE

END RECORD

CONTENT
15 87 0151312 21015
/ 1 /
RECORD A
E HE
LENGTH N CHECKSUM
/ ' /
)
WORD 1 WORD 2 WORD 3
1514 0
1
RELOCATABLE
i TRANSFER
4 ADDRESS
1
WORD 4

EXPLANATION

RECORD LENGTH = 4 WORDS
IDENT =101

R: RELOCATION INDICATOR
FOR TRANSFER ADDRESS

=0 IF PROGRAM RELOCATABLE
=1 IF BASE PAGE
RELOCATABLE

-~

: TRANSFER ADDRESS
INDICATOR

=0 IF NO TRANSFER
ADDRESS IN RECORD

=1 IF TRANSFER ADDRESS
PRESENT

BCS E-5/E-6

ABSOLUTE TAPE FORMAT

CONTENT EXPLANATION
15 87 01514 015 0
/ RECORD LENGTH = NUMBER OF
h BSOLU WORDS 1N RECORD EXCLUDING
ABSOLUTE WORDS | AND 2 AND THE
RECORD INSTRUCTION
i LOAD LAST WORD,
LENGTH ADDRESS WORD,
q ABSOLUTE LOAD ADDRESS:
/ U STARTING ADDRESS FOR
A LOADING THE INSTRUCTIONS
WHICH FOLLOW
woro 1 T WORD 2 WORD 3 F
INSTRUCTION WORDS: ONS
ABSOLUTE INSTRUCT
15 015 015 0 OR DATA
INSTRUCTION
CHECKSUM
WORD, /CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST
WORD n -1 WORD n

TEach word represents two frames arranged as follows:
Bit 8 ~ -— Bito

<+ Feed Holes

Bit 15 —~ - Bit 7

BCS F-1/F-2

HOW TO GENERATE A BASIC CONTROL G
SYSTEM

The stand-alone program Prepare Control System (PCS) is used to
generate BCS. The following parameters must be specified during
generation (all numbers typed in octal):

First Word of Available Memory (FWA MEM)

This is the lowest memory location that is available to PCS for BCS
construction. It should be higher than the last linkage location used
in the Interrupt Table and if the BCS is to be used within MTS (Magnetic
Tape System) it must be set to exactly 110g (to allow for MTS linkage
locations). (Interrupt Table must be pre-planned before running PCS,
since (FWA MEM) depends upon Interrupt Table length.)

Last Word of Available Memory (LWA MEM)

This is the highest memory location available to BCS. This value depends
on the core size and the context as follows:

Core Size Last Word BCS BCS in MTS
4K 7677
8K 17671 15777
16K 37677 35777
24K 57677
32K 77677

Equipment Table (EQT)

A table of varying size whose entries are numbered sequentially starting
with 7. The user relates each entry to a specific I/O device and to an I/O
driver. There must be at least one EQT entry per device to be used in BCS.

BCS G-1

Standard Unit Table (SQT)

A set of 6 numbers (chosen from the EQT) that specify devices for
standard functions (i.e., keyboard, list output, etc.).

Interrupt Table

The set of memory locations where interrupts may occur and a matching
set of linkage locations (one per interrupt location). Also, an entry point
into a driver is associated with each interrupt.

Each interrupt location corresponds directly to the select code of the
device, i.e., if the teleprinter select code is 10g, the interrupt location
in memory is 108. The linkage location associated with the device must
be higher than the highest select code (interrupt location) used.

Driver ldentification Codes

Driver Identification codes are required when creating the EQT and the
Interrupt Table. These are the currently defined driver codes:

90 to 97 Paper Tape Devices:
90 Teleprinter
91 Tape Reader
@2 Tape Punch

1@ to 17 Unit Record Devices:

1@ Calcomp Plotter

11 Card Reader

12 Line Printer

15 Mark Sense Card Reader (uses DMA)
16 80-Column Line Printer

G-2 BCS

20 to 37 Magnetic Tape/Mass Storage Devices:
21 HP 2029 (A or B) Magnetic Tape (7-Track)

22 HP 393G G Magnetic Tape (9-Track) (uses DMA
with character packing)

23 HP 7970 (A or B) Magnetic Tape (9-Track)

49 to 77 Instruments

OPERATING INSTRUCTIONS

1. Turn on all desired equipment.

2. Load PREPARE CONTROL SYSTEM (PCS) using the Basic Binary
Loader (BBL) or Basic Binary Disc Loader (BBDL).

3. Set starting address 20008.

4. Set all switch register bits off; then set switches 5 through 0 to
the octal select code (I/O channel) of the teleprinter.

5. Start program execution.

6. Set all switch register bits off.

7. PCS asks for the high-speed input device. (Remember o terminate
each reply with a RETURN and LINEFEED.) ¥

HS INP?

Reply with the select code of the high-speed input unit
for PCS (either tape reader or teleprinter)

8. PCS asks for high-speed punch

HS PUN?

Type the select code of the tape punch or teleprinter to
be used by PCS

........................

fTerminate any reply typed on the keyboard throughout PCS execution with RETURN LINE-
FEED. If an error occurs while typing a response, press RUBOUT, RETURN LINEFEED, then
retype the response,

BCSG-3

10.

11.

12,

PCS asks for the first word of available memory
FWA MEM?

Type the octal address beyond the last address necessary
for interrupt linkages

PCS asks for the last word of available memory
LWA MEM?

Type the octal address of last available memory address
(first digit must be non-zero)

PCS prints
*LOAD

At this point, load the appropriate BCS drivers (Magnetic
tape first, if present) one at a time. Place the driver tape
in the reader and press RUN.

PCS prints the driver name and absolute memory bounds, then
prints *LOAD 'and halts for the next tape.

Keep loading driver tapes until all are loaded. Then load
the Input/Output Control routine (IOC), either buffered
or non-buffered.

NOTE: If driver D.21 (HP 2020 (A or B) Magnetic Tape Unit) is
loaded, only non-buffered I0C can be used; D.21 turns
off the interrupt system. D.11 (Card Reader Driver) and
D.23 (HP 7970 (A or B) Magnetic Tape Unit) also re-
quire non-buffered IOC when used without DMA.

PCS prints IOC and the memory bounds and then asks for Equip-
ment Table entires by printing

*TABLE ENTRY EQT?

Press RUN. Then type in the required EQT entries, one
per line (each entry followed by RETURN and LINEFEED).
Remember that the entries are implicitly assigned octal
numbers, starting with 7g, as they are entered

xx,D.yy[,D{,U1]]

NOTE: Elements in brackets “{]’ are omitted according to the
driver requirements.

G-4 BCS

where

xx = high priority select code of the device

D.yy= driver identification number (see chart).

D =uses DMA; omit if device does not use DMA.

Ul =file protect mode for mass storage device; omit if file

protect is not desired.
Terminate the EQT by typing
/E

13. PCS asks for the Standard Unit Table
SQT?

and requests octal EQT entry numbers (7, 10, 11,...) for the
following standard functions:

1. Keyboard inputouv.... -KYBD?
2. Teleprinter..........coviiununn.. -TTY?
3. Library subroutine input

atload-time -LIB?
4. Punchoutput.................. -PUNCH?
5. Standard input. -INPUT?
6. Standard listoutput............... -LIST?

Respond to each request by typing the EQT entry number of the
device that is most appropriate for the specific function.

14. PCS requests information about the availability of Direct Memory
Access
DMA?
Respond by typing 0 (no DMA), 6 (one channel DMA),
or 6, 7 (two channel DMA)
15. PCS halts after typing
*LOAD
Place the BCS Relocating Loader in the reader and press
RUN.
16. PCS loads the Relocating Loader, then prints
LOADR

BCS G-5

and the loader’s memory bounds
XXXXX YYYYY

PCS then asks for the Interrupt Linkage Table by printing
INTERRUPT LINKAGE?

and halts.

Press RUN. Type the Interrupt Linkage Table entries for
each device, one per line, in order of ascending select
codes.

For a device using only one select code (I/O channel) type
xx,yy.lzz
where

xx = select code of the device, (Lower numbered of two select
codes if device is mass storage.)

yy = octal address of interrupt linkage memory word for the
T device.

zz = driver identification number (see Table BCS-1).
Example: 10,16,1.00
For a mass storage device using two select codes (I/O channels)

type

xx,yy,lzz
q9,m,C.22

where

qq = the lower priority (higher numbered) select code (xx =
" higher priority, lower numbered select code).

rr = octal address of the interrupt linkage memory word for
the device (different from yy).

2z = driver identification number (same as for 1.zz).

Example: 11,171.21
12,20,C.21

To put an octal instruction (i.e., a precautionary halt instruction) in
an unused interrupt location (select code) type

xx,bbbbbb

6-6 BCS

17.

where
XX = select code
bbbbbb = an octal instruction (b = 0-7).

__ halt number
Example: 15,102055

halt instruction
PCS checks each entry after it is typed. If the driver name was
typed incorrectly, PCS types
*ERROR
If the driver was not loaded earlier (step 11) then PCS types
*UN name

In either of the above cases, refer to Procedure 2 to continue.
Terminate the Equipment Table by typing

/E
PCS determines whether there are any undefined references (e.g., to
drivers that were not loaded). If none, PCS goes on to the next step.
If some symbols are undefined, PCS prints

*UNDEFINED SYMBOLS:

followed by a list of entry points for drivers which have been
referenced in tables but not loaded

Lxx

If the drivers were not loaded during step 11 but should have been,
restart PCS from step 1. To leave the references unresolved and
load in the driver tapes at load-time, (Procedure 3) continue PCS
processing with step 18.

NOTE: Drivers that use DMA or entry point IOERR in the

loader cannot be left undefined (must be loaded during
step 11).

BCS G-7

18. PCS lists the entry points of BCS and prints the system linkage
area

*SYSTEM LINK
XXXXX yyyyy
19. PCS then prints
*BCS ABSOLUTE OUTPUT

Check that the tape punch is operable and press RUN. PCS punches
a configured BCS tape and halts. To punch additional copies, set
switch register bit 15 on and press RUN.

20. Terminate PCS by setting all switch register bits to zero and pres-
sing RUN. PCS halts after printing

*END

G-8 BCS

PCS ERROR HALTS AND MESSAGES H

Halt Code

102055

102056

102066

192077

Message

*EOT

*ERROR

Meanin;

A line is about to be printed
on the teleprinter

A line has been printed while
the teleprinter punch unit
was off.

Tape supply low on tape
punch which is producing
absolute binary output. Trail-
er follows last valid output.

BCA tape is punched

Meaning

End-of-tape

A non-numeric parameter or
illegal numeric parameter
has been entered.

I/O DRIVER? D.ar

A driver has been named in
EQT entry but has not been
loaded.

Action

Turn punch unit OFF. Press
RUN.

Turn punch unit ON. Press
RUN.

Place new reel of tape in unit.
Press RUN. Leader is punched.

To produce additional copies,
set switch 15 on.

Action

Place next tape in tape reader
and press RUN to continue
loading.

Retype the entire entry cor-
rectly.

1. If the driver is to be loaded
with user’s program at load-
time, type an exclamation
mark (!). The driver name
is added to the loader’s
LST.

2. If the driver should have
been loaded, restart PCS.

BCS H-1

Message

*Lo1

*Lo2

103

*L04

*L05

*L06

*LO7

Meaning

Checksum error

Illegal record read: The last
record read was not recog-
nized as a valid relocatable
format record.

Memory overflow: The
length of BCS exceeds avail-
able memory’

System linkage area over-
flow in Base Page.

Loader symbol table over-
flow: The number of EXT/
ENT symbols exceeds avail-
able memory.

PCS interprets the program
length of BCS to be zero.

Duplicate entry points; an
entry point in the current
program matches a previous-
ly loaded entry point.

*UNDEFINED SYMBOL:

symbol

*UN name

H-2 BCS

An entry point in a BCS
module cannot be located.

The name I.ee is not defined
as an entry point in any 1/0
driver previously loaded.

Action

To reread record, reposition
tape to beginning of record
and press RUN. If computer
halts again, tape must be re-
placed.

To reread record, reposition
tape to beginning of record
and press RUN. If computer
halts again, tape must be re-
placed.

Abort PCS. Reduce the num-
ber of core resident I/O driv-
ers or increase memory.

Abort PCS. Reduce the num-
ber of, or reorder the core
resident I/O drivers.

Abort PCS. Reduce the num-
ber of, or reorder the core
resident I/O drivers.

Abort PCS.

Eliminate an entry point.
Check to see if the same pro-
gram was loaded twice.

If the subroutine should have
been loaded, rerun PCS.

1.If the driver name was
typed incorrectly, retype
the entire entry correctly.

2. If the driver is to be loaded
with the user’s program at
load-time, type an exclama-
tion mark (!).

HOW TO USE BCS TO RELOCATE AND [
RUN PROGRAMS

BCS performs two main functions: 1) relocates and links subroutines to
main programs, and 2) executes programs.

Starting with relocatable code produced by an assembler or compiler,
there are two possible methods to accomplish function 1 and reach
function 2:

a. BCS relocates the code (including subroutines) into core mem-
ory directly and then executes it.

b. BCS relocates the code (including subroutines) and punches it
onto an absolute tape along with the necessary system rou-
tines, drivers, tables, etc. This absolute tape can then be loaded
into core through BBL or BBDL and executed.

Method (a) is faster, but does not provide a permanent, runnable copy of
the program. Not only does the program code have to be relocated each
time the program is to be run, but less core is available because the Re-
locating Loader occupies a part of memory.

Method (b) takes longer the first time, but provides a permanent copy of
the program that can be executed. Also, more core is available since the
program can (at run-time) use the space occupied by the Relocating
Loader at load-time.

OPERATING INSTRUCTIONS

1. Load a configured BCS into core with BBL or BBDL. (See Proce-
dure 1 for generation of a configured BCS.)

2. Set a starting address of 2g.

3. Set all switch register bits off, then select the following options:

Bit 15 on (suppress memory allocation listing)
off (include memory allocation listing)

Bit 14 on (punch absolute tape copy of program)
off (relocate into core, do not punch tape)

BCS 11

If Bit 14 on and a teleprinter is to be used for punching, then

Bit 13 on (teleprinter is a 2754B and can print and punch
separately; set teleprinter mode to KT)

off (teleprinter cannot print and punch separately;
BCS halts before and after each line of printing so that
the operator can turn on/off punch unit to avoid
punching list output, then punch the absolute binary
output).

4. Place the first relocatable program tape into the reader. Press
PRESET and RUN. BCS reads and relocates the binary code on the
tape. If switch register bit 14 is on, an absolute binary tape is
punched. (Otherwise, BCS relocates the program in memory.)

5. BCS halts after typing
*LOAD

Load the user relocatable tapes as follows: Set switch
register bits 2 - 0 off.

Place the tape in the reader. Set switch register bit 15 on
(if desired) to suppress memory allocation listing. Press
RUN. When tape has been read, BCS halts after printing

*LOAD

If there are more user tapes to load, repeat step 5.

6. After all user program tapes have been loaded, there are several
options:

To read a library subroutine tape (and load only those sub-
routines which are necessary to resolve externals). (Step 7)

To list undefined externals (or bypass further loading if there
are no undefined externals). (Step 8)

To bypass further loading even if undefined externals remain.
(Step 9)

7. Set switch register bit 2 on (bits 1 and 0 off). Place the relocatable
library tape in the reader (FORTRAN 1V library must be loaded
first). Set switch register bit 15 on to suppress the memory alloca-
tion listing, if desired. Press RUN.

1-2 BCS

When the tape has been read, BCS halts after indicating:
No undefined externals
*LST
(Set switch register bit 2 off and go to step 10.)
or
Undefined externals

symbol
symbol

symbol
*LOAD

Return to Step 6 and select an option.

8. Set switch register bit 0 on (bits 1 and 2 off). Press RUN. BCS indi-
cates whether undefined externals exist by printing either:

No undefined externals
*LST
(Set switch register bit 2 off and go to Step 10)

or

Undefined externals
symbol
symbol
symbol
*LOAD

Return to Step 6.

9. Set switch register bit 1 on (bits 2 and O off). Press RUN. BCS goes
on to Step 10, even though undefined externals may still exist.

BCS 1-3

10.

11.

12.

13.

BCS has completed loading and is ready to print the Loader Symbol
Table (LST), common bounds, and linkage area bounds. Set switch
register bit 15 on to suppress listing of these items. Set bit 15 off to
list them.

If a 2754B Teleprinter is used, set the mode switch to “T” to
enable the tape punch.

Press RUN.

BCS completes listing (if requested by bit 15).
If the program was relocated into core (bit 14 off), BCS prints
*RUN
Press RUN to execute the program.

If the program was punched onto paper tape (bit 14 on), BCS prints
*END

Tear off the absolute tape output and wind. To execute the
program:

Load the tape with BBL or BBDL.
Start the program at location 2g.

14 BCS

BCS ERROR HALTS AND MESSAGES J

LOAD- TIME

Error Halt Meaning

192955 A line is about to be printed
on the teleprinter.

102056 A line has just been printed
on the teleprinter with the
tape punch OFF.

102066 Tape supply low on tape
punch which is producing
absolute binary output.
Trailer follows last valid
output

Message Meaning

*Lo1 Checksum error.

*Lo2 Illegal record read: The last
record read was not recog-
nized as a valid relocatable
record tape.

*LO3 Memory overflow: The
length of BCS exceeds avail-
able memory.

*L04 System linkage area over-

flow in Base Page.

Action

Turn punch unit OFF. Press
RUN.

Turn punch unit ON. Press
RUN.

Place new reel of tape in unit.
Press RUN. Leader is punched.

Action

To reread record, reposition
tape to beginning of record
and press RUN. If computer
halts again, tape must be re-
placed.

To reread record, reposition
tape to beginning of record
and press RUN. If computer
halts again, tape must be re-
placed.

Abort load. Reduce program
size or increase memory

Abort load. Reduce program
size or alter subprogram load-
ing sequence.

BCS M1

Message

*L05

*L06

*LO 7

*1,08

*L09

Meaning

Loader symbol table over-
flow: The number of EXT/
ENT symbols exceeds avail-
able memory.

Common block error: The
length of the common block
in the current program is
greater than the length of
the first common block
allocated

Duplicate entry points: An
entry point in the current
program matches a previous-
ly declared entry point.

No transfer address: The
initial starting location was
not present in any of the

programs which were loaded.

Record out of sequence: A
NAM record was encoun-
tered before the previous
program was terminated
with an END record.

RUN-TIME

Action

Abort load. Reduce program
size or increase memory.

Abort load. Reorder the pro-
grams during loading or make
the common blocks the same
length.

Abort load. Eliminate an en-
try point. Check to see if the
same program was loaded
twice.

Load the absolute starting
address into the A-register.
Start program execution.

1. Reload the program.

2. If program does not load
properly, replace the bi-
nary tape for the program
being loaded.

Certain library routines, including the Formatter, produce error messages

at run-time.

Halt Code

106055

J-2 BCS

Meaning

Program has attempted to execute a non-program area
of core. Warning-only. Program can be restarted.

In the HP 9625C Real-Time Executive System, the
2100A mobilizes disc storage, data acquisition sub-
systems, instruments and computer peripherals into
a powerful real-time multiprogramming system.

FORTRAN Reference Manual

CONTENTS

INTRODUCTION

CHAPTER 1 PROGRAM FORM

1.1 Character Set

1.2 Lines
Statements
Statement Labels
Comments
Control Statement
End Line

1.3 Coding Form

CHAPTER 2 ELEMENTS OF HP FORTRAN

2.1 Data Type Properties
2.2 Constants
Integer
Octal
Real
2.3 Variables
Simple Variable
Subscripted Variable
2.4 Arrays
Array Structure
Array Notation
2.5 Expressions
2.6 Statements

CHAPTER 3 ARITHMETIC EXPRESSIONS AND
ASSIGNMENT STATEMENTS

3.1 Arithmetic Expressions
Order of Evaluation
Types of Expression

3.2 Assignment Statements
Type of Statement

3.3 Masking Operations

<

el el el
WWWMNNDNDN - -

N
1
-l

[CELRCRTyY
o BB N

23
2-3
24
2-5
2-5
2-6
2-6
2-7

3-1

31
3-2
3-3
34
34
3-5

FORTRAN i

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

it FORTRAN

SPECIFICATIONS STATEMENTS

4.1 Dimension
4.2 Common

Correspondence of Common Blocks
4.3 Equivalence

CONTROL STATEMENTS

5.1 GO TO Statements

5.2 IF Statements

5.3 DO Statements
DO Nests

5.4 CONTINUE

5.5 PAUSE

5.6 STOP

5.7 END

5.8 ENDS$

MAIN PROGRAM, FUNCTIONS,
AND SUBROUTINES

6-1 Argument Characteristics
6.2 Main Program

6.3 Subroutine Subprogram
6.4 Subroutine Call

6.5 Funection Subprogram
6.6 Function Reference

6.7 Statement Function

6.8 Basic External Functions
6.9 RETURN and END

INPUT/OUTPUT LISTS AND
FORMAT CONTROL

7.1 Input/Output Lists
DO-Implied Lists

7.2 Format Statement

7.3 Format Statement Conversion
Specifications
Ew.d Output
Ew.d Input
Fw.d Output
Fw.d Input

4-1

41
42
4-3
4-5

5-1

5-1
5-2
5-3
56
5-9
5-9
5-9
5-10
5-10

7-1

71
7-2
7-4

7-5
7-6
7-8
7-9

Iw 7-9

Aw 7-10
r@w rKw 7-11
nX 712
nHhihg...hp 7-12
r’hihg. .. hy 7-13
New Record 7-14
Repeat Specifications 7-16
Unlimited Groups 7-16
7.4 Free Field Input 7-16
Data Item Delimiters 7-16
Floating Point Input 7-17
Octal Input 7-17
Record Terminator 7-17
List Terminator 7-18
Comments 7-18
CHAPTER 8 INPUT/OUTPUT STATEMENTS 8-1

8.1 Logical Unit Numbers 81
8.2 Formatted READ, WRITE 82
8.3 Unformatted READ, WRITE 83
8.4 Auxiliary Input/Output Statements 8-3

CHAPTER 9 COMPILER INPUT AND OUTPUT 9-1
9.1 Control Statement 9-1
9.2 Source Program 9-2
9.3 Binary Output 9-2
9.4 List Output 9-2
APPENDIX A HP CHARACTER SET A-1

APPENDIX B ASSEMBLY LANGUAGE SUBPROGRAMS B-1

FORTRAN Reference B-1
Direct Transfer of Values B-2
Transfer via .ENTR B-4
APPENDIX € SAMPLE PROGRAM C-1

Object Program Input and Output Data C-4

APPENDIX D FORTRAN ERROR MESSAGES D-1

FORTRAN iii

OPTIONAL r _A-D-[ﬁl.'la:m-r-‘
- -l OUTPUT: 1
!

i SOURCE PROGRAM
\ I usting
FORTRAN FORTRAN T Y -
SOURCE PROGRAM COMPILER —

INTERMEDIATE
BINARY OUTPUT

RELOCATABLE

BINARY OBJECT
PROGRAM
FORTRAN
COMPILER
PASS2 —_—
[! [adomionat 1
ourrur |
l L— —pl onecT PrOGRAM
l OPTIONAL| LISTING _
-’
| oPTIONAL ~—
b ————
| | ONEouTPUT
DEVICE
| ONLY
(O
|
N P oS OBJECT PROGRAM
ASs LISTING
REPEATED

TWhen compiling with the magnetic tape system, operator
intervention ceases after Pass 1 has been loaded.

8K MEMORY
FORTRAN COMPILATION PROCESS

iv FORTRAN

{ “2DDImIONAL |

OPTIONAL ’| QUTPUT:
= Psource procraml
1 | usTing 3
—
FORTRAN 1 U

FORTRAN

COMPILER
SOURCE PROGRAM OMPI
INTERMEDIATE
BINARY OUTPUT 1
FORTRAN
COMPILER p| INTERMEDIATE
PASS2 BINARY OUTPUT 2
RTRAN
EOMPILER INTERMEDIATE
i PASS3 BINARY OUTPUT 3
RELOCATABLE
BINARY OBJECT
PROGRAM
FORTRAN
COMPILER
| PASS4 |
{OPTIONAL t [appmonar ¥
‘ L] ourrur
{ [one outeur OPTIONAL ™3 OBJECT PROGRAM|
y) Dé\rfaltcwf I" TusiNnGg
| -
| L~
|l
i | FORTRAN
oyl compie OBJECT PROGRAM
PASS LISTING
REPEATED
4K MEMORY

FORTRAN COMPILATION PROCESS

FORTRAN v

INTRODUCTION

The FORTRAN compiler system accepts as input, a source program written according
to American Standard Basic FORTRAN specifications; it produces as output, a re-
locatable binary object program which can be loaded and executed under control of
an HP operating system.

In addition to the ASA Basic FORTRAN language, HP FORTRAN provides a number
of features which expand the flexibility of the system. Included are:

Free Field Input: Special characters included with ASCII input data direct
its formatting; a FORMAT statement need not be specified in the source
program.

Specification of heading and editing information in the FORMAT statement
through use of the “..."” notation; permits alphanumeric data to be read or
written without giving the character count.

Array declaration within a COMMON statement.
Redefinition of its arguments and common areas by a function subprogram.
Interpretation of an END statement as a RETURN statement.
Basic External Functions which perform masking (Boolean) operations.
Two-branch IF statement.
Octal constants.
There are several versions of the HP FORTRAN Compiler; each is designed to run
in a different operating environment: Software Input/Output System, etc. The

operating system manuals contain descriptions of any features limited to special
versions of the compiler.

vi FORTRAN

PROGRAM FORM 1

A FORTRAN program is constructed of characters grouped in-
to lines and statements.

1.1 CHARACTER SET
The program is written using the following characters:

Alphabetic: A through Z
Numeric: 0 through 9
Special:

Space

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

. Decimal Point

$ Dollar Sign

" Quotation mark

R U I RS

Spaces may be used anywhere in the program to improve ap-
pearance; theyare significant only within heading data of FOR-
MAT statements and, in lieu of other information, in the first
six positions of a line.

In addition to the above set which is used to construct source
language statements, certain characters have special signifi-
cance when appearing with ASCII input data. They are the fol-

lowing:
space, Data item delimiters
Record terminator
+ - Sign of item
.E+- Floating point number
@ Octal integer
oo Comments

« SuppressesCR)and(LF)(output)
Details on the input data character set are given in Chapter 7.

FORTRAN 11

1.2 LINES

A line is a sequence of up to 72 characters. On paper tape, each_line
is terminated by a return, @ , followed by a line feed, .
This terminator may be in any position following the statement
information or comment contained in the line, If an error is punched
on a paper tape, a rubout before the return and line feed causes the
entire line containing the error to be ignored.

A statement may be written in an initial line and up to five con-
tinuation lines. The statement may occupy positions 7 through
72 of these lines. The initial line contains a zero or blank in
position 6. A continuation line contains any character other
than zero or space in position 6 and may not contain a C in posi-
tion 1,

Statement Labels

A statement may be labeled so that it may be referred to in
other statements. A label consists ofone to four numeric digits
placed in any of the first five positions of a line. The number
is unsigned and in the range of 1 through 9999. Imbedded
spaces and leading zeros are ignored. If no label is used, the
first five positions of the statement lipe must be blank. The
statement label or blank follows the @ terminator of
the previous line.

Comments

Lines containing comments may be included with the statement
lines; the commentsare printed along with the source program
listing. A comment line requires a C in position 1 and may
occupy positions 2 through 72. ¥ more than one line is used,
each line requires aC indicator. Each comment line is termi-
nated with a @ and @

1-2 FORTRAN

Control Statement

The first statement of a program is the control statement; it
defines the output to be produced by the FORTRAN compiler.
The following options are available:

Relocatable binary — The program can be loaded by the relocating
loader and run.

Source Listing output — A listing of the source program is
produced.

Object Listing output — A list of the object program is produced.

The control statement must be followed by the @ @ termi-
nator.

End Line

Each subprogramis terminated with an end line which consists
of blanks in positions 1 through 6 and the letters E, N, and D
located in any of the positions 7 through 72. The special end
line, ENDS$, signifies the end of five or less programs being
compiled atone time. The end line is terminated by @ @ .

1.3 CODING FORM

The FORTRAN coding form is shown below. Columns 73-80
may be used to indicate a sequence number for a line; they must
not be punched on paper tape. All other columns of the form
conform with line positions for paper tape.

FORTRAN 13

VN DOJM IN0HM 44 TUTN § INIT

|] T ERRIRERERN T IEEEARERN
HEERRAAN [NERRERENN ~ IIRNNRANNRENARERSE
ININEN! RN ARENRRREAN NN W
ARAA Bl M
1 [NIRERANEN] IRRENRANRENARERARER
| | IENERNE BEEN] IR NN
JERNARANS INENRED [_ _ ! ;
T EENNNENE, [i [_
RN | ERRERETN | 0 il
JRENNNI L] T RN
L ENEENREAED 1T # !
T AN NN i RENERY
il NN 1 m] | RN
ihN L JRRREA Il IRERREAN ARENRREN
1] [ENNNRERRAEREREN | 1 L
NN T 1 11 IR AEN
, IENERNENE T i AN
SIS e e e
e | ! H
I L NN ERRENNENN 1 NRNERENN HED |
AR) INERE AN S JRRRRREERRAN!
EEREN ENEREENNAA, T WY SANARREN
IERERENN I NN EEENRERENNRREARNERE RN
T T ERENNAREI ERN NSRS NANASRRANEEY
I RN I ! ANERER AR NN N D AR REENE N
il N BAREEN RERERERRAERRERREREN NI EANEARND
EEREANAN T RENERENI AIERNE NN AERREERRERARE
IAERREAEN NARERERE! IERRARENRNREN RSN ERED I EENEREAN)
MR AR | A R INEE NN
NuINEN SRAREN [0 ANENEN RNNNNNENARRRNRE
RSN EERREN | _ L1 1]
EERNEN NENABRARNARNNRAN il [1
T I T u
I NEREARNRAERENRRRNEANI Il
] i SEENESNRAN AN NN ANARY NN TiT
i] o]

WHOZ ONITOJ NVHLIHOS GHVYNOVE-LLIIMIH

SAMPLE CODING FORM
(Actual Size 11 x 13-1/2)

14 FORTRAN

ELEMENTS OF HP FORTRAN 2

HP FORTRAN processes two types of data. They differ in
mathematical significance, constant format, and symbolic rep-
resentation. The two types are real and integer quantities.

2.1 DATA TYPE PROPERTIES
Integer and real data quantities have different ranges of values.

An integer quantity has an assumed fixed decimal point. It is
represented by a 16-bit computer word with the most signifi-
cant bit as the sign and the assumed decimal point on the right
of the least significant bit.

An integer quantity has a range of -215 4o 215 -1,

1514 0
H integer J
LSIGN

A real quantity has a floating decimal point; it consists of a
fractional part and an exponent part. It is represented by two
16-bit computer words;the exponentand its sign are eight bits;
the fraction and its sign are twenty-four bits.

1514 0
I s I fraction (most significont bits) J
L_siGN OF FRACTION

15 87 10
[fraction J exponent FJ
|

SIGN OF EXPONENT:

It has a range in magnitude of approximately 10'38 to 1038 and
may assume positive, negative, or zero values. If the fraction
is negative, the number is in two's complement form. A zero

FORTRAN 21

value is stored as all zero bits. Precision is approximately
seven decimal digits.

2.2 CONSTANTS

A constant is a value that is alwaysdefined during execution and
may not be redefined. Three types of constants are used in
HP FORTRAN: integer, octal (treated as integer), and real.
The type of constant is determined by its form and content.

Integer

An integer constant consists of a string of up to five decimal
digits. If the range -32768 to 32767 (-215 to 21° -1) is ex-
ceeded, a diagnostic is provided by the compiler.

Examples:
8364 5932
1720 9
1872 31254
125 1
3653 30000
Octal

Octal constants consist of up to six octal digits followed by the
letter B. The form is:

n1n2n3n4n5n68
ny isOor 1

n, — ng are 0 through 7

If the constant exceeds six digits, or if a non-octal digit appears,

the constant is treatedas zero and a compiler diagnostic is pro-
vided.

Examples:

7677B 7631B
3270B 5B
3520B - 75026B
175B 177776B
567B 177777B

2-2 FORTRAN

Real constants may be expressed as an integer part, a decimal
point, and a decimal fraction part. The constant may include
an exponent, representing a power of ten, to be applied to the
preceding quantity. The forms of real constants are:

n.n n. .n n.nEte n.Exe .nEze

n is the number and e is the exponent to the base ten. The
plus sign may be omitted for a positive exponent. The range
of e is O through 38. When the exponent indicator E is fol-
lowed by a + or - sign, then all digits between the sign and the
next operator or delimiter are assumed to be part of the ex-
ponent expression, e.

If the range of the real constant is exceeded, the constant is
treated as zero and a compiler diagnostic message occurs.

Examples:
4.512 4.5E2
4, .45E+3
.512 4.5E-5
4.0 0.5
4.E-10 .5E+37
1. 10000.0

2.3 VARIABLES

A variable is a quantity that may change during execution; it is
identified by a symbolic name. Simple and subscripted vari-
ables are recognized. A simple variable represents a single
quantity; a subscripted variable represents a single quantity
(element) within an array of quantities. Variables are identi-
fied by one to five alphanumeric characters; the first character
must be alphabetic.

The type of variable is determined by the first letter of the
name. The lettersI, J, K, L, M, and N, indicate an integer
(fixed point) variable; any other letter indicates a real (floating
point) variable. Spaces imbedded in variable namesare ignored.

Simple Variable

A simple variable defines the location in which values can be
stored. The value specified by the name is always the current
value stored in that location.

FORTRAN 23

Examples:

Integer Real

I ALPHA
JAIME G13

K9 DOG
MIL XPp2
NIT GAMMA

Subscripted Variable

A subscripted variable defines an element of an array; it con-
sists of an alphanumeric identifier with one or two associated
subscripts enclosed in parentheses. The identifier names the
array; the subscripts point to the particular element. If more
than two subscripts appear, a compiler diagnostic message is
given.

Subscripts maybe integer constants, variables, or expressions;
they may have the form (expl, expz), where exp; is one of the
following:

c*v+k v-k
c*v-k v
c*y k
v+k

where ¢ and k are integerconstants and v is a simple inte-
ger variable.

Examples:
Integer Real
1(J, K) A(J)
LAD(3, 3) BACK(M-+5,9)
MAJOR (24*K, 1+5) OP45(4*1)
NU (K+2) RADI (IDEG)
NEXT (N*5) VOLTI (1,J)

24 FORTRAN

2.4 ARRAYS

An array is an ordered set of data of one or two dimensions; it
occupies a block of successive memorylocations. It is identi-
fiedby a symbolic name which may be used to refer to the entire
array. An array and its dimensions must be declared at the
beginning of the program in a DIMENSION or COMMON state-
ment. The type of an array is determined by the first letter of
the array name. The letters1, J, K, L, M, and N, indicate
an integer array; any other letter indicates a real array.

Eachelement of anarray may be referred to by the array name
and the subscript notation. Program execution errors may
result if subscripts are larger than the dimensions initially
declared for the array, however, no diagnostic messages are
issued.

Array Structure

Elements of arrays are stored by columns in ascending order
of storage locations. An array declared as SAM(3, 3), would
be structured as:

Columns

SAM(1, 1) SAM(1, 2) SAM(1, 3)
Rows | SAM(2,1) SAM(2, 2) SAM(2, 3)
SAM(3,1) SAM(3, 2) SAM(3, 3)

and would be stored as:

m SAM(1, 1)
m+1 SAM(2,1)
m+2 SAM(3,1)
m+3 SAM(1, 2)
m+4 SAM(2, 2)
m+5 SAM(3, 2)
m+6 SAM(1, 3)
m+7 SAM(2, 3)
m+8 SAM(3, 3)

The location of an array element with respect to the first ele-
ment is a function of the subscripts, the first dimension, and
the type of the array. Addresses are computed modulo 2

FORTRAN 25

Given DIMENSION A (L, M), the memory location of A (i, j) with
respect to the first element, A, of the array, is given by the
equation:

=A+[i-1+Li-1)]*S

The quantity in brackets is the expanded subscript expression. The
element size, s, is the number of storage words required for each
element of the array: for integer arrays, s = 1 ;for real arrays,s = 2.

Array Notation

The following subscript notations are permitted for array ele-
ments:

For a two-dimensional array, A(d1 R d2):
A(1,J) implies A(1,J)

A(D implies A(I, 1)

A implies A(1,1)%t

For a single~-dimension array, A(d)

A(D) implies A(I)
A implies A(1)

The elements of a single-dimension array, A(d), however, may
not be referred to as A(l,J). A diagnostic message is given by
the compiler if this is attempted.

2.5 EXPRESSIONS

An expression is a constant, variable, function or a combina-
tion of these separated by operators and parentheses, written
to comply with the rules for constructing the particular type of
instruction. Anarithmetic expression has numerical value; its
type is determined by the type of the operands.

1In an Input/Output list, the name of a dimensioned array im-
plies the entire array rather than the first element.

2-6 FORTRAN

Examples:

A+B-C . 4+SIN(ALPHA)
X*COS(Y) A/B+C-D*F
RALPH-ALPH 4+2*IABS(LITE)

2.6 STATEMENTS

Statements are the basic functionalunits of the language. Exec-
utable statements specify actions; non-executable statements
describe the characteristics and arrangement of data, editing
information, statement functions, and classification of program
units.

A statement may be given a numeric label of up to four digits
(1 to 9999); a label allows other statements to refer to a state-
ment. Each statement label used must be unique within the
program.

FORTRAN 2-7/2-8

ARITHMETIC EXPRESSIONS
AND ASSIGNMENT STATEMENTS 3

3.1 ARITHMETIC EXPRESSIONS

An arithmetic expression may be a constant, a simple or sub-
scripted variable, or a function. Arithmetic expressions may
be combined by arithmetic operators to form complex expres-
sions.

Arithmetic operators are:

+ Addition

- Subtraction

* Multiplication
/ Division

%*

* Exponentiation

If o is an expression, (a) is an expression.
If @ and g are arithmetic expressions, then the following are

expressions:
o+ B -8 o/B
a*x B +o -o
o xx B

An arithmetic expression may not contain adjoining arithmetic
operators, o« op op 8.

Expressions of the form ao**g and a**(-g) arevalid; a**g**y
is not valid,

Integer overflow resulting from arithmetic operations is not detected at
execution time.

Examples:

mOGRAMMER T [;G....
1z [] 1T
T *s3B2**15-T NELRER |
! LEET3!. 1 laHolSIE[**(3]2]. [E[-2 1 T
1| [si*vlalcKki(Ik, jt]+5]) -LojuD| L

FORTRAN 3-1

Order or Evaluation

In general, the hierachy of arithmetic operation is:

** exponentiation class 1
/ division

* multiplication] class 2
- subtraction

+ addition | class3

Inan expression with no parentheses or within a pair of paren-
theses, evaluation basically proceeds from left to right, or in
the above order if adjacent operators are in a different class. T

Expressions enclosed in parentheses and function references
are evaluated as they are encountered from left to right.

Examples:

In the examples below, sy, sg,..., Sp indicate intermediate
results during the evaluation of the expression; the symbol —
can be interpreted as ''goes to"'.

a) Evaluation of class 1 precedes class 3
A+B**C-D
B**C—s
S,+A -8
52-D ~Sg Sq is the evaluated expression

b) Evaluation of class 2 precedes class 3

A*B*C/D+E*F-G/H
A*B-—=sy

$1*C—+s9
sz/D——S3

E*F—-sy

54 + 53— S5
G/H-'SS

~-5¢ ~* 5y

S7 + 55*88 58

is the evaluated expression

T When writing an integer expression it is important to remem-
ber not only the left to right scanning process, but also that
dividing an integer quantity by an integer quantity yields a
truncated result; thus 11/3 = 3 . The expression I*J/K may
yield a different result than the expression J/K*I. For ex-~
ample, 4*3/2 = 6 ; but 3/2*4 = 4,

3-2 FORTRAN

c)

d)

e)

Evaluation of an expression including a function is
performed.

A+B**C+D+COS(E)

B¥*C ~s

A+s1 —~ 89

Se + D—-S3

DsE) - o)

84 * S3—~S5 S is the evaluated expression

Parentheses can control the order of evaluation

A*B/C+D
A*B—’Sl
84 /C—s

s2 +D——s§ Sq is the evaluated expression

A*B/(C+D)

A*B =5y

C+D——s2

s, /sz—— S5 Sg is the evaluated expression

If more than one pair of parentheses or if an exponen-
tial expression appears, evaluation is performed left
to right.

A+B**C-(D*E+F)+G-H*P)
B**C—~sq
1 + A—=59
D*E —s3
83 +F—~s54
-S4 S5
S5 + 52 —+85¢
H*P_’Srz
-Sqp—S

7
sg + G—-sg

8, + S,—+S

9 * S 510 ®

10 is the evaluated expression

Type of Expression

With the exception of exponentiation and function arguments,
all operands within an expression must be of the same type. An
expression is either real or integer depending on the type of all
of its constituent elements.

FORTRAN 33

If either an integer or real operand is exponentiated by an inte-
ger operand, the resultant element is of the same type as that
of the operand being exponentiated. If both operands are real,
the resultant element is real.

Examples:
J**L integer
AX*L real
A**B real

An integer exponentiated by a real operand is not valid.

3.2 ASSIGNMENT STATEMENTS
An arithmetic assignment statement is of the form:

v = ¢

The variable, v, may be simple or subscripted; e is an ex-
pression. Execution of this statement causes the evaluation of
the expression, e, andthe assignmentof the value to the var-
iable.

Type of Statement

The processing of the evaluated expression is performed ac-
cording to the following table:

Type of v Type of e Assignment rule
Integer Integer Transmit e to v without change.
Integer Real Truncate and transfer as in-
teger to v.

Real Integer Transform integer form of e
to floating decimal and trans-
fer to v,

Real Real Transmit e to v without change.

34 FORTRAN

Examples:

PXOGRAMMEY

o ~z0n]

€ bt
1

Transmit without change

[T TA=B*cl+ol+|ciofs[(E[
SiaM{ le]) =[R-SIt e[, 12D [l [T]/uD Transmit without change
N=MWH3L. B|UX]eely|-z]) v Truncate
BAKE[R =1 *|uj+{kx|(JU-M/ND 1 Convert to real
N=[T Z|ZY I+ LIAKE 7 MOD 1] Transmit without change

3.3 MASKING OPERATIONS

In HP FORTRAN, masking operations may be performed
using the Basic External Functions IAND, IOR, and NOT (see
Chapter 6). These functions are as follows:

IAND Form the bit-by-bit logical product of two

operands
IOR Form the bit-by-~bit logical sum of two operands
NOT Complement the operand

The operations are described by the following table:

Value of Value of
Arguments Function
a; a, IAND (a1 , az) IOR (2:11 s az) NOT (al)
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1
Examples:
[~ [rrosase
IAJT= ﬂzsﬁm N x ,T = [m [. »
Tl =| 7)1 5528 l N
IRERERERERENNN 1]]

IAND (1A, IB) is 70500B
IOR (IA, IB) is 73557B
NOT (IA) is 1052708

FORTRAN 3-5/3-8

SPECIFICATIONS STATEMENTS 4

The Specifications statements, which include DIMENSION,
COMMON, and EQUIVALENCE, define characteristics and
arrangement of the data to be processed. These statements
are non-executable; they do not produce machine instructions
in the object program. The statements must all appear before
the first executable statement in the following order: DIMEN-
SION, COMMON, and EQUIVALENCE.

4.1 DIMENSION

The DIMENSION statement reserves storage for one or more
arrays.

DIMENSION vy (if), v3 (ig), ..., v (i)

An array declarator, vj(ij) ; defines the name of an array,
vj , and its associated dimensions, (ij) . The declarator sub-
script, i, maybeaninteger constant or two integer constants
separated by a comma. The magnitude of the values given for
the subscripts indicates the maximum value that the subscript
may attain in any reference to the array.

The number of computer words reserved for a given array is
determined by the product of the subscripts and the type of the
array name. For integer arrays, the number of words equals
the number of elements in the array. For real arrays, two
words are used for each element; the storage area is twice the
product of the subscripts.

A diagnostic message is printed if an array size exceeds 215 _1
locations.

Examples:

DIMENSION SAM (5, 10), ROGER (10, 10}, NILE (5, 20)

Area reserved for SAM 5%10%2 = 100 words
Area reserved for ROGER 10*¥10*2 = 200 words
Area reserved for NILE 5%20*%1 = 100 words

FORTRAN 4-1

4.2 COMMON

The COMMON statement reserves a block of storage that can
be referenced by the main program and one or more subpro-
grams. The areas of common informationare specified by the
statement form:

COMMON a,, a,,..., a
1’ “2 n

Each area element, a;, identifies a segment of the block for
the subprogram inwhich the COMMON statement appears. The
area elements may be simple variable identifiers, array names,
or array declarators (dimensioned array names).

If dimensionsfor anarray appear both in a COMMON statement
and a DIMENSION statement, those in the DIMENSION state-
ment will be used.

Any number of COMMON statements may appear in a subpro-
gram section (preceding the first executable statement). The
order of the arrays in common storage is determined by the
order of the COMMON statementsand the order of the area ele-
ments within the statements. All elements are stored contig-
uously in one block.

At the beginning of program execution, the contents of the com-
mon block -are undefined; the data may be stored in the block
by input/output or assignment statements.

Examples:

COMMON I (5), A (6), B (4)

Area reserved for I = 5 words
Area reserved for A = 12 words
Area reserved for B = _8words

Common area 25 words

Common

Block
Origin I(1)

1(2)

1(3)

1(4)

1(5)

A (1)

A (1)

4-2 FORTRAN

Correspondence of Common Blocks

Each subprogram that uses the common block must include a
COMMON statement. Each subprogram may assign different
variable and array names, and differentarraydimensions, how-
ever, if corresponding quantities are to agree, the types should
be the same for corresponding positions in the block.

Examples:

MAIN PROG COMMON I (5), A (6), B (4)

SUBPROG! COMMON J (3), K (2), C (5), D (5)

MAIN PROG Common SUBPROG1
reference Block reference
I (1) integer 1 J Q1)

I (2) integer 2 J (2)

1 (3) integer 3 J (3)

I (4) integer 4 K (1)

1 (5) integer 5 K (2)
A1) real 1 c(1)

A (1) real 1 C (1)

FORTRAN 4-3

MAIN PROG Common SUBPROG1

reference Block reference
A (2) real 2 C (2)
A (2) real 2 C (2)
A (3) real 3 C (3)
A (3) real 3 C(3)
A (4) real 4 C (4)
A (4) real 4 C (4
A (5) real 5 C (5)
A (5) real 5 C (5)
A (6) real 6 D (1)
A (6) real 6 D (1)
B (1) real 7 D (2)
B (1) real 7 D (2)
B (2) real 8 D (3)
B (2) real 8 D (3)
B (3) real 9 D (4)
B (3) real 9 D (4)
B (4) real 10 D (5)
B (4) real 10 D (5)

If portions of a commonblock are notreferred to by a particu-
lar subprogram, dummy variables may be used to provide cor-
respondence in reserved areas.

Examples:
MAIN PROG COMMON I (5), A (6), B (4)

SUBPROG2 COMMON J (17), B (4)

MAIN PROG Common SUBPROG2
reference Block reference
1(1) integer 1 J (1)
I(2) integer 2 T (2)
I(3) integer 3 J (3)
1(4) integer 4 J (4)
1(5) integer 5 J (5)

44 FORTRAN

MAIN PROG Common SUBPROG2

reference block reference

A (1) real 1 J (6)

A (1) real 1 J (1) J (17)isadum-
A (2) real 2 J (8) myarray. It is
A (2) real 2 J (9) not referenced
A (3) real 3 J (10) in SUBPROG 2
A (3) real 3 J (11) but provides
A (4) real 4 J (12) proper corre-
A (4) real 4 J (13) spondence in
A (5) real 5 J (14) reserved areas
A (5) real 5 J (15) so that SUB-
A (6) real 6 J (16) PROG 2canre-
A (6) real 6 J (17) ferto array B.
B (1) real 7 B (1)

B (1) real 7 B (1)

B (2) real 8 B (2)

B (2) real 8 B (2)

B (3) real 9 B (3)

B (3) real 9 B (3)

B (4) real 10 B (4)

B (4) real 10 B (4)

The length of the commonblock may differ in different subpro-
grams, however, the subprogram (or main program) with the
longest common block must be the first to be loaded at execu-
tion time.

4.3 EQUIVALENCE

The EQUIVALENCE statement permits sharing of storage by
two or more entities. The statement has the form:

EQUIVALENCE (kl), (kz), . (kn)
in which each k is a list of the form:

ays Agyeees

Each a is either a variable name or a subscripted variable;
the subscript of which contains only constants. The number of
subscripts must correspond to the number of subscripts for the
related array declarator.

FORTRAN 4-5

All names in the list may be used to represent the same loca-
tion. If an equivalence is established between elements of two
or more arrays, there is a corresponding equivalence between
other elements of the arrays; the arrays share some storage
locations. The lengths may be different or equal.

Examples:
DIMENSION A (5), B (4)

EQUIVALENCE (A (4), B (2))

Array 1 Array 2 Quantity

Name Name Element
A1) real 1
real 1
A (2) real 2
real 2
A (3) B (1) real 3
real 3
A (9) B (2) real 4
real 4
A (5) B (3) real 5
real 5
B (4) real 6
real 6

The EQUIVALENCE statement establishes that the names A (4)
and B (2) identify the fourth real quantity. The statements also
establish a similar correspondence between A (3) and B (1), and
A (5) and B (3).

An integer array or variable may be made equivalent to a real
array or variable; equivalence may be established between dif-
ferent types. The variables may be with or without subscripts.

The effect of an EQUIVALENCE statement depends on whether
or not the variables are assigned to the common block. When
two variables or array elements share storage, the symbolic
names of the variables or arrays may not both appear in COM-
MON statements in the same subprogram. The assignment of
storage to variables and arrays declared in a COMMON state-
ment is determined on the basis of their type and the array

4-6 FORTRAN

declarator. Entities sodeclared are always contiguousaccord-
ing to the order in the COMMON statement. The EQUIVALENCE
statement must not alter the origin of the common block, but
arrays may be defined so that the length of the common block
is increased.

Examples:

a) Effect of EQUIVALENCE, variables not in -.common

block:
L rrOGRAMMEY . ji“(Fm
PEMENSTTON 1] 4] BRI RO LT T T L T
LU [VALIENCE] [(T[(3D],] jKi(i2)] !

storage is assigned as follows:

Arrays Quantities
1(1) integer 1
1(2) K1) integer 2
1(3) K (2) integer 3
1(4) K (3) integer 4
K (4) integer 5
K (5) integer 6
J 1) integer 7
J(2) integer 8

b) Effect of EQUIVALENCE, some variables in common

block:

[rrocraser] [nns li(;uu
RN KOS, . » TR .
oMo TiCTab], Tul2D |

T QurvALENCE] [(T{(3D[,[k(2D L

FORTRAN 4-7

storage is assigned as follows:

Arrays Quantities

I (1) integer 1

1(2) K(1) integer 2

I(3) K(2) integer 3

I(4) K(3) integer 4 common block
J(1) K(4) integer 5

J(2) K (5) integer 6

¢) Effect of EQUIVALENCE on the length of the common

block:
[= [rrocams
T T PIMENSTION W T T T T T T T T T
| coangNI ZRENAZI N RN RN RANN
| eQuzivALENCE] [(WICN1], Kbl LT HEEEN!
storage is assigned as follows:
Arrays Quantities
I (1) integer 1)
I(2) K(1) integer 2
I () K(@Q) integer 3
I(4) K (3) integer 4 common block
J (1) K (4) integer 5
J(2) K (5 integer 6
K (6) integer 7
K (7) integer 8 J

The value of the subscripts for an array being made
equivalent to another array should not be such that the
origin of the common block is changed (for example,
EQUIVALENCE (I (3), K(4)).

4.8 FORTRAN

Arrays Quantities

K (1) ﬁg:‘l;i{gne q integer 1

origin - I (1) K (2) integer 2
I1(2) K(3) integer 3

I1(3) K(4) integer 4

I1(4) K(5) integer 5

J (1) K (6) integer 6

J@2) K(7) integer 7

If contradictory EQUIVALENCE relationships are spec-
ified, a diagnostic message is printed.

Example:
a)
P s =

STATEMINT

7 10 i = » £ » ® 4 50

T QUi MAILENICE] [(AU2) (2hD |
T
S i I |
eQu I MAILENCE! T(Al(SD], 1B]¢3)])
1 T 1 1
b)
P—— g Fm “"Ml,.m.m
' J BT ‘ LE]“CIE (A BT]1 T | 1”
; § T |
l ElQu i VAILIENICE [(d(3D],] [aU3)D
i
4_# EQUITVALENCE] [(554 cl(l2hD[Il ; L_ﬁkg

FORTRAN 4-9/4-10

CONTROL STATEMENTS 5

Program execution normally proceeds from statement to state-
ment as they appear in the program. Control statements can
be used to alter this sequence or cause a number of iterations
of a program section. Control may be transferred to an exe-
cutable statement only, a transfer to a non-executable state-
ment will resultina program error which is usually recognized
during compilation as a transfer to an undefined label,¥ ~With
the DO statement, a predetermined sequence of instructions
canbe repeated anumber of times with the stepping of a simple
integer variable after each iteration.

Statements are labelled by unsigned numbers, 1 through 9999,
which can be referred to from other sections of the program.
Alabelupto four digits long precedes the FORTRAN statement
and is separated from it by at least one blank or a zero. Im-
bedded blanks and leading zeros in the label are ignored: 1,
01, 0 1, 0001 are identical.

5.1 GO TO/'STATEMENTS

GO TO statements provide transfer of control.

GO TO k

This statement, an unconditional GO TO, causes the transfer
of control to the statement labelled k.

GO TO (kl’ kz, cee kn), i

This statement, a computed GO TO, acts as a many-branched
transfer. The k's are statement labels and i is a simple
integer variable. Execution of this statement causes the state-
ment identified by the label kj to be executed next, where j

t A transfer to a FORMAT statement is not detectable during
compilation; if such an error occurs, no diagnostic message
is produced.

FORTRAN 5-1

is the value of i at the time of execution, and 1 < j<n. I«
i < 1, a transfer to k1 occurs; if i > n, a transfer to kn
occurs.

Examples:
[Frosmr =
T 60 T T
ISWCH =] 2

35| [l =] X#]v]

NERE |

lalgl 6ol ol [(Is], 111, [1]5],[2lah 1, | l1iswciH |
5 JiSWCIH =] [TisWcH [+ 1T] !]
54j¢' 60 [Tl (25,3!4,35,4@@), JISWCH ! T

At statement 40, control transfers to statement 10, which is an
unconditional transfer to statement 500. At 540 control trans-
fers to statement 35.

5.2 IF STATEMENTS

The arithmetic IF statement provides conditional transfer of
control

IF (e) kl’ k2, k3
The e is anarithmetic expression and the k's are statement
labels, The arithmetic IF is a three-way branch. Execution
of this statement causes evaluation of the expression and trans-
fer of control depending on the following conditions:

e < 0, gotok
e = 0,gotok
e > 0, go tok3
Examples:
[roceamver TEE —[uoolm
EERAGEGACIEAE0-RE0CRENE RN l EREEE
| LIl *iciois|(iz} WS, 351, 15 | | | ANERRENE

52 FORTRAN

The logical IF statement provides conditional transfer of con-
trol to either of two statements:

IF (e) k, K,

The e is an arithmetic expression that may yield a negative
or non-negative (positive or zero) value. Execution of this
statement causes evaluation of the expression and transfer of
control under the following conditions:

, gotok

e < 0 1
e 2 0, go tok2
Examples:
o [=

GERGASST TINCR AN AR A T T

1]l [(a+ehielg, T T2[5] | 1 + T LT

T [UANID 3] lale L1 L

T T T T T 1 T

5.3 DO STATEMENTS

A DO statement makes it possible to repeat a group of state-
ments.

DOni = ml, mz, m3
or
DOni = my, m2
The n is the label of an executable statement which ends the
group of statements. The statement, called the terminal state-
ment, must physically follow the DO statement in the source

program. It may not be a GO TO of any form, IF, RETURN,
STOP, PAUSE, or DO statement.

The i is the control variable; it may be a simple integer var-
iable.

The m's are indexing parameters: mj is the initial param-

eter; my , theterminal parameter; and mg , the incrementa-
tion parameter. They may be unsigned integer constants or

FORTRAN §6-3

simple integer variables. At time of execution, they all must
be greater than zero. If mg does not appear (second form),
the incrementation value is assumed to be 1.

A DO statement defines a loop. Associated witheach DO state=-
meant is a range that isdefined to be those executable statements
following the DO, to and including the terminal statement as-
sociated with the DO. Attime of execution, the following steps
occur:

1. The control variable is assigned the value of the initial
parameter.

2. The range of the DO is executed.

3. The terminal statement is executed and the control vari-
able is increased by the value of the incrementation param-
eter.

4. Thecontrol variable is compared with the terminal param-
eter., If less than or equal to the terminal parameter, the
sequence is repeated starting at step 2. If the control var-
iable exceeds the terminal parameter, the DO loop is sat-
isfied and control transfers to the statement following n .
The control variable becomes undefined.

Should m; exceed mg on the initial entry to the loop, the
range of the DO is executed and control passes o the statement
after n. Ifatransfer out of the DO loop occurs before the DO
is satisfied, the current value of the control variable is pre-
served. The control variable, initial parameters, terminal
parameter, and incrementation parameters may not be rede-
fined during the execution of the range of the DO loop.

54 FORTRAN

ENTER
boO
LOOP

ASSIGN
m T0 i

EXECUTE STATEMENTS
IN LOOP INCLUDING
STATEMENT n

ADD my TO1

AND STORE
IN;

COMPARE

FORTRAN 5-5

DO Nests

When the range of a DO loop contains another DO loop, the
latter is said to be nested. DO loops may be nested 10 deep.
The last statement of a nested DO loop must be the same as
the last statement of the outer loop or occur before it. If
dj, d9,...,d, are DO statements, which appear in the order
indicated by the subscripts; and if nj, ng,...,n, are the
respective terminal statements, then np, must appear before
or be the same as ny,-1 , np-] mustappear before or be the
the same as ny, and ny must appear before or be the same
as n,.

1
Examples:
d B e L i T
T
——d2 7| oo [low Tt [=! b, g2l |11 7] [
T T l I]L,
HENERNARNEED |
ARRARRARER! 1]
—d ol ool [led K =" il,ltlg,[2 |
- ‘ 11 il
IRERARANE | L
SEAREN I il
n 8 COI!‘LTINUE I |
T ul T
1 \ N |
L N, ol [CONTIINUE] [T : ' f
IREENERARAE] \
1 S Tl i
L g o Tinvel | 1T 1]

56 FORTRAN

g IRENGE AN AR, NAERBARER
! SEEENER NN]
ERRNESRNNRNNANE i
d H[soénle}%ﬂllmﬂ LW
2 [L] L »’jl ’ ,T MM
e
: Lop L
_ d 12l ool | gl K = . ielgl el [111
A} Sas RREANANAN InRRE RN ANNE
NIAEREANNRRNRNRRANARN AN
REIRRRARERE N RRRRRREN
L o] CONTIINUE [1] l L1
! : 1 0
i
g [[ed eonTnoe |1
4 TR Bo 88 T LB T
| RRRRARERIERNRRRRRARRRD
ENNBERN INNNNNNARNNRRANN
——dy 1Tl 1o (el ol |={ el iel T[] 1]
1 1 | IENRENEN
M ‘4Ll |
T A T
— 2] Pl [1log K | 5], 5/8./5] | |
INERERRR RN ! k
IRERRSRRN |]
JERREERERN 1 |
| {1ogl \conTiTNuEl [T[T 11 [[[T]{[]]

n 1 =n 2=nm

If one or more nested loops have the same terminal statement,
when the inner DO is satisfied, the control variable for the
nextouter loopis incremented and tested against its associated
terminal parameter. Control transfers to the statement fol~
lowing the terminal statement only when all related loops are
satisfied.

DO loops may be nested in common with other loops as long as
their ranges do not overlap.

FORTRAN 5-7

Examples:

d, T8l o i igel Tx, FL T e [T T
BN NNERRRRNNEN) T
NERERR R _rlT il
RN T
—d, H@ Dp 5% J =12%2¢%,2
NERRERENERRENEY ANEND
LT
n 1, NVE| | |
2 5 c_] 1 , T;
| -] NN
NERRAN | |
——d, 6@ oo | [70 !ﬁ ERORIENA r
- ﬁ
ng 7l IcoNTIINUE [| |
L] .
- |
" 18¢ [CONTIINVE il 1
4
dy)
| ——ds
Invalid, ranges overlap
N2 ng
|

In a DO nest, a transfer may be made from an inner loop into
an outer loop, and transfer is permissible outside of the loop.
It is illegal, however, for a GO TO or IF to initiate a transfer
of control from outside of the range of a DO into its range.

When nested DO loops have the same terminal statement, a transfer to
that terminal statement causes a transfer to the innermost logs of the
nest. When this transfer occurs, the current value of the control variable
for the innermost loop is incremented and that loop is executed until its
range is satisfied, ete.

5-8 FORTRAN

4 d4 —9
—d, —d, —d,
\l
—- —>
n "2 N
n S
1 ™ ™
VALID INVALID
TRANSFERS TRANSFERS

5.4 CONTINVUE

This statement acts as no-operation instruction.
CONTINUE

The CONTINUE statement is most frequently used as the last
statement of a DO loop to provide a loop termination when a
GO TO or IF would normally be the last statement of the loop.
If used elsewhere in the source program, it acts as a do-nothing
instruction and control passes to the next sequential program
statement.

5.5 PAUSE

This statement provides a temporary program halt.

PAUSE n
or

PAUSE
n may be up to four octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program and
types PAUSE on the Standard Output unit. The value of n, if given is
displayed in the A-Register. Program execution resumes at the next
statement.

5.6 STOP

The STOP statement terminates the execution of the program.
STOP n

or
STOP

FORTRAN 5-9

n may be up to four octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program and
types STOP on the Standard Output unit. The value of n, if given, is
in the A-Register.

5.7 END

The END statement indicates the physical end of a program or
subprogram. It has the form:

END name

The END statement is required for every program or subpro-
gram. The name of the program can be included, but it is
ignored by the compiler. The END statement is executable in
the sense that it will effect return from a subprogram in the
absence of a RETURN statement, An END statement may be
labeled and may serve as a junction point.

5.8 END$

The END$ statement indicates the physical end of five or less
programs or subprograms that are to be compiled at one time,
If there are four orless programs, the statement is printed on
the source program listing. If there are exactly five, the state-
ment is not printed. If more than five programs are on the
same tape, the END$ may be omitted after the fifth program;
the compiler stops accepting input after the fifth is processed.

5-10 FORTRAN

MAIN PROGRAM, FUNCTIONS,
AND SUBROUTINES 6

A FORTRAN program consists of a main program with or with-
out subprograms. Subprograms, which are either functions or
subroutines, are sets of statements that may be written and
compiled separately from the main program.

The main program calls or references subprograms; and sub-
programs may callor reference other subprograms as long as
the calls are non-recursive. That is, if program A calls sub-
program B, subprogram B may not call program A. Further-
more, a program or subprogram may not call itself. A calling
program is a main program or subprogram that refers to
‘another subprogram.

In addition to multi-statement function subprograms, a function may
be defined by a single statement in the program (statement function)
or it may be defined as basic external function. A statement function
definition may appear in a main program or subprogram body and is
available only to the main program or subprogram containing it. A state-
ment function may contain references to function subprograms, basic
external functions, or other previously defined statement functions in
the same subprogram. Basic external function references may appear in
the main program, subprogram, and statement functions.

Main programs, subprograms, statement functions, and basic
external functions communicate by means of arguments (param-
eters). The arguments appearing in a subroutine call or func-
tion reference are actual arguments. The corresponding entities
appearing with the subprogram, statement function, or basic
external function definition are the dummy arguments.

6.1' ARGUMENT CHARACTERISTICS

Actual and dummy arguments must agree in order, type, and
number. I they do not agree in type, errors may result in the
program execution, since no conversion takes place and no
diagnostic messages are produced.

FORTRAN 6-1

Within subprograms, dummy arguments may be array names
or simple variables; for statement functions, they may be var-
iables only. Dummy arguments are local to the subprogram or
statement function containing them and, therefore, may be the
same as names appearing elsewhere in the program. A max-
imum of 63 dummy arguments may be used in a function or
subroutine.

No element of adummy argument list may appear in a COMMON
or EQUIVALENCE statement within the subprogram. If itdoes,
a compiler diagnostic results. When a dummy argument repre-
sents an array, it should be declared in a DIMENSION state-
ment within the subprogram. If it is not declared, only the
first element of the array will be available to the subprogram
and the array name mustappear inthe subprogram without sub-
scripts.

Actual arguments appearing in subroutine calls and function
references may be any of the following:

A constant

A variable name

An array element name

An array name

Any other arithmetic expression

6.2 MAIN PROGRAM

The first statement of a main program may be the following:
PROGRAM name

The name is analphanumeric identifier ofupto five characters.

If the PROGRAM statement is omitted, the compiler assigns
the name "FTN."

6.3 SUBROUTINE SUBPROGRAM

An external subroutine is a computational procedure which may
return none, one, or more than one value throughits arguments
or through common storage. No value or type is associated
with the name of a subroutine.

6-2 FORTRAN

The first statement of a subroutine subprogram gives its name
and, if relevant, its dummy arguments.

SUBROUTINE s (al, Agseees an)

or
SUBROUTINE s

The symbolic name, s, is an alphanumeric identifier of up to
five characters by which the subroutine is called. If the sub-
routine is unnamed the compiler will assign the name of "."
(period). The a's are the dummy arguments of the subroutine.

The name of the subroutine must not appear in any other state-
ment within the subprogram.

The subroutine may define or redefine one or more of its argu-
ments andareas in common so asto effectively return results.
It may contain any statements except FUNCTION, another SUB-
ROUTINE statement, or any statement that directly or indirectly
references the subroutine being defined. It must have at least
one RETURN or END statement which returns control to the
calling program.

Examples:
SUBRIOUTIINE| |JIIM (H|) P,W and H are the dummy
2/=|5]. | MwhPle3] 1T parameters. Actual values
=Z1-3. | supplied by a calling pro-
TUR I [gram are to be substituted
Np ! | for P and W. The variable
name supplied for H would
contain the result on return
1 to the calling program.
UITINE] MULI(K) MUL multiplies the array
C T 18)], (V@) supplied for MAT by the
S L, | single value supplied for K
S DILL) =MATICID { to produce values to be
T—l’ ;IU I]’N Jl l stored in array PROD.
TT TTT T T T

FORTRAN 6-3

6.4 SUBROUTINE CALL

The executable statement in the calling program for referring
to a subroutine is:

CALL s (ay, Bgyeeny an)
or
CALL s

The symbolic name, s, identifies the subroutine being called;
the a's define the actualarguments. The name may not appear
in any specification statements in the calling program.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the called subprogram, the actual
argument must be a variable name, an array elementname, or
an array name,

The CALL statement transfers control to the subroutine. Exe-
cution of the subroutine results in an association of actual argu-
ments with all appearances of dummy arguments in executable
statement and function definition statements. If the actualargu-
ment is an expression, the association is by value rather than
by name. Following these associations, the statements of the
subprogram are executed. When a RETURNor END statement
is encountered, controlis returned to the next executable state-
ment following the CALL in the calling program. I the CALL
statement is the last statement in a DO loop, looping continues
until satisfied.

Examples:

| rrocrammen

[

o ~zon

s

clalL LT [o[zivl [Chisl. 1, Tv2l T,ABLEDN] These calls provide actual

] I arguments for the subrou-

[tines defined in the pre-

i 1111 [vious example. In subrou-

I tine JIV, 15. is substituted

I gD al(1g) — for P; 12., for W; and

Z

| ABLE, for H.

B

For subroutine MUL, the

-

data is passed via COM-

caLlL] MuL[tlTl(s], 3D MON. The value supplied
for the dummy argument K

r is element (5,3) of matrix

I of the calling program.
6-4 FORTRAN

6.5 FUNCTION SUBPROGRAM

A function subprogram is a computational procedure which
returns a single value associated with the function name, The
type of the function is determined by the name; an integer quan-~
tity is returned if the name begins with I, J, K, L, M, or N,
otherwise it will be a real quantity.

The first statement of a function subprogram must have the fol~
lowing form:

FUNCTION £ (a4, Ag,.evy A)

The symbolic name, f, is an alphanumeric identifier of up to
five characters by which the function is referenced. If the
function is unnamed the compiler will assign the name of "."
{(period). The a's are the dummy arguments of the function.

The name of the function mustnotappear in any non-executable
statement in the subprogram. It must be used in the subpro-
gram, however, at least once as any of the following:

The left-hand identifier of an assignment statement
An element of an input list
An actual parameter of a subprogram reference

The value of name at the time of execution of a RETURN or
END statement in the subprogram is called the value of the
function.

The function subprogram may define or redefine one or more
of its arguments and areas in common so as to effectively
return results in addition to the value of the function. If the
subprogram redefines variables contained in the same expres-
sion as the function reference, the evaluation sequence of the
expression must be taken into account. Variables in the por-
tion of the expression that is evaluated before the function ref-
erence is encountered and the values of variable subscripts
are not affected by the execution of the function subprogram.
Variables that appear following the function reference are mod-
ified according to the subprogram processing.

FORTRAN 6-5

a) | rrOGRAMMER ;
rl UNCITTION TTDIIVI(TL, 1) The function IDIV calculates
| IEDIM=T A) | 1| the value of I divided by J.
l[EN UP On return to the calling pro-
T] gram the result provided is
t Tt 1 T+ the value of IDIV.
b) PROGRAMMER]
’ 1 Js FUNCITT/ON. [ERER (T :ITD The function IREAD reads
ERREEE |1 I | a value from the unit JUNT
iy | (specified as an actual
. [parameter in the calling
READI(TUNT], *) LRE AD I program.) TREAD has this
= l{ :L I Jﬁl value on return to the call-
1 N i l IS ing program.
(T IRETURN [{1 ANEREEI
L T TENDLTT T HNENEREI
L T T
¢) [rosmer
TTTTTT FONCTION [SCRLLIUABLGIT] SCALL isboth the function
|] il name and an actual param-
. } I | eter of a subroutine call.
- The value of SCALL is pro-
c{“‘" ll% fTF(SCAL LA.lel [c) vididbyggBFand retugned
1 to the calling program.
AT
.| [
RETU |
[[1END]] | IRREEN
™ RRRRRRRRE AT
d) PROGRAMMER] F
TTT ‘l;UNEFI‘IONHZETAzB H’AHDE]LIT JGA VAT [The function
Al [=| BE Tla*2-DEL Tla*¥3] | | | defines the
| lclamvia =] lal*ls] T2 1 value of GAM-
ZE[Tla] =] [clamma**z] [[|11 MA as well as
REWT N ‘ | finding the
HHENT A value of ZETA.

6-6 FORTRAN

a)

b)

6.6 FUNCTION REFERENCE

A function subprogram is referenced by using the name and
arguments in an arithmetic expression:

f (al, Agyeens an)

The type of function depends on the first letter-of the name of
the function referenced; the a's are the actual arguments,
The reference may appear any place in an expression as an
operand. The evaluated function will have a single value asso-
ciated with the function name. When a function reference is
encountered in an expression, control is transferred to the
function indicated. Execution of the function results in an as-
sociation of actual arguments with all appearances of dummy
arguments in executable statements and function definition state-
ments, If the actual argument is an expression, this associa-
tion is by value rather than by name. Following these associa-
tions, the statements of the subprogram are executed. When
a RETURN or END statement in the function subprogram is
encountered, control returns to the statement containing the
function reference. During execution the function also may
define or redefine one or more of its arguments and areas in
common,

Example:

 rroGraMMER Date

> ~z0n|

€ o
'

The valuesof 10and 5

=43

SlAl =K*¥1DI ’(an@l, YHIC

are provided for I and
{ J: The resulting value

1 of IDIV would be 2.

s .AND|U= TIADHIREAD| (] 1id8]) | The function IREAD"

is called with 10B as

J]J i(T iT | the unit number. The

| = value of IREAD would

be the value of the

N S S

(item read from the

device with unit ref-

]

T RERRE T erence number 108.

FORTRAN 6-7

€) [rocemm T
l& = T/li*sc]LNL(Ilﬁ(’j 9. ,g.)] The actual param-
[T RIEEERRANI] eters SCALLare 10.,
9., and 8. The value
i PL[l[il l [ISR ERED of SCALL would de-
I ' LT pend on the value sup-
} !fl !H ? l % ! H‘ I IT [r plied by the subrou-
T T 7 T tine SUBF.
d) The program,
g =Bl [[] 1] T T
| SLIT[=lcAMMBHH7|. SHHZETIAN(. 2], . 3], [GlaMMB) | [1]

would result in the following calculation:
RSLT =5.0+ 7.5+ ZETA
where ZETA would be determined as:
A= .2%%2 - 3%¥3 = 04 - .027 =.013

GAMMA = .013*5.2 = . 0676 (GAMMB is not altered)
ZETA = .0676**2 = , 00456976

RSLT =5.0+ 7.5 + .00456976
= 12.50456976

But, the program,

e T T
l GlAMME]=[5]. IT1] RN |
7 R]s’LT!=zETﬂ(J2l.].]3, Glams B!)I 7]. 5 G AMME] |

would result in the following calculations for ZETA and GAMMB:

A= .2%%2 - 3%%3 = .04 - ,027 =.013
GAMMA = .013*%5.2 = . 0676 = GAMMB
ZETA = .0676**2 = , 00456976

RSLT = .00456976 + 7.5 + . 0676
= T.57216976

6-8 FORTRAN

When referring to afunction which redefines an argument which
appears as a variable elsewhere in the same expression, the
order of evaluation (i.e., the order in which the expression is
stated) is significant.

6.7 STATEMENT FUNCTION

A statement function is defined internally to the program or
subprogram in which it is referenced and must precede the
first executable statement. The definition is a single statement
similar in form to an arithmetic assignment statement.

f(al, 3.2,..., a.n) = e

The name of the statement function, f, is an alphanumeric
identifier; a single value isassociated with the name. The dum-
my arguments, a's, must be simple variables. One to ten
arguments may be used. The expression, e, may be an arith-
metic expression and may contain references to basic external
functions, previously defined statement functions, or function
subprograms. The dummy arguments must appear in the ex-
pression. Other variables appearing in the expression have
the same values as they have outside the statement function.

The statement function name mustnot appear in any specifica-
tion statements in the program or subprogram containing it.

Statement functions must precede the first executable statement
of the program or subprogram, but they must follow all speci-
fication statements.

A statement function reference has the form:

f(al, PR an)

f is the function name and the a's are the actual arguments.
A function reference withits appropriate actual arguments may
be used to define the value of an actual argument in a subroutine
call or function subprogram reference.

FORTRAN 6-9

INGRIM, IND] =] MolrN*¥¥olils] T T Statement function defini-
1 [tion.
i
| .
1 Icallil] marixt I iNoRICS], 121, M) Subroutine call using
: | !I | statement function refer-
ence.
i | | I
UBRICUTITINE] MATX] (o], KD | |
L |
1] i B |
1 SERERENAE Ll L1

Execution of a statement function reference results inan asso-
ciation of actual argument values with the corresponding dum-
my arguments in the expression of the function definition, and
evaluation of the expression. Following this, the resultant
value is made available to the expression that contained the
function reference and control is returned to that statement.

Example:

Statement function:

mogramer Toxe Jreoean

STATEMENY

> ~zon|

< Lokt
' s 7 s E

BIC[(A, B[} [=[aP¥[(Jal*2]-[B* 2|/ [a**[2 [B**2])

Function reference:

PROGRAMMER.] DATE]IIOGIAM

STATEMENT

3 0 15

AlLCl=RANM+ACESPFABIC(T7. 1,1 1T D

s % s E

6-10 FORTRAN

6.8 BASIC EXTERNAL FUNCTIONS

Certain basic functions are defined as part of the FOR-
TRAN Library. When one of these appea*s as an operand
in an expression, the compiler generates the appropriate call-
ing sequence within the object program.

The types of these functions and their arguments are defined.
The compiler recognizes the basic function and associates the
type with the results. The actual arguments must correspond
to the type required for the function; if not, a diagnostic mes-
sage is issued. The functions available are shown below:

Function Definition [SYmbolic| No. of Type of
Name Name [Arguments; Argument| Function
Absolute Value |al ABS 1 Real Real
IABS 1 Integer Integer
Float Conversion| FLOAT 1 Integer Real
from in-
teger to
real
Fix Conversion| IFIX 1 Real Integer
from real
to integer
Transfer sign | Sign of a9 | SIGN 2 Real Real
times |a1| ISIGN 2 Integer Integer
Exponential e? EXP 1 Real Real
Natural log_ (a) ALOG 1 Real Real
Logarithm €
Trigonometric | sine (a)t SIN 1 Real Real
Sine
Trigonometric | cos (a) COS 1 Real Real
Cosine
Trigonometric | tan(a)+ TAN 1 Real Real
Tangent
Hyperbolic tanh (a) TANH 1 Real Real
Tangent 1/2
Square Root (@) SQRT 1 Real Real
Arctangent arctan(a) | ATAN 1 Real Real
And (Boolean) a; A a, JAND 2 Integer Integer
Or (Boolean) aj v a, IOR 2 Integer Integer
Not (Boolean) 12 NOT 1 Integer Integer
Sense Switch |Sense Switch} ISSW 1 Integer Integer
Register
switch (n)

ta is in radians

FORTRAN 6-11

Examples:

oo [‘ tfw
1} St lGINID=laL«BI*C/PIE] T 1 T 11T T
STiGININ =[aBiS|([s]T[GIND] 1 T 10
Y=FILIolAT[(NEWT] |
T/SIGINID=[T[+Ju [*IK[/[L]-]
1/SGNN=|T]aBIS[(T]S|END)) | i Bl
1AL | E[ACK* KIEM*LARRIY] | | | | BB
TjSiAL] I=[T[SITIGN|(IT]AIL, [TSIGINN)| | |
POWR] [=[EX[P[(x]) [
T 1] aNTLG=RLoGUY) | 1
T loioHlvipl=s[TINCAGIL] T T T
lAoH|Y|Pl=|cios[t/alelL]) |
| 0OAJH| |=[TIANH|(JAIGILIH])
HFPR] =sRRIT(ZD] |]
ARC] | [=ATAN(S]) BRENER [
LUPRIO|DI=[T/AINID[(M, IN]) ! 1
LISLUM |=|TIOR| (M, N)) il |
lle =Nomm) Jlj[T I I Tll I

6.9 RETURN AND END

A subprogramnormally contains a RETURN statement that indi-
cates the end of logic flow within the subprogram and returns
control to the calling program. It must always contain an END
statement.

In function subprograms, control returns to the statement con-
taining the function reference. In subroutine subprograms,
control returns to the next executable statement following the
CALL. A RETURN statement in the main program is inter-
preted as a STOP statement.

The END statement marks the physical end of a program, sub-
routine subprogram, or function subprogram. I the RETURN
statement is omitted, END causes a return to the calling pro-
gram. The END$ is required in addition to END statements
whenfive or less subprograms are being compiled at one time.

6-12 FORTRAN

INPUT/OUTPUT LISTS AND
FORMAT CONTROL 7

Data transmission between internal storage and external equip-
ment requires an input/output statement and, for ASCII char-
acter strings, either a FORMAT statement or format control
symbols with the input data. The input/output statement spec-
ifies the input/output process, such as READ or WRITE; the
unit of equipment on which the process is performed; and the
list of data items to be moved. The FORMAT statements or
control symbols provide conversion and editing information be-
tween the internal representation and the external character
strings. I the data is in the form of strings of binary values,
format control is unnecessary.

7.1 INPUT/OUTPUT LISTS

The input list specifies the names of the variables and array
elements to which values are assigned on input. The output
list specifies the references to the variables, array elements,
and constants whose values are transmitted. The input and
output lists are of the same form. The list elements consist
of variable names, array elements, and array names separated
by commas. The order in which the elements appear in thelist
is the sequence of transmission. If FORMAT statements are
used, the order of the list elements must correspond to the
order of the format descriptions for the data items. In array
elements buffer length is limited to a maximum output of 60
computer words.

Subscripts in an input/output list may be of the form (expl,
expz), where exp; is one of the following:

c*v+k v-k

c*v-k v
c*y k
V4K

where ¢ and k are integer constants and v is a simple in-
teger variable previously defined or defined within an implied
DO loop.

FORTRAN 7-1

DO-Implied Lists

A DO-implied list consists of one or more list elements and
indexing parameters. The general form is

(...(Qlst, i= m;, m,, m3)...)

list Any series of arrays, array elements, or
variables separated by commas

i Control variable

m's Index parameters in the form of unsigned
integer constants or predefined integer
variables

Data defined by the list elements is transmitted starting at the
value of my in increments of mg until m, is exceeded. If
m3 is omitted it is assumed to be one.

An implied DO loop may be used to transmit a simple variable
or a sequence of variables more than one time.

Two-dimensional arrays may appear in the list with values
specified for the range of the subscripts in an implied DO loop.
The general form for an array is:

((a(dl’dz)’il = m11 mz’ m3)’ iz = nl’ nz’ n3)

where,
a An array name
d,d Subscripts of the array in one of
1’ 72 .

the preceding forms

il, i2 Control variables representing
either of the variable subscripts
d1 and dz

m's, n's Index parameters in the form of un-
signed integer constants or predefined
integer variables. If mg or ng is
omitted, it is construed as 1.

7-2 FORTRAN

The input/output list may contain nested implied DO loops. Dur-
ing execution, the control variables are assigned the values of
the initial parameters (iy = my, i3 = nq). The first control
variable defined in the list is incremented first. When the first
control variable reaches the maximum value, it is reset; the
next control variable tothe right is incremented and the process
is repeated until the last control variable hasbeen incremented.

If the name of a dimensioned arrayappears in a list without sub-
scripts, the entire array is transmitted.

Examples:

a) The DO-implied list:
((A(1,J), I=1, 20, 2), J=1, 50,5)
replaces the following:
DO x J=1, 50, 5
DO x I=1, 20, 2
transmit A (I,J)
x CONTINUE

b) Other implied DO loops might be:
((ABLE(5*KID-3, 100*LID), KID=1, 100), LID=1, 10)
((A(1,J), I=1,5),J=1,5) Transmit elementsby column
((A(1,3),J=1,5), I=1,5) Transmit elements by row.

¢) Nested implied DO loops:
((((A(I’ J)y B(K’ L)) K=1: 10)’L=1! 15); I=17 20); le’ 25)
({((A(1,J), B(K), K=1, 10), I=20, 100, 10), K=9, 90, 10)

d) Simple variable transmission:
(A, K=1, 10) Transmits 10 values of A.

e) Dimensioned array transmission:
DIMENSION A(50, 20)

o0 AL, list element
is equivalent to:
DOxI = 1,20
DO xJ = 1,50
transmit A(J,I)
x CONTINUE

FORTRAN 73

7.2 FORMAT STATEMENT

ASCII input/output statements may refer to a FORMAT state-
ment which contains the specifications relating to the internal-
external structure of the corresponding input/output list ele-
ments.

FORMAT (specl, -+, T(spec,,...), specp,...)

The spec's are format specifications and r is an optional rep-
etition factor which must be an unsigned integer constant.
FORMAT specifications may be nested to a depth of one level.
The FORMAT statement is non-executable and may appear any-
where in the program.

7.3 FORMAT STATEMENT
CONVERSION SPECIFICATIONS

The data elements in the input/output lists may be converted
from external to internal and from internal to external repre-
sentation according to FORMAT conversion specifications.
FORMAT statements may also contain editing codes.

Conversion Specifications

rEw. d Real number with exponent
rFw. d Real number without exponent
riw Decimal integer
r@w .

O
Kw ctal integer
rAw Alphanumeric character

Editing Specification

nX Blank field descriptor
nHhi h9. . hy Heading and labeling descriptors
r*h1 hg. . .hp” Specification should not be on more than

one line. If continuation is necessary, speci-
fication should be broken up in two speci-
fications.

r/ Begin new record

FIf the type of a variable in the input/output list does not corre-
spond to the type specified in the FORMAT statement, the formatter
insures that the proper conversion from one type to the other will
take place.

74 FORTRAN

Both w and n arenonzero integer constants representing the
width of the field in the external character string; n may be
omitted if the width is one. d is an integer constant repre-
senting the number of digits in the fractional part of the string.
r , the repeat count, is an optional nonzero integer constant in-
dicating the number of times to repeat the succeeding basic field
descriptor. Each h is one character.

Ew.d Output

The E specificationconverts numbers in storage to character
form for output. The field occupies w positions in the output
record; the number appears in floating point form right justified
in the field as:

A.xl. - Xy Ezeel

Xy...Xq are the most significant digits of the value of the data
to be output. ee arethedigitsin the exponent. Field w must
be wide enough to contain significant digits, signs, decimal
point, E , and exponent. Generally, w should be greater than
or equal to d + 4.

If the field is not long encugh to contain the output value, an attempt
is made to adjust the value of d (i.e., truncating part or all of the frac-
tion) so that a number is written in the field. If the remaining value is
still too large for the field, dollar signs ($) are inserted in the entire field.
If the field is longer than the output value, the quantity is right-justified
with spaces to the left.

Examples:
TT 1] WRITE(@, B0 [[T A contains +12.34 or -12.34
T 5| [FOR A“TKEIOT.M Result is aa. 123E+02 or a-.123E+02
11 RITE}W.LS)A A contains +12.34 or -12,34
| 5] IFORMAT(EN[2[.3)[| Result is aaaa.123E+02 or
,] | AAA - 123E+02
[T WRI[TE(a], 5[4 | A contains +12.34 or -12, 34
| 15[[FIORMATTI(E7] 3)% Result is .12E+02 or -.1E+02
|
| LI WRITE(4,,)A! A contains +12.34
ik F[ORMAT] J 1] Resultis $$$$%

fThe caret symbol, A , indicates the presence of a space.

FORTRAN 7-5

Ew.d Input

The E specification converts the number in the input field
(specified by w) to a real number and stores it in the appro-
priate storage locations.

The input field may consist of integer, fraction, and exponent
subfields:

integer fraction

- .l..n' | __|/“ exponent
n

.N...ntee
E

decimal point

The integer subfield beginswitha + or - sign, or a digit and
may contain a string of digitsterminated by adecimal point, an
E, +, -, orthe end of the input field.

The fraction subfield begins with a decimal point and may con-
tain a string of digitsterminated byan E, +, -, or the end
of the input field.

The exponent field may begin with a sign or an E and contains
a string of digits. When it begins with E , the + is optional
between E and the string. The value of the string of digits
should not exceed 38. The number mayappear inany positions
within the field; spaces in the field are ignored.

Examples:
+1.2345E2
123.456+9

-0.1234-6
.12345E-3

+1234E6

When no decimal point is present in the input quantity, d acts
as a negative power of ten scaling factor. The internal repre-
sentation of the input quantity will be:

(integer subfield) x10~9 x10{exponent subfield)

76 FORTRAN

Example:

| procramme:

o—zon|

€ Ll
' 3 z

[TTTTT FORMATIEN LB T TTTTT Input quantity = ann1234+5an

Conversion performed: 1234x10~8x105
Result: 1.234

If a d value in the specification conflicts with the a decimal
point appearingin an input field, the actual decimal point takes
precedence.

Example:
[.! Tl Rm Ti(E'laz. : } Input quantity = aAaaanl, 234+5
Quantity stored: 1.234x105

The field width specified by w should always be the same as
the width of the input field. When it is not, incorrect data may
be read, converted and stored. The value of w should include
positionsfor signs, the decimal point, theletter E , as wellas
the digits of the subfields:

Example:

e o " Trocs
T T IRERRs, e AL Ll TT 1 il l
g |F RVAT(EjLz Es.p 519.!2) | ﬂ 11 | \

Assuming input data in contiguous fields:

-12.3E1+1234123. 46E-3
fe— 17 —%—5 *—9 —=|

The fields read would be: and converted as:

-12.3E1 ~123.
+1234 1.234
123. 46E-3 .12346

FORTRAN 7-7

However, if specifications were:

[—
R

c
”?' STATEMENT

€ labi

3 s 7
b i

1s roaﬁw lE!?l 1aua?i| LRI] T ARENERANRRAED
SRR RRE AN RN R R ERNEEREEE T
The fields read would be: and converted as:
-12.3E1 -123
+123 .123
4123. 46 4123. 46

The effects of possible FORMAT specification errors such as
the above may not be detected by the system.

Examples:
FORMAT Input Converted
Specification Field Value
E9.2 +1.2345E2 123.45
E9J.4 -0.1234-6 ~.0000001234
E4.2 1234 12,34

Fw.d Output

The F specificationconvertsreal numbersin storage to char-
acter form for output. The field occupies w positions and will
appear as a decimal number, right justified in the field.

AX...X.X...X

The x's are the most significant digits. The number of decimal
placesto the right of the decimal pointis specified by d . K d
is zero, no digitsappear to the right of the decimal point. The
field must be wide enough to contain the significant digits, sign,
and decimal point. If the number ispositive, the + sign is sup-
pressed. If the field is not long enough to contain the output
value, an attempt is made toadjust the value of d (i.e., trun-
cating part or all of the fraction) so that a number is written in
the field. I the remaining value is still too large for the field,
dollar signs ($) are inserted in the entire field. If the field is
longer than the output value, the number is right-justified with
spaces occupying the excess positions on the left.

7-8 FORTRAN

Examples:

PROGRAMMES

@200

€ Labe
'

TTT T WRITE @ B0 A contains +12.34 or -12.34
5] FloRMAT]FI IOl 30T Result: annal2.340 or Aan-12.340
[WRITEXA.B[IA || A contains +12.34 or -12.34
5] IFlORMATI([FII 2‘{ 3[) Result: Aaaaanl2. 340 oraaaan -12.340
L LIl
ol RITE(4,5DA[[]| A contains +12. 34
5] [FlolRMAT]([Fla].]3)2 Result: 12.3
il UJ% ‘
LT MWRITIE (8], 5D A A contains +12345. 12
| 5| FORMAT(F4l.3) | | Result: $$$%
Fw.d Input

The F specification input is identical to the E specification
input. Although the fieldsare generally assumed to containonly
a sign, integer, decimal point, and fraction; they mayalso con-
tainan exponent subfield. Allrestrictions for Ew.d inputapply.

Iw

The Iw specification converts internal values to output char-
acter strings, or input character strings to internal numbers.
The output external field occupies w record positions and ap-
pears right justified (spaces on left) as:

Axl. ..xd

During input conversion, if a value is less than -327683(, the value is
converted to a positive 32767.

FORTRAN 7.9

The x's represent the decimal digits (maximum of 5) of the in-
teger. When the integer is positive on output, the sign is sup-
pressed. If an output field is too short, dollar signs ($) will be
placed in the output record.

The Iw specification, when used for input, is identical to an
Fw. 0 specification.

Examples:
;{WRJ'E’({G,HFI)[II,IJ KL 1 contains -1234
19 FQOjRMATL(I*5l:i}5l-r14116[) 1‘ l J contains +12345

K contains +12345
L contains +12345
Result: -1234123453$3$/12345

o 5o 5o 4o

—
[N
B3
[

Input contains:

TT READIBLIED
12 FORMATI([1]5},1]5, 1|4

L T T

—
~—

-A12312A4A3A1423
I contains -0123 5—p—5 a1
J contains 12003 I-—. _+_ _.' |

K contains 0102
L contains 3

Aw

This specification (not available in the 4K version of FORTRAN) causes
alphanumeric data on an external medium to be translated to or from
ASCIHI form in memory. The associated list element must be of type
integer.

On input, if the field, as indicated by w, is greater than 2, the
first w-2 characters are ignored; only the last two characters
are read. When w equals 2, the two characters are read. I
w equals 1, one character is read and stored in the right half
of a computer word; zero is entered in the left half.

On output, if the field is greater than 2, two characters are
written with right justification in the field; the leading posi-
tions are filled with spaces. If w equals 2, the two characters
are written, If w equals 1, the character in the right half of
the computer word is written.

7-90 FORTRAN

w>2 w=2 Wz 1

{] I
FIELD | ! 1
/Z L' :4 L 4 [4
(mendered) 4 1 1% 4
‘7 v F: v { v
MEMORY l : / {
(iunored7on output)
zero on input
Example:
Input data: AZZ213-ABCXABCI137 - 279
DIMENSION ID (5)

READ (5, 10) 12, I1, ID
10 FORMAT (A19, A1, 5A2)

Result: 12 BC
I gx

ID AB

C1

37

-Z

79

rgw rKw

Octal integer values are converted under either the @ or the K specifica-
tion. The field is w octal digits in length; the corresponding list element
must be of type integer. (Not available in the 4K version of FORTRAN.)

Oninput, if w is greater than or equal to 6, up to six octal digits
are stored; non-octal digits appearing within the field are ig-
nored. If the value of the octal digits within the field is greater
than 177777, the results are unpredictable. If w is less than
6, or if less than six octal digits are encountered in the field,
the number is right justified in the computer word with zero
fill on the left.

On output, if the field is greater than 6, six octal digits are
written with right justification in the field; the leading positions
are filled with spaces. I w equals 6, the six octal digits are
written. If w is less than 6, the w least significant octal digits
are written.

Example:
Input data: 123456-1234562342342342, 396 E-p5 @ @

DIMENSION ID(2), IE(2)
READ (5,10) IB, IC, ID, IE:
10 FORMAT (@6, @7, 2@5, 2@4)

FORTRAN 7-11

Result: IB 123456
IC 123456

ID #23423

$42342

IE @ggda36

popsps

nX

The X specification maybe usedtoinclude n blanksinan out-
put record or to skip n characters on input to permit spacing
of input/output quantities. Inthe specificationslist, the comma
following X isoptional. »~X isinterpretedas 1X. 0X is not
permitted.

Examples:
rRoGRAMMER] , lnoclm

LT WRIL[TIE (6], [1}eD AT, B, [T] [[TT]]A contains +123. 4
118 FIORMAT (8. 315K, Fl.21,5X,14) [[[| B contains -12. 34

I contains -123

Result: A.1234E2AAAAn-12,34 Aaaan-123
Input:

WEIGHT AA10AAPRICE An$1.98 AATOTALAA$19. 80

o frrocau

_n
13
o200

STATEMENT

1 15 @ 3 0 B “ - 50

RERDI(B T T AL B
FoRrRMAT/ (8 2,4@[}«-‘4.2 L@(Fs.z)

&l
T IREERRE

Result: I contains 10
A contains 1,98
B contains 19.80

“thhz"'hn

The H specificationprovides for the transfer of any combina-
tion of 8-bit ASCII characters, including blanks. n is an un-
signed integer specifying the number of characters to the right
of the H that are to be transmitted. The comma following the
H specification is optional. AH is interpreted as 1H. OH is
not permitted. An H specification should not span more than one line.
If continuation is necessary the H specification should be broken off in
2H specifications, one on each line.

On output, the ASCII data in the FORMAT statement is written
on the unit in the form of comments, titles, and headings.

7-12 FORTRAN

e [oo
[WRITECE], 1)) |
18] IFloRMATI([2lojn] THItIS| [T]s| |aN] [EIXjAMPILE] |} +] I
T IRERE T I |

Result: THIS IS AN EXAMPLE

|

[| WRELTIE[C6], [t [@D]1], AL, B 1] |
1@ [FORMAT([BHWETIGHT] | [112[,[1/@H | PRICE | [§,[Fial-i2[,
1 ieton | roa | sLIFBC[T T

I contains 10
A contains 1.98
B contains 19. 80

Result: WEIGHT 10 PRICE $1.98 TOTAL $19.80
On input, the data is transmitted from the unit to the FORMAT

statement. A subsequent output statement transfers the new
data to the output record.

Examples:

PROGRAMMER Fm ProcrAm

€ bl
)

T
o STATEMENT
N

T
e » ’ = 2 » s © s 0

[11 READIBLIRD

111 IFloRMATIC (2] 1]HIA [a[a]a]a]a]ala]afan [alalnla a[a]n]a]a [[]a]a]n]A]a]A]A LA A])

11 1TiE[(6], 1)

T L T

Input: H INPUT ALLOWS VARIABLE HEADERS

Result: H INPUT ALLOWS VARIABLE HEADERS

11 ”
rhyhg.hy,
This specificationalsoprovides for the transfer of any combin-
ation of ASCH characters (except the quotation marks). The
number of characters transmitted is the number of positions be-
tween the two quotation marks; field length is not specified. If
r , an optional repeat count, is present, the character string
within the quotation marks is repeated that number of times.
Commas preceding the initial quotation mark and following the
closing quotation are optional. As with H, the specification must be
contained on one line.

FORTRAN 7-13

Examples:

[moctmmme oate |

T e
€ i ¥
H

% ® © 8 »

1w

TlElC 6], [1]e) |
|T[H]1 S0 [1]s| AN [EX|AMP

§
D =~
b3
—
w
P
r
=
m

Result: THIS ALSO IS AN EXAMPLE

T WRETEICS] (e T i
118} [FoRMATICSTIABCT] | LTI !

Result: ABCABCABC

On input, the number of characters within the quotation marks
is skipped on the input field.

New Record

The slash, /, terminates the current record and signals the
beginning of a new record of formatted data. It mayoccur any-
where in the specifications list and need not be separated from
the other list elements by commas. Several records may be
skipped by indicating consecutive slashes or by preceding the
slash witha repetitionfactor; r-1 recordsare skipped for r/.
On output the slash is used to skip lines, cards, or tape records;
on input, it specifies that control passes to the next record or
card.

Examples:
e e e

[T MWRITER 6], DT T 11 T1T 1
1'g] [FlorRMAT(2]2]X], l6HBIUDGIET|/ 7|7 B HWEIT|GIHIT], B/X],

SHPIR]T ICIE], [9lX(, I5IH[T{OTAlL, BIX]} |

]
! olr ! l il
l | RENNE
Treel, ey TT 1T |
uD

<]

7-14 FORTRAN

Result:

line 1 AAAAAAAA AAAAA A AAAA A AAA BUDGET

line 2

line 3

line 4 WEIGHT Anaaan PRICE aAanaanaana TOTALAAAAA

Repeat Specifications

Repetition of the field descriptors (except nH) is accomplished
by preceding the descriptor witha repeat count, r . If the in-
put/output list warrants, the conversion is interpreted repeti-
tively up to the specified number of times.

Repetition of a group of field descriptors, including nH is ac-
complished by enclosing the group in parentheses and pre-
ceding the left parenthesis with a group repeat count. If nogroup
repeat count is specified, a value of one is assumed. Grouped
field descriptors may be nested to a depth of one level.

Examples:
[Tm Tlomm

STATEMENT

o ~zon,

[
' 7 » £ E o « 3

[WRITE(@ B K 1 T z
18] JFORMAT([15], 1], 1

can be written as

=

NgE
7
1

T
1]

11 [H

iﬂn J KT |
5)) I
L

FEa
[] MAT! (]3]
|| WRlLT

12| FIORM
Fi6.2],5
T rriT T

can be written as

BN | { i
TTE[(a, [1[@ A, Bl 1T, /L. P I [
] RMAT((S, [T T

2 |)
1l4)

Em
X8
m
@D
5
m

=
oL
o

-+ {0
.}

—

3
TerTrTT T T T

A nested repetition specification would be:

The group F6.2, 5X, 14 would be written five
times, and the entire group, once.

FORTRAN 7-15

Unlimited Groups

FORMAT specifications may be repeated without use of the
repetition factor. If list elements remain after all specifica-
tions in a FORMAT statement are processed, the rightmost
group of repeated (enclosed in parentheses) specifications is
used. If there is no repeated group, processing resumes with
the first specification in the statement. On output, each time
the rightmost parenthesis in the statement, or in the unlimited
group, is reached, the current record is terminated.

7.4 FREE FIELD INPUT

By following certain conventions in the preparation of the input
data, a 2116A FORTRAN program may be written without use
of FORMAT statements. Special symbols included with the
ASCT input data items direct the formatting:

space or, Data item delimiters
Record terminator

+ - Sign of item

.E + - Floating point number
@ QOctal integer

oL Comments

All other ASCII non-numeric characters are treated as spaces
{(and delimiters). Freefield input may be used for numeric data
only. Free field input is indicated in the FORTRAN READ
statement by using an asterisk rather than a number of a FOR-
MAT statement.

Data Item Delimiters

Any contiguous string of numeric and special formatting char-
acters occurring between two commas, a comma and a space,
or two spaces, is a data item whose value corresponds to a
list element. A string of consecutive spaces is equivalent to
one space. Two consecutive commas indicate that nodata item
is supplied for the corresponding list element; the current value
of the list element is unchanged. An initial comma causes the
first list element to be skipped.

Example:

mROGRAMMER 2) PROGRAMMER

=200
o ~Zon

€ Lokl [T
' '

s 7 3 0

| | IREADI(ER *)|1 TR 5!, L] [|]:E‘Apll(5,5{)]1[, J;Q, L]

Input data: 1720, 1966 Input data: 1266, ,1794, 2000
1980 1492
Result: I contains 1720 Result: I contains 1266
J contains 1966 J contains 1966
K contains 1980 K contains 1794
L contains 1492 L contains 2000

1-16 FORTRAN

Floating Point input

The symbols used to indicate a floating point data item are the
same as thoseused in representing floating point data for FOR-
MAT statement directed input:

integer fraction

| | /_\exponent

in...n.n...nxee

n E
ﬁcimal point

If the decimal point is not present, it is assumed to follow the
last digit.

Examples:

PROGRAMMER pate PAOGRAM

STATEMENT

o ~z0n|

€ Lol
1 7 0 » £ s “© 4 E)

REEJAD[(s], DA, 18], [¢], O], [E] !

Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314El
All are equivalent to 3.14
Octal Input
An octal input item has the following format:
@ X{. - Xy
The symbol @ defines an octal integer. The x's are octal

digits each in the range of 0 through 7. List elements corre-
sponding to the octal data items must be type integer.

Record Terminator

A slash within a record causes the next record to be read im-
mediately; the remainder of the current record is skipped.

Example:
REOICS] T B R L [T T T

Input data: 987, 654, 321, 123/DESCENDING CB €B
456

Result: II contains 987
JJ contains 654
KK contains 321
L1 contains 123
MM contains 456

List Terminator

If a line terminates (with a @ @)and a slashhasnot been
encountéred, the input operationterminates even thoughall list
elements may not have been processed. The current values of
remaining elements are unchanged.

Examples:

Teocamer oat Jrrosuas

STATEMENT

€ Labat
'

~zon

[[T [[RE/AID[CTS], eIy Tal, 18], [, WL XL YL T T T T T T T
Input Data:

t’;ﬁg*@ B=@5E2 C=4.6859E-3 CHLD

Result: A contains 7.987
B contains 5E2
C contains 4.6859E-3

J, X, Y, Z are unchanged.
Comments

All characters appearing between a pair of quotation marks in
the same line are considered to be comments andare ignored.

Examples:
"6.7321" is a comment and ignored
6.7321 is a real number

7-18 FORTRAN

INPUT/OUTPUT STATEMENTS 8
 ————————————

Input/output statements transfer information between memory and
an external unit. The logical unit is specified as an integer variable
that is defined elsewhere in the program or an integer constant.

Each statement may include a list of names of variables, arrays,
and array elements. The named elements are assigned values on input
and have their values transferred on output.

Records may be formatted or unformatted. A formatted rec-
ord consists of a string of ASCII characters. The transfer of
such a record requires the specification of a FORMAT state-
ment or free field input data. An unformatted record consists
of a string of binary values.

8.1 LOGICAL UNIT NUMBERS

FORTRAN input/output statements refer to logical unit numbers
(1 to 63) whose meaning varies depending upon the operating system
used. Refer to the appropriate manual. The operating system relates
the logical unit number to a physical unit through system tables.
Logical unit 4 always refers to a punch device, 5 to an input device,
and 6 to a list output device.

FORTRAN 8-1

8.2 FORMATTED READ, WRITE

A formatted READ statement is one of the forms:

READ (u, f)k
READ (u, ¥k
READ (u, f)

Execution of this statement causes the input of the next ASCII
records from unit u. The information is scannedand converted
according to the FORMAT specification statement, f, and as-
signed to the elements of list k. If the input is free field, an
asterisk is specified inthe READ statement rather than the la-
bel of a FORMAT statement. If the list is absent, the FORMAT
statement should contain editing specifications only.

A formatted WRITE statement may have one of the following
forms:

WRITE (u, f)k
or
WRITE (u, f)
This statement transfers ASCIIinformationfrom locations given
by names in the list k to output unit u. The valuesare convert-
ed and positioned as specified by the FORMAT statement f. If

thelist is absent, the FORMAT statement should contain editing
specifications only.

8-2 FORTRAN

8.3 UNFORMATTED READ, WRITE

An unformatted READ statement has one of the forms:
READ (u)k

or
READ (u)

This statement transfers the next binary input record from the
unit u to the elements of list k. The sequence of values re-
quired by the list may not exceed the sequence of values from
the record. If no list is specified, READ (u) skips the next
record.
An unformatted WRITE statement has the form:

WRITE (u)k

Execution of this statement creates the next record on unit u
from the sequence of values represented by the list k.

8.4 AUXILIARY INPUT/OUTPUT STATEMENTS

There are three types of auxiliary input/output statements:
REWIND
BACKSPACE
ENDFILE
A REWIND statement has the form:
REWIND u
This statement causes the unit u to be positioned at its initial
point. If the unit is currently at this position, the statement
acts as a CONTINUE.
A BACKSPACE statement is as follows:

BACKSPACE u

FORTRAN 83

BACKSPACE positions the unit u so that what had been the pre-
ceding record becomesthe nextrecord. If the unit is currently
at its initial point, the statement acts as a CONTINUE.
An ENDFILE statement is of the form:

ENDFILE u
Execution of this statement causes the recording of an end-of-

file record on the output unit u. If given for an input unit, the
statement acts as a CONTINUE.

8-4 FORTRAN

COMPILER INPUT AND OUTPUT 9

The FORTRAN Compiler accepts as input, paper tape contain-
ing a control statement and a source language program. The
output produced by the Compiler may include a punched paper
tape containing the object program; a listing of the source lan-
guage program with diagnostic messages, if any; and a listing
of the object program in assembly level language.

9.1 CONTROL STATEMENT

The control statement must be the first statement of the source
program; it directs the compiler.

FTN, py» Py, Pg

FTN is a free field control statement. Following the comma
are one to three parameters, in any order, which define the
output to be produced. The control stafement must be termi-
nated by an end-of-statement mark, @ Spaces em-
bedded in the statement are ignored.

The parameters may be a combination of the following:

B Binary output: A program is to be punched in relocatable
binary format suitable for loading by the Relocating Loader.

L List output: A listing of the source language program is to
be produced as the source program is read in.

A Assembly listing: A listing of the object program in
assembly level language is to be produced in the last
pass.

T Symbol table only: A listing of the symbol table only is
produced; in MTS, if both T and A are specified, only the
last used will be decisive.

FORTRAN 91

HP CHARACTER SET A
ASCI] CHARACTER FORMAT

by Q 0 [o 1 1 I I
bg [] | | [¢] [¢] 1 t
bs o] 0 | o] o |
b,
bs
1
0 oj£ % NnLL[pco [8 [0 @ [e I]
ojo|o]1|SOM|DC, 1 1 A Q
ool Jeleor oer [~ ¢ [0 Tn]| 171]
0|O0| 1|1 |EOM | DC3 | # 3 C S N
o] [o o eor [gem ¢ T+ o L7 []
ol1jo|I|WRU[ERR| % | s £ U 'N'j"s"
ofvjrjofrRufsvnc] | 8 | F | v | AT
Ot [|BELL|LEM |[(apos| 7 6 W | s_| N_
1]o|o|o|FEg| So (8 H X _é_J__g-d
tjolo] Mgl 5) 9 1 Y h_N_“—]
tloji1to LF 5; * : J z E
‘{0 1| ([Vias | S3 | + . K T 'D_'“[_“
1 [ofo] FF | 5a Joomml < [C | v [| [Ack
1frjo]sf| CR Ss - = M 3 @
1]i]1]o] SO | Se . > N + || Tesc
il o] sT| s, 7 ?) « | 17 ToeL
Standard 7-bit set code positional order and notation are shown below with b, the
high-order and b, the low-order, bit position. b, be by, b, by b, b,
EXAMPLE: The code for "R" is: 1 Q 1 0 0 1 Q
LEGEND
NULL Null/idle DC,-DCs Device Control
SOM Start of message DC4(Stop) Device control {stop}
EOA End of address ERR Error
EOM End of message SYNC Synchronous idle
EOT End of transmission LEM Logical end of media
WRU "Who are you?" So=5¢ Separator (information)
RU “Are you...?" b Word separator {space, normally
BELL Audible signal non-printing)
FEo Format effector < Less than
HT Horizontal tabulation > Greater than
SK Skip (punched card) 4 Up arrow (Exponentiation)
LF Line feed - Left arrow (Implies/Replaced by)
Vias Vertical tabulation \ Reverse slant
FF Form feed ACK Acknowledge
CR Carriage return 0] Unassigned control
SO Shift out ESC Escape
Sl Shift in DEL Delete/Idle
DCo Device control reserved for

data link escape FORTRAN A1

ASSEMBLY LANGUAGE SUBPROGRAMS B

A FORTRAN program canrefer to a subprogram that has been
prepared using Assembler source language. The subprogram
may be treated as a subroutine or as a function. The object
code programs generated by FORTRAN and by the Assembler
are then linked together by the Relocating Loader when the programs
are loaded.

FORTRAN REFERENCE

In the FORTRAN program, a subroutine is called using the fol-
lowing statement:

CALL s (al, T ,an)

The symbolic name, s, identifies the subroutine and the a's are
the actual arguments.

If the subprogram is a function, it is referenced by using the
name and the actual arguments in an arithmetic expression:

f(al, CTRRS ,an)

As a result of either the call or the reference, FORTRAN gen-
erates the following coding sequence:

JSB s/t Transfers control to subroutine or function
DEF*+n+l1 Defines return location

DEF 2y Defines address of a

DEF a, Defines address of a,

DEF an Defines address of arl

The words defining the addresses of the arguments may be di-
rector indirect depending on the actual arguments. For exam-
ple, an integer constant as an actual argument would yield a
direct reference; an integer variable might yield an indirect
reference.

FORTRAN B-1

If the subprogram being referenced isa subroutine, it may re-
turn none, one, or more than one value through its arguments

or through common storage.

If the subprogram is a function,

it is assumed to return a single value in the accumulators: a
function of type integer returns a value in the A-Register; a
function of type real returns a value in the A- and B-Registers.

The subprogram may transfer values directly by accessing the
words in the calling sequence or it may make use of the FOR-

TRAN library subroutine . ENTR to aid in the transfer.

DIRECT TRANSFER OF VALUES

Any suitable technigue may be used to obtain or deliver values
for the arguments and to return control to the calling program.
If address arithmetic is used in conjunction with an argument
(e.g., to process elements of an array), the base location must
be a direct reference; the location given in the calling sequence
must be checked to determine if it is a direct or indirect ref-
erence. If it is an indirect reference the location to which it

points must also be checked, and so forth.

Example:
NAM {abMS] 1]
EINT| [AMS] AN
ams|uls] NP | 1] A oN[TIAITIN] |ADPR [OFF| " t:
L] |aMs A VIALIUE! [oF[™ =Nt |
L S[TA] [RET 'R AlTINS VIAILUE] T T* TH;
NIxTlaG] [1s]z] |aMs la AIINS| ADDR] OFF] Lo N |
T |CoAl ams o TL FESTUF AL A T
[L[] |cPal RET MENTS! | Esg@g:" OMPARE[V IR
T me] RET) 4 "I MWITH] AploR] OF[ICURRENT, Ti
% T L i FIIARGUMENT. | [IF] E 1
PIRISIAG Bl Ri N CRLILING PF{Q_{ER{AM, NOIT,,'
ERERENER = S| GUMENT s'REEE[‘m EREEN
TR b
T LAl jam A TA[LN'S| LIOCIATTON, OF| ARGUMENT. [| |
1 LDja) q\ L ON[EI-WORID %(FIT ‘E@I PIOINT) B
. . v 1 A ‘ T
i ANRRNEN RARANNNRNNANRARNANNRANNAN
1 ENASRNNNRNEN RN AN ARANANY N
| [lLEh] [aMs] i TWO[-WOoRD| [(FILIOATTIIN[G, [PlOT |

B-2 FORTRAN

! A) ¥
S e e A e B e
wn
R - %%4 Pl JJ;JH 8§ .UFTD_% o,
_ [T N T S O (O A A T =4 Wl
rM\f\T wal\TL,T:\ﬁ s #:\NL‘ _[Olu, E\0+ HWE =
S D D = A Wi 2)
Zlelo] [- o w
k- S A {O%JJTNN J& z
-4 - e A 2 S (T (7 =3 [T 3 1
= — W =Tl IZ ‘
ESsSERCRse HREEEEoc- - eEekE
—) S A L 3 Y) I ¢ i N A
AR (CY 1T Jojzinl” Jol-iw Jr . i
By R 7 O N =4 Y S S P =R =S4 H{ I
T =) < [T TJZiolww]] T
= 1 O A ol w1 [T#A Z[— 1 Tele] 1]
< Zi 1L whd ol [Z] | W= T ;;),
a > I — =10 o0 V] B =) Y N 1 =Y O O A O O
<3 0 S S U A I R R T\W\Rﬁh I EI T 0] N PR =] |~
aj B=Y ol | [i1 deoazh=folz{ 1 T Tl | i
c | hd O] O F[Wl(Z]Z ol
S T <o)] @ N =) N O B
U412 H_m R R 1 o e i i o Flefolwl=l o] T] St 11+
o Tl JF : gl | Jelujoulul || o=
= [1 - 73} I [iz 1T
M :N._N Lhrx_WNxT] M.TTZRTRML T_M =
[e) Z|o] 1 N
= = ﬁu\ﬁﬁ, i cgbprer.e F417 A
[, LJ Zislel-l-laol | | lels T 1]
= g+ A N (=3 (N] T (YT o Y= N N O B
3 [e1[) ol 171 T CGDT~ aloc|— U% |
=10 1 [=lol | & 2 Lt MR AR
= 71 & .@l[”(_fl_ AAIS_AﬁLDﬂ N R_@LIJI
B R . 1) B T N I =1 (= - (”TW A A
I[\. -~ T - T R 1 = 7
[[=) i)=Y @ X ~ [T} S
T olala] LUAAA\Z_|] =) 73} ~ T]
= L7715 B T O 773 B = O B L7) B T = T M O 1 M
T iERlEle iR A e Ee s B et
) ===
CACE T IO~ A AN =1 = [) R R L 2 A T2l (=)
S (SIS e ol e a0 SIS 2 [als]o] | A EalvlvlnZ] |
o) dlunolo J>3a] 80 Slo[oomw
4 - =T
Ml I I O I I 77 &AA%
e —i=>>]]
1 Hl [|IA ‘ JT\A} = ‘IT.r_U\cZ
T - T 4 eIk

The preceding example assumes that each argument is proc-

essed or partially processed before the next is obtained or

delivered. Conirol returns to the calling program when all

arguments have been picked up or delivered.

FORTRAN B-3

TRANSFER VIA .ENTR

The transfer of values to or from the locations listed in the
calling sequence may be facilitated through use of the FORTRAN
library subroutine .ENTR. This subroutine movesthe addres-
ses of the arguments into an area reserved withinthe Assembly
language subroutine. The addresses stored inthe reservedarea
are all direct references; . ENTR performs all the necessary
direct/indirect testing, etc. It also sets the correct return
address in the entry point location.

The general form of the subroutine is:

NAM s The subroutine name is s.

ENT s

EXT .ENTR .ENTR must be declared as external.
a BSS n Reserves n words of storage for the
S NOP addresses of the arguments; this pseudo

instruction must directly precede the
entry point location, s.

JSB .ENTR
DEF a Defines first location of area used to
(First instruction) store argument addresses.

JMP s, I
END

B-4 FORTRAN

Example:

OGRAM

F

STATEMENT

[roctssns

I

E

T T 7 10 I R N O O Y = O O
A e e e e e,
= Z 1 = | -,
I] 1] Z 1w {1 1= [N [
I o & e o
E E EE e R Emws EEEE RESE
o j L Y e 2 O O T NS N
T == e < =
* 112 N> N L ¢ M i A - 1 B 4 U D N G S E
EEESSS SoE SEEWESE e asamm==a=
) e ﬁﬁ =EE Wﬁﬁmﬂﬂmﬂﬂ‘ St R
[T | S IO s =4 R — JRE N N 4 1 B
@ - B! TTTITH\ = T J‘J‘Ww ‘
2 1 1 Jo]|° x 14 K771 S G 1
g e] (o S L S e e e
R L s AR I
1 e i R
< L) 2l 1o L]
A 1 3 L R i S (T
L\ﬁv ' - M B - ¢ S =
S 1 A = ol i - e wﬁ
1] 4
f% 4 4 i — 50
R = 2 or T HE
=
S a %) - =
] =) ™ = 1
I |l|]‘l?ﬂ 3.. | | =
i + + [H + =
H) -]
SEEHTE 1] 25 ALWL i {1 £ ST
720%2] |Z] | > = L Lo
(Sl Tl =4 2 =l < TR
(=4 Q[< ajuniv
 BEEZERE 3 o 72
Zllwiao[220 =] Q (%) Qo = 2mim
0] - —] [T | o}
T 1= <] T O B =44
=] P B >[>
(U] [i'd -l
o T =]

FORTRAN B-5/B-6-

SAMPLE PROGRAM C

Using Simpson's rule, calculate the value of the integral:

b
/ CO)S{X dx
a

for the following possible values:

Variable Range of Values
a -6.99 to +6.99
-6.99 to +6.99

AX -.25to +.25

Simpson's rule for approximating a definite integral is:

b
f f(x)dx = ATX (f(a)+4f(a+ax)+2f (a+26x)+4f (@+3A%)+. . . +H{b)
a

The last term is reached when {(a+kax)=b , and when neither a
2 nor a 4 appears in front of the first or last term.

FORTRAN C-1

LAST TERM
LIMITS
B-A

K=

1

INCREMENT DO:
N=N+1

NO

TERM =
ICOS F{A + N*aX
A *aX

SUM =SUM +
TERML

sum = syme 2%

4

|

SUM = SUM +

PRINT:
SUM

C* TERM L/.r

NO

a
[
a

C-2 FORTRAN

SAMPLE PROGRAM FLOWCHART

T e
w_ll.\ 1 —t— —
I B B O JH_!T - o
T 11
= - T B
Se==m=E EESS ==
M \A.|_ .w\.,{_ porp——+ f— S T
o I et o e e -
= e = e e ki i
o e o L T e e 1
i 1T T w1 N T 41
S it o) I o] 1
e e e £ e Y Y I
o A N A Y E3 lxijl
=4 | |
= T EH - B et
(= < =
e RS S =
B Y O O 1L~V =1 S
A - Qon = i
M| w — |
R R R I e o EEsE
I~ ﬂ%xmmﬁﬁ# [EENIE 1A [A B N 4 (T T R T
STt R ol e
[7,} w — ~| =
FORIRIBISIS T R e s BEE] T e
B R e = AR e
- " —r
T T e e
2 I v 1 . . [l 2
AR i bt B e P S B el el e e S
Aelwlolw =D uln ___ONFEFUFFOlFOTUUROTNN*e N N
7LPRFTSKCIDFITIDICGCC SSMFSE:F
RSV ST S SIESTESY 1] L
- S i RO RN bﬁF@WW Y O
T*hj\T \llﬁJTITlﬁlTx T [
T

FORTRAN €-3

1.23 4.72
SUM=-.63E+09
STOP

1.23 2.081
SuM=-.12E-81
STOP

B34 1.81
SUM= .8BE+00
STOP

900 1«00
SUM= .STE+36
STOP

1.08 1.25
SuMz .92E-01
STOP

C-4 FORTRAN

25

82

a1

B35

OBJECT PROGRAM
Input and Ovutput Data

FORTRAN ERROR MESSAGES D

During the compilation or assembly of programs, error messages are
typed on the list output device to aid the programmer in debugging
programs. Errors detected in the source program are indicated by a
numeric code inserted before or after the statement in the List Gutput.

The format is as follows:

E-ecee:

eeee

RELH

nnnn

Error
Code

ssss + nnnn
The error diagnostic code shown below.

The statement label of the statement in which the
error was detected. If unlabeled, 000 is typed.

Ordinal number of the erroneous statement follow-

ing the last labeled statement. (Comment statements
are not included in this count.)

Description

0001 Statement label error:

a)
b)
c)
d)
e)

The label is in positions other than 1-5.
A character in the label is not numeric.
The label is not in the range 1-9999.
The label is doubly defined.

The label indicated is used in a GO TO, DO, or IF
statement or in an I/O operation to name a
FORMAT statement, but it does not appear in the
label field for any statement in the program (printed
after END).

FORTRAN D-1

Error

Code Description
0002 Unrecognized Statement

a) The statement being processes is not recognized
as a valid statement.

b) A specifications statement follows an executable
statement.

c¢) The specification statements are not in the follow-
ing order:

DIMENSION
COMMON
EQUIVALENCE

d) A statement function precedes a specification state-
ment.

0003 Parenthesis error: There are an unequal number of left
and right parentheses in a statement.
0004 Illegal character or format:

a) A statement contains a character other than A
Z, @ through 9, or space =+-/(),.$”.

b) A statement does not have the proper format.

c) A control statement is missing, misspelled, or does
not have the proper format.

d) An indexing parameter of a DO-loop is not an
unsigned integer constant or simple integer variable
or is specified as zero.

0005 Adjacent operators: An arithmetic expression contains
adjacent arithmetic operators.
0006 Tllegal subscript: A variable name is used both as a simple

variable and a subscripted variable.

D-2 FORTRAN

Error
Code

Gae7

P08

P09

#9190

P11

Description

Doubly defined variable:

a) A variable name appears more than once in a
COMMON statement.

b) A variable name appears more than once in a
DIMENSION statement.

c¢) Avariable name appears more than once as a dummy
argument in a statement function.

d) A program subroutine, or function name appears

as a dummy parameter; in a specifications statement
of the subroutine or function; or as a simple variable
in a program or subroutine.

Invalid parameter list:

a)

b)

The dummy parameter list for a subroutine or
function exceeds 63.

Duplicate parameters appear in a statement func-
tion.

Invalid arithmetic expression:

a)

b)

Missing operator

Illegal replacement

Mixed mode expression: integer constants or variables
appear in an arithmetic expression with real constants
or variables.

Invalid subscript:

a)

b)

c}

Subscript is not an integer constant, integer variable,
or legal subscript expression.

There are more than two subscripts (i.e., more than
two dimensions.)

Two subscripts appear for a variable which has been
defined with one dimension only.

FORTRAN D-3

Error
Code

0012

0913

0014

0015

0916

D-4 FORTRAN

Description

Invalid constant:

a)

b)

c)

An integer constant is not in the range of —915
to 215 1.

A real constant is not in the approximate range of
1038 010738,

A constant contains an illegal character.

Invalid EQUIVALENCE statement:

a)

b)

c)

Two or more of the variables appearing in an
EQUIVALENCE statement are also defined in the
COMMON block.

The variables contained in an EQUIVALENCE cause
the origin of COMMON to be altered.

Contradictory equivalence; or equivalence between
two or more arrays conflicts with a previously
established equivalence.

Table overflow: Too many variables and statement labels
appear in the program.

Invalid DO loop:

a)

b)

c)
d)

The terminal statement of a DO loop does not
appear in the program or appears prior to the
DO statement.

The terminal statement of a nested DO loop is not
within the range of the outer DO loop.

DO loops are nested more than 1) deep.

Last statement in a loop is a GO TO, arithmetic
IF, RETURN, STOP, PAUSE, or DO.

Statement function name is doubly defined.

The 7210A Graphic Plotter is easily added to your
HP 2100A Computer. Up to 20 coordinate pairs per
second can be accurately plotted.

BASIC Language Reference Manual

CONTENTS

CHAPTER 1 COMMUNICATING WITH THE COMPUTER 1-1

Statement
Statement Number
Instruction
Operand
Free Format in Statement

A Program

Spot Check

Working with the Computer
Entering a Program
Mistakes and Corrections
Deleting a Statement

P R b b b e e e e
= O~ ~I DO R W NN

Changing a Statement
Running a Program -
Stopping a Program -10
How the Program Works -10
CHAPTER 2 THE ESSENTIALS OF BASIC 241
2.1 Terms 2-2
211 Term: Simple Variable 2-2
2.1.2 Term: Number 2-3
2.1.3 Term: E Notation 2-3
214 Term: Expression 2-4
215 Term: Arithmetic Evaluation 2-4
2.2 Operators 2-5
221 The Assignment Operator 2.5
2.2.2 Relational Operators 2-6
2.2.3 Arithmetic Operators 2-7
2.2.4 The AND Operator 29
2.25 The OR Operator 2-10
2.2.6 The NOT Operator 211
2.3 Order of Precedence 2-12
2.4 Statements 213
2.4.1 The LET Statement 2-14
2.4.2 REM — Comments Statement 2-15
2.4.3 INPUT Statement 2-16
2.4.4 PRINT Statement 2-18
24.5 GO TO Statement 2-24
2.4.6 IF ... THEN 2-25
2.4.7 FOR...NEXT 2-27
2.4.8 Nesting FOR . . . NEXT Loops 2-30
2.4.9 READ, DATA and RESTORE
Statements 2-31

BASIC i

CHAPTER 3

CHAPTER 4

ii BASIC

2.5

2.5.1 WAIT Statement

2.5.2 END and STOP Statements
2.6 Sample Program

26.1 Listing of Sample Program
2.6.2 Running the Sample Program
2.7 Commands

2.17.1 RUN

2.7.2 LIST

2.7.3 SCRATCH

2.7.4 TAPE

2.7.5 PTAPE

2.7.6 PLIST

ADVANCED BASIC

Terms

1 Term: Routine

2 Term: Array or Matrix

3 Term: String

4 Term: Function

5 Term: Word

Subroutines and Functions
GOSUB...RETURN
FOR...NEXT with STEP
General Mathematical Functions
Trigonometric Functions
DEF FN — Function Definition
COM Statement
The TAB and SGN Functions

0 00 00 60 80 L 80 00 00 £0 00 €0 L o

S Ui wh R

MATRICES

Terms
1 Term: Matrix (Array)
2 DIM Statement
3 MAT...ZER
4 MAT...CON
Inputting Single Matrix Elements
Printing
4.3.1 Printing Single Matrix Elements
4.3.2 MAT PRINT
44 Reading
4.4.1 Reading Matrix Elements
4.4.2 MAT READ

-
Al

Program Halts — Temporary, Permanent

2-33
2-33
2-34
2-35
2-36
2-39
2-40
2-41
2-41
2-42
2-43
2-44
2-45

3-1

3-4

50 40 60 42 G0 ¢

¢
e = Y 3 O

~TNTWN—=O

P o

F -
1
-l

[
[umy

45 Matrix Arithmetic 411
4.5.1 Matrix Addition 4-11
4.5.2 Matrix Subtraction 4-12
453 Matrix Multiplication 413
45.4 Scalar Multiplication 4-14
4.6 Copying a Matrix 4-15
4.1 Identity Matrix 4-16
4.8 Matrix Manipulation 4-17
4.8.1 Matrix Transposition 417
4.8.2 Matrix Inversion 4-18
CHAPTER 5 LOGICAL OPERATIONS 5-1
5.1 Logical Values and Numeric Values 5-1
5.2 Relational Operators 5-2
5.3 Boolean Operators 5-3
54 Some Examples 5-4
CHAPTER 6 SYNTAX REQUIREMENTS OF BASIC 6-1
CHAPTER 7 FOR ADVANCED PROGRAMMERS =1
71 Modifying HP BASIC 7-1
7.2 CALL Statement 71
7.3 BYE Command 7-5
7.4 First and Last Words of Available.
Memory 7-6
7.5 First Word Available in Base Page 7-6
7.6 Link Points -7
7.7 Linkages to Subroutines -7
7.8 Deleting the Matrix Subroutines 7-9
APPENDIX A GENERATING HP BASIC A-1
Configuring an HP BASIC System A-2

Loading the Configured HP BASIC
System A4

COMMUNICATING WITH THE COMPUTER 1

There are many types of languages. English is a natural language used to
communicate with people.

To communicate with the computer, formal languages are used. A formal
language is a combination of simple English and algebra. BASIC, the
Beginner’s All-purpose Symbolic Instruction Code, permits the user to
easily communicate with the computer. It is easy for even beginners to
learn, but powerful enough for the advanced user.

Like natural languages BASIC has grammatical rules, but they are much
simpler. For example, this series of BASIC statements (which calculates
the average of five numbers given by you, the user) shows the funda-
mental rules:

10 INPUT AB,C,D,E

20 LET S = (A+B+C+D+E) /5
30 PRINT S

40GOTO 10

50 END

This and the following pages show how to interpret these rules. Notice
how the statements are written. What they do is explained later.

BASIC 1-1

1.1 STATEMENT

This is a BASIC statement:

10 INPUT A,B,C,.D,E

Comments

A statement contains a maximum of 72 characters (one teletypewriter
line).

A statement may also be called a line.

1.1.1 STATEMENT NUMBER

Each BASIC statement begins with a statement number (in this
example, 20):

20 LET S = (A+B+C+D+E) /5

Comments

The number is called a statement number or a line number.

The statement number is chosen by you, the programmer. It may be any
integer from 1 to 9999 inclusive.

1-2 BASIC

Each statement has a unique statement number. The computer uses the
numbers to keep the statements in order.

Statements may be entered in any order; they are usually numbered by
fives or tens so that additional statements can be easily inserted. The
computer keeps them in numerical order no matter how they are
entered. For example, if statements are input in the sequence 30,10,20;
the computer arranges them in the order: 10,20,30.

1.1.2 INSTRUCTION

The statement then gives an instruction to the computer (in this
example, PRINT):

30 PRINT S

Comments

Instructions are sometimes called statement types because they identify
a type of statement. For example, the statement above is a “print”
statement.

1.1.3 OPERAND

If the instruction requires further details, operands (numeric details)
are supplied (in this example, 10; above, “S™):

40 GO TO 10
Comments
The operands specify what the instruction act upon; for example, what

is PRINTed, or where to GO.

BASIC 1-3

1.1.4 FREE FORMAT IN STATEMENT

BASIC is a “free format” language—the computer ignores extra blank
spaces in a statement. For example, these three statements are
equivalent:

30 PRINT S
30 PRINT S
30PRINTS

Comments

When possible, leave a space between words and numbers in a statement.
This makes a program easier for people to read.

1.2 A PROGRAM

The sequence of BASIC statements given on the previous pages is called
a program. The last statement in a program, as shown here, is an END
statement.

10 INPUT AB.CD,E
20 LET S=(A+B+C+D+E) /5
30 PRINT S

49 GOTO 10

50 END

14 BASIC

Comments

The last (highest numbered) statement in a program must be an END
statement.

The END statement informs the computer that the program is finished.

1.3 SPOT CHECK

Be sure you are familiar with these terms before continuing:

statement
instruction
statement type
statement number
line number
operand

program

All of these terms are defined in the context of the preceding pages.

1.4 WORKING WITH THE COMPUTER

The following pages explain how to correct mistakes and list programs.

BASIC 15

DULH: Ihe com .
DPuter Iesponds wlth a \ When ESC 1s typed llke thlS
i

20 LET S = \

BASIC 1.7

To delete a previously typed statement, type the statement number
followed by a ReTuaN in the following sequence:

5LET S = 0
10 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E) /5

To delete statement 5 type:

5 RETURN

1.4.4 CHANGING A STATEMENT

To change a previously typed statement, retype it with the desired
changes. The new statement replaces the old one.
To change statement 5 in the above sequence, type:
5 LET S = 5 REeTURN
The old statement is replaced by the new one.

Typing an esc (or ALT-MODE) beforea RETURN prevents replacement
of a previously typed statement.

For example, typing: 5 LET esc
or: 5 Esc

has no effect on the original statement 5.

1-8 BASIC

1.5 RUNNING A PROGRAM

The program does not begin execution (does not run) until the command
RUN followed by a ReTurn is typed.

NOTE: The sample program (averaging 5 numbers) has been entered.

Comments

The computer responds with RUN RETURN
a linefeed 'mdl‘catmg that the linefeed
command is being executed.

The question mark indicates ? 95.6,87,3,5,90,82.8 ReTURN
that input is expected. The five

1ij d
numbers being averaged should inefee
be typed in, SEPARATED BY
COMMAS, and followed by a
RETURN,
The answer is printed. 78.08 RETURN
linefeed

? indicates that five more ?-12.5,-50.6,-32,45.6,60 RETURN
numbers are expected.

The answer is printed. 2.1 RETURN

linefeed

NOTE: This program con-
tinues executing in-
definitely, unless ter-
minated by the user.
To terminate, type an

S RETURN when
more input is re-
quested. ? 8 RETURN

The program is finished.

BASIC 1-9

1.6 STOPPING A PROGRAM

When RUN or LIST is typed, BASIC “takes over” the terminal until
the program finishes executing or the listing is complete.

To stop a program that is running or being listed, press, then release,
any key.

gsc (orany key)

BASIC then responds with the STOP message:

STOP

Comments

Remember that: S reTurn is used to end input loops.

1.7 HOW THE PROGRAM WORKS

10 INPUT AB,C,DE Line 19 tells the computer that five
_ numbers will be input, and that they
should be given the labels A B,C.D,E
in sequence. The first number input
is labeled “A” by the computer, the
second “B”, etc. A,B,C,D, and E are
called variables.

1-10 BASIC

20 LET S = (A+B+C+D+E)/5

30 PRINT S

40 GO TO 10

After line 10 is executed, the vari-
ables and their assigned values, typed
in by the user, are stored. For
example, using the values entered by
the user in the previous example, this
information is stored: A = -12.5;
B = -50.6; C = -32; D = 45.6;
E = 60.

Line 20 declares that a variable
called S exists, and is assigned the
value of the sum of the variables
A,B,C,D,E divided by 5.

Line 30 instructs the computer to
output the value of S to user’s
terminal.

NOTE: It the PRINT statement
were not given, the value
of S would be calculated
and stored, but not print-
ed. The computer must be
given explicit instruction
for each operation to be
performed.

Line 40 tells the computer to go to
line 10 and execute whatever instruc-
tion is there.

NOTE: A “loop” is formed by
lines 19 to 40. The se-
quence of statements in
this loop execute until the
user breaks the loop. This
particular kind of loop is
called an input loop (be-
cause the user must con-
sistently input data).

BASIC 1-11

59 END

1-12 BASIC

TYPING: S WHEN INPUT IS RE-
QUESTED BY A “?” IS THE ONLY
WAY TO BREAK AN INPUT LOQP.
Other, more controlled loops are
explained later. Line 50 is not exe-
cuted until the loop is broken by
typing S when input is requested.

Line 5@ informs the computer that
the program is finished.

THE ESSENTIALS OF BASIC 2

This section contains enough information to allow you to use BASIC
in simple applications.

Proceed at your own pace. The information in the vocabulary and
operators subsections is included for completeness; experienced pro-
grammers may skip these.

The “Operators” pages contain brief descriptions, rather than explana-
tions, of the logical operators. The novice should not expect to gain a
clear understanding of logical operators from this presentation. Chapter b
presents more details and examples of logical operations. Readers wishing
to make best use of logical capabilities should consult this chapter. Those
unfamiliar with logical operations should also refer to an elementary
logic text.

A simple program is included at the end of this chapter for reference; it
contains a running commentary on the uses of many of the BASIC
statements presented in the chapter.

BASIC 21

2.1 TERMS

2.1.1 TERM: SIMPLE VARIABLE

A letter (from A to Z); or a letter immediately followed by a digit
(from 0 to 9).

EXAMPLES: AQ B

M5 C2
z9 D

Comments

Variables are used to represent numeric values. For instance, in the
statement:

10 LET M5 = 96.7

MBb is a variable; 96.7 is the value of the variable M5.

There is one other type of variable in BASIC, the array (subscripted)
variable; its use is explained in Chapter 4.

2-2 BASIC

2.1.2 TERM: NUMBER

A number is defined in BASIC as a decimal number (the sign is optional)
between an approximate minimum of: 10-38 (or 2‘129) and an approx-
imate maximum of: 1038 (or 2127} Zero is included in this range.

EXAMPLES: -10008 5 3.14159 10E+37
126.257 0 10E37 10E-37
16.01 06784 -10E37 1.0E+2

2.1.3 TERM: E NOTATION

E notation in BASIC is a means of expressing numbers having more than
six decimal digits, in the form of a decimal number raised to some power
of 10.

EXAMPLES: 1.00000E+06 is equal to 1,000,000 and is read: “1 times
10 to the sixth power” (1x105).

1.02000E+04 is equal to 10,200
1.02000E-04 is equal to .000102

Comments

“E” notation is used to print numbers having more than six significant
digits. It may also be used for input of any number.

When entering numbers in “E” notation, leading and trailing zeros may
be omitted from the number; the + sign and leading zeros may be
omitted from the exponent.

The precision of numbers is 6 to 7 decimals digits (23 binary digits).

BASIC 23

2.1.4 TERM: EXPRESSION

An expression is a combination of variables, constants and operators
which evaluates to a numeric value.

EXAMPLES:
(P + 5)/27
{where P has previously been assigned a numeric value.)
Q- (N+4)

(where Q and N have previously been assigned numeric values.)

2.1.5 TERM: ARITHMETIC EVALUATION

Arithmetic evaluation is the process of calculating the value of an expres-
sion.

24 BASIC

2.2 OPERATORS

2.2.1 THE ASSIGNMENT OPERATOR

‘SYMBOL:

EXAMPLES:

10 LET A=B2=C=20

20 LET A9 = C5

30 LET Y = (N~(R+5))/T

40 LET N5 = A + B2

50 LET P5 = P6=P7=A=B=98.6

GENERAL FORM:

LET variable = expression

Purpose

Assigns an arithmetic or logical value to a variable.

Comments

When used as an assighment operator, = is read ‘‘takes the value of,”

rather than ‘“equals.” It is, therefore, possible to use assignment
statements such as:

LET X = X+2

This is interpreted by BASIC as: “LET X take the value of (the present
value of) X, plus two.”

Several assignments may be made in the same statement, as in statements

10 and 50 above.

See Chapter 5, “Logical Operations” for a description of logical
assignments.

BASIC 2.5

2.2.2 RELATIONAL OPERATORS

SYMBOLS:
= # <> > < >= <=
EXAMPLES:

100 IF A=B THEN 900

119 IF A+B >C THEN 910
120 IF A+B < C+E THEN 920
130 IF C>=D*E THEN 930
140 IF C9<= G*H THEN 940
150 IF P2#C9 THEN 950

160 IF J <> K THEN 950

Purpose

Determines the logical relationship between two expressions, as

equality: =
inequality: # or <>
greater than: >
less than: <
greater than or equal to: >=

less than or equal to: <=

Comments

NOTE: It is not necessary for the novice to understand the nature
of logical evaluation of relational operators, at this point. The
comments below are for the experienced programmer,

26 BASIC

Expressions using relational operators are logically evaluated, and
assigned a value of ““true” or “false” (the numeric value is 1 for “true,”
and @ for “false”).

When the = symbol is used in such a way that it might have either an
assignment or a relational function, BASIC assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Chapter 5, “Logical Operations.”

2.2.3 ARITHMETIC OPERATORS

SYMBOLS:
PR+ -
EXAMPLES:

40 LET N1 = X-5

50 LET C2 = N13

60 LET A = (B-C)/4

70 LET X = ((P12)-(Y*X))/N+Q

Purpose

Represents an arithmetic operation, as:

exponentiate: +
multiply: *
divide: /

add: +
subtract: -

BASIC 2-7

Comments

The “~” symbol is also used as a sign for negative numbers. It is good
practice to group arithmetic operations with parentheses when unsure
of the exact order of precedence. The order of precedence (hierarchy)
is:

T
*

+ -

with 1 having the highest priority. Operators on the same level of
priority are acted upon from left to right in a statement. See “Order
of Precedence” in this Chapter for examples.

The symbols + and - are also used to indicate unary plus and unary
minus. For example, negative numbers may be expressed in a statement
without using parentheses:

19 LET A1 = -B
20 LET C2 = D ++E
30 LET B5 = B --C

See “Order of Precedence” in this Chapter for examples of how unary +
and unary - are interpreted.

2.3 BASIC

2.2.4 THE AND OPERATOR

SYMBOL:
AND
EXAMPLES:

60 IF A9<B1 AND C#5 THEN 100

70 IF T7#T AND J=27 THEN 150

80 IF P1 AND R>1 AND N AND V2 THEN 10
90 PRINT X AND Y

Purpose

Forms a logical conjunction between two expressions. If both are
“true,” the conjunction is “true”; if one or both are “false,” the con-
junction is “false.”

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

Comments

The numeric value of “true” is 1, of “false” is 0.

All non-zero values are “true.” For example, statement 90 would print
either a @ or a 1 (the logical value of the expression X AND Y) rather
than the actual numeric values of X and Y.

BASIC 2.9

Control is transferred in an IF statement using AND, only when all
parts of the AND conjunction are “true.” For instance, example state-
ment 80 requires four “true” conditions before control is transferred
to statement 19.

See Chapter 5, “Logical Operations” for a more complete description
of logical evaluation.

2.2.5 THE OR OPERATOR

SYMBOL:
OR
EXAMPLES:

100 IF A>1 OR B<5 THEN 500

110 PRINT C OR D

120 LETD=X OR Y

130 IF (X AND Y) OR (P AND Q) THEN 600

Purpose

Forms the logical disjunction of two expressions. If either or both of
the expressions are “true,” the OR disjunction is “true’;if both expres-
sions are ‘“‘false,” the OR disjunction is “false.”

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

210 BASIC

Comments

The numeric values are: ‘true” = 1, “false” = 0.
’

All non-zero values are “true’’; all zero values are “false.”

Control is transferred in an IF statement using OR, when either or both
of the two expressions evaluate to “true.”

See Chapter 5, “Logical Operations” for a more complete description
of logical evaluation.

2.2.6 THE NOT OPERATOR

SYMBOL:
NOT
EXAMPLES:

LET X =Y =190

35 IF NOT A THEN 300

45 IF (NOT C) AND A THEN 409
56 LET B5 = NOT P

65 PRINT NOT (X AND Y)

70 IF NOT (A=B) THEN 500

Purpose

Logically evaluates the complement of a given expression.

NOTE: It is not necessary for the novice to understand how this
operator works. The comments below are intended for experi-

enced programmers.

BASIC 2-11

Comments
If A= 0, then NOT A = 1;if A has a non-zero value, NOT A = 0.

The numeric values are: “true” = 1, “false” = 0; for example, statement
65 above would print “1”, since the expression NOT (X AND Y)
is “true.”

Note that the logical specifications of an expression may be changed
by evaluating the complement. In statement 35 above, if A equals zero,
the evaluation would be “true” (1); since A has a numeric value of @,
it has a logical value of “false,” making NOT A “‘true.”

See Chapter 5, “Logical Operations” for a more complete description
of logical evaluation.

2.3 ORDER OF PRECEDENCE

The order of performing operations is:

t highest precedence
NOT unary + unary -

*

+ -

Relational Operators
AND

OR lowest precedence

2-12 BASIC

Comments

If two operators are on the same level, the order of execution is left
to right, for example:

5 + 6%7 is evaluated as: 5 + (6xT)
7/14%2/5 is evaluated as: (7/14)x2
5

Parentheses override the order of precedence in all cases, for example:

5 + (6x3) is evaluated as: 5 + 18
and
3 + (6+(212)) is evaluated as: 3 + (6+4)

Unary + and — may be used; the parentheses are assumed by BASIC.
For example:

A++B is interpreted: A + (+B)
C-+D-5 is interpreted: C - (+D)-5

Leading unary + signs are omitted from output by BASIC, but remain
in program listings.

2.4 STATEMENTS

Statements are instructions to the computer. They are contained in
numbered lines within a program, and execute in the order of their line
numbers. Statements cannot be executed without running a program.
They tell the computer what to do while a program is running.

Here are some examples mentioned in Chapter 1:

LET
PRINT
INPUT

BASIC 213

Do not attempt to memorize every detail in the “Statements” subsection;
there is too much material to master in a single session. By experimenting
with the sample programs and attempting to write your own programs,
you will learn more quickly than by memorizing.

2.4.1 THE LET STATEMENT

EXAMPLES:
10 LET A = 5.02
20 LET X =Y7T=2=10

30 LET B9 = 5% (X12)
40 LET D = (3*C2tN)/(A*(N/2))

GENERAL FORM:

statement number LET variable = number or expression or variable
variable . . .

Purpose

Used to assign or specify the value of a variable. The value may be an
expression, a number, or a variable.

Comments
The assignment statement must contain:

A statement number,
LET,

The variable to be assigned a value (for example, B9 in state-
ment 30 above),

4, The assignment operator, an = sign,

The number, expression or variable to be assigned to the vari-
able (for example, 5%(X12) in statement 30 above).

2-14 BASIC

Statement 20 in the example shows the use of an assignment to give
the same value (9) to several variables. This is a useful feature for
initializing variables in the beginning of a program.

2.4.2 REM — COMMENTS STATEMENT

EXAMPLES:

10 REM—THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
30 REM--— ////[#FFxx11111

40 REM. STATEMENTS ARE NOT EXECUTED BY BASIC

GENERAL FORM:

statement number REM any remark or series of characters

Purpose

Allows insertion of a line of remarks or comment in the listing of a
program.

Comments

Must be preceded by a line number. Any series of characters may follow

REM.

REM lines are part of a BASIC program and are printed when the
program is listed or punched; however, they are ignored when the pro-
gram is executing.

Remarks are easier to read if REM is followed by a punctuation mark,
as in the example statements.

BASIC 2-15

2.4.3 INPUT STATEMENT

This program shows several variations of the INPUT statement and
their effects.

Sample Program Using INPUT

10 INPUT A

20 INPUT Al,B2,C3,20,Z9,E5

30 PRINT “WHAT VALUE SHOULD BE ASSIGNED TO R”;
40 INPUT R

50 PRINT A;A1;B2,3,70;79E5; “R="R

60 GOTO 10

70 END

RUN ReTURN

?1 RETURN

?2,3,4,5,6,7 RETURN

WHAT VALUE SHOULD BE ASSIGNED TO R?27 ReTurN
1 2 3 4 5 6 7 R=27

?1.5 RETURN

?72.5,35,4.5,6.,7.2 RETURN

?8.1 ReTurN ? indicates that more input is expected

WHAT VALUE SHOULD BE ASSIGNED TO R?-99 ReTumn
15 2.5 35 45 6 72 81 R=-99

GENERAL FORM:

statement number INPUT variable , variable , . . .

2-16 BASIC

Purpose

Assigns a value input from the teleprinter to a variable.

Comments

The program comes to a halt, and a question mark is printed when the
INPUT statement is used. The program does not continue execution
until the input requirements are satisfied.

Only one question mark is printed for each INPUT statement. The
statements:

16 INPUT A, B2,C5,D,E,F,G
20 INPUT X
each cause a single “?” to be printed. The “?”’ generated by statement

10 requires seven input items, separated by commas, while the “?”
generated by statement 20 requires only a single input item

The only way to terminate or exit a program when input is required is
entering: SReTuRN. Note that the S ends the program; it must be
restarted with the RUN command.
Relevant Diagnostics:
? indicates that input is required.
NOTE: A?is printed on the terminal when more numbers are required
to satisfy an input statement (usually, too few numbers were

typed). The ? continues to be printed after each response until
enough numbers are typed in. :

See PRINT in this chapter for output variations.

BASIC 217

2.4.4 PRINT STATEMENT

This sample program gives a variety of examples of the PRINT state-

ment. The results are shown below.
10 LET A=B=C=10
20 LET D1=E9=20
30 PRINT AB,C,D1,E9
40 PRINT A/B,B/C/D1+E9
50 PRINT “NOTE THE POWER TO EVALUATE AN
EXPRESSION AND PRINT THE”
60 PRINT “VALUE IN THE SAME STATEMENT.”
70 PRINT
80 PRINT
90 REM* “PRINT” WITH NO OPERAND CAUSES THE
TELEPRINTER TO SKIP A LINE.
100 PRINT “ ‘A’ DIVIDED BY ‘E9’ ="; A/E9
110 PRINT “111117, «22222”, “33333”, “44444”,
“55555”, “66666”
120 PRINT “111117;422222”;“33333”; “44444”;
“55555”; “66666”
130 END
------------------------- RESULTS- - ---comvemmme e
RUN RETURN
10 10 10 20 20
1 20.05

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT
THE VALUE IN THE SAME STATEMENT.

‘A’ DIVIDED BY ‘E9’ = .5

11111
111112

22222 33333 44444 55555 66666
222233333444445555566666

2-18 BASIC

NOTE: The “,” and “;” used in statements 110 and 120 have very
different effects on the format.

GENERAL FORM:

statement number PRINT expression , expression, . . .
or

statement number PRINT “any text” ; expression ;. ..
or

statement number PRINT “fext” ; expression ; “text”, “text”, ...
or

statement number PRINT any combination of text
and/or expressions

or

statement number PRINT

Purpose

Causes the expression or “text”” to be output to the terminél.
Causes the teleprinter to skip a line when used without an operand.
Comments

Note the effects of , and ; on the output of the sample program. If a
comma is used to separate PRINT operands, five fields are printed per
teleprinter line. If semicolon is used, up to twelve “packed” numeric
fields are output per teleprinter line (72 characters).

Text in quotes is printed literally.

BASIC 2-19

NOTE: A variable name is considered as a simple expression by
BASIC. For example, a statement for the first general form
shown above might be:

100 PRINT Al, B2, C3
or
100 PRINT A, Z, X, T9

where the variables represent numeric expressions.

Remember that variable values must be defined in an assignment, INPUT,
READ or FOR statement before being used in a PRINT statement.

Although the format of the PRINT statement is “automatic” to help
beginning programmers, the experienced programmer may use several
features to control his output format.

Each line output to the terminal is divided into five print fields when
commas are used as separators (as in statement 30 in the sample pro-
gram). The fields begin at print spaces 0, 15, 30, 45, and 60. The first
four fields contain fifteen spaces, and the last field contains twelve.
The comma signals the computer to move to the next print field, or if
in the last field, to move to the next line.

More information may be printed on a line by using semicolons as
separators. Twelve numbers may be printed per line by using semi-
colons. (See the output from statements 110 and 120 in the sample
program for an example of the differences in the two separators.)

Spacing within a print field depends on the value and type of the
number being printed. A number is always printed in a field larger

2-20 BASIC

than itself and is left-justified. The space required for a number is
determined by these formulas:

Value of Number Type of Number Output Field Size

-999 <n < + 999 Integer AXXXAN®

-32768 <n< -1000 Integer AXXXXXAA

+1000 < n < +32767

.1<n<999999.5 Large Integer or AXXXXXXXAAAA
Real (Decimal point

printed as one of
the x’s; trailing
zeros suppressed.)

n<.1l Large Integer or Ax-xxxxxEteesan
999999.5 <n Real

*The A symbol indicates a space.

Ending a PRINT statement with a semicolon causes the output to be
printed on the same line, rather than generating a ReTurN linefeed after
the statement is executed. For example, the sequence:

20 LET X =1
30 PRINT X;
40 LET X=X+1
50 GO TO 30

produces output in this format:

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

BASIG 2-21

Similarly, ending a PRINT statement with a comma causes output to fill
all five fields on a line before moving to the next line. The trailing
comma in statement 30 in the sequence:

20 LET X =1

30 PRINT X,

40 LET X=X+1

50 GO TO 30

produces output in this format:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

A PRINT statement without an operand (statements 7@ and 8¢ in the
sample program) generates a RETURN linefeed.

Three general rules for planning output formats are:

1. If a number is an integer with a value between ~-32768 and
+32767, inclusive, the decimal point is not printed.

2. If the number is an integer out of the above range or if the
number is real and has an absolute value between .1 and
999999.5, the number is rounded to six digits and printed
with a decimal point, Zeros trailing the decimal point
are suppressed.

3. If a number is either greater than 999999.5 or less than .1,
it is rounded to six places; the teletypewriter then prints a
space (if positive) or minus sign (if negative), the first digit,
the decimal point, the next five digits, the letter E (indicating
exponent), the sign of the exponent, and the exponent.

222 BASIC

Unlike numbers, strings (characters enclosed in gquotation marks) are
printed without leading or trailing blanks when the semicolon separator
is used. For example, the program:

15 PRINT “ANTIDISESTABLISH”;
20 PRINT “MENTARIANISM”
30 END

when executed prints the two strings adjacent to one another:

RUN
ANTIDISESTABLISHMENTARIANISM

See the description of the TAB function in Chapter 3 for more informa-
tion on controlling output format.

BASIC 2-23

2.4.5 GO TO STATEMENT

EXAMPLES:

10 LET X = 20

50 GOTO 100
8¢ GOTO 10

GENERAL FORM:

statement number GO TO statement number
Purpose
Transfers control to the specified statement.
Comments
GO TO may be written: GOTO or GO TO.

This statement must be followed by the statement number to which
control is transferred.

GO TO overrides the normal execution sequence of statements in a
program.

Useful for repeating a task infinitely, or “jumping” (GOing TO)
another part of a program if certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may
produce unpredictable results or fatal errors. (See “FOR...NEXT”
in this section for details on loops.)

To get out of a GO TQ loop, press any key.

2-24 BASIC

2.4.6 IF...THEN

SAMPLE PROGRAM:

10 LET N = 10

20 READ X

30 IF X <=N THEN 60

49 PRINT “X IS OVER”; N

50 GO TO 109

60 PRINT “X IS LESS THAN OR EQUAL TO”; N
70 GO TO 20

80 STOP

GENERAL FORM:

statement number IF expression | relational op | expression
THEN statement number

Purpose

Transfers control to a specified statement if a specified condition is
true.

Comments

Sometimes described as a conditional transfer; “GO TO” is implied by
IF ... THEN, if the condition is true. In the example above, if X<=10,
the message in statement 69 is printed (statement 6@ is executed).

BASIC 225

Since numbers are not always represented exactly in the computer, the
= operator should be used carefully in IF ... THEN statements. Limits,
such as <=>=, etc. should be used in an IF expression, rather than =,
whenever possible.

It the specified condition for transfer is not true, the program will
continue executing in sequence. In the example above, if X>10, the
message in statement 40 prints.

The relational operator is optional in logical evaluations.

See Chapter 5, “Logical Operations,” for a more complete description
of logical evaluation.

2-26 BASIC

2.4.7 FOR...NEXT

EXAMPLES:
100 FOR P1 =1 TO 5
110 FORQ1 = N TO X

120 FOR R2= N TO X STEP 25
130 FOR S =1 TO X STEP Y
149 NEXT S

150 NEXT R2

160 NEXT Q1

170 NEXT P1

Sample Program — Variable Number of Loops

40 PRINT “HOW MANY TIMES DO YOU WANT TO LOOP”;
50 INPUT A

60 FOR J= 1 TO A

70 PRINT “THIS IS LOOP”; J

80 READ N1,N2, N3

90 PRINT “THESE DATA ITEMS WERE READ:” N1; N2; N3
100 PRINT “SUM =”; (N1+N2+N3)

110 NEXT J

120 DATA5,6,7,8,9,10,11,12
130 DATA 13,14, 15, 16,17, 18, 19, 20, 21

140 DATA 22, 23, 24, 25, 26, 27, 28, 29, 30

150 DATA 31, 32, 33, 34

160 END

BASIC 2-27

GENERAL FORM:

statement number FOR simple variable = initial value TO final value
or

statement no. FOR simple var. = initial value TO final value STEP
step value

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR
and NEXT statements of a loop.

Purpose

Allows controlled repetition of a group of statements within a program.

Comments

Initial value, final value and step value may be any expression.

STEP and step value are optional; if no step value is specified, the
computer will automatically increment by one each time it executes
the loop.

2-28 BASIC

How the loop works:

The simple variable is assigned the value of the initial value; the value
of the simple variable is increased by 1 (or by the step value) each time
the loop executes. When the value of the simple variable passes the final
value, control is transferred to the statement following the “NEXT”
statement.

The initial, final, and step values are all evaluated upon entry to the loop
and remain unchanged after entry. For example,

FORI=1TOI+5
goes from 1 to 6; that is, the final value does not “move” as I increases

with each pass through the loop.

For further details on the STEP feature, see “FOR...NEXT with
STEP” in Chapter 3.

Try running the sample program if you are not sure what happens when
FOR ... NEXT loops are used in a program.

BASIC 2-29

2.4.8 'NESTING FOR...NEXT LOOPS

Several FOR . .. NEXT loops may be used in the same program; they
may also be nested (placed inside one another). There are two important
features of FOR . . . NEXT loops:

1. FOR...NEXT loops may be nested.

r—10 FOR A1 =1TO 5
Range of loop A1 —20 FOR B2 = N TO P
30 FOR C3 = X TO Y STEP R

Range of loop B2—T]

Range of loop C3—" 80 NEXT C3
L—Q@ NEXT B2
100 NEXT Al

2. The range of FOR...NEXT loops may not overlap. The
loops in the example above are nested correctly. This example
shows improper nesting.

—— 10 FORI=1TO 5

—30 FOR J = 1 TO N

The range of loops
I and J overlaps.

50 NEXT I

— 90 NEXT J
2-30 BASIC

2.4.9 READ, DATA AND RESTORE STATEMENTS

Sample Program using READ and DATA

15 FOR I=1 TO 5

20 READ A

40 LET X=At2

45 PRINT A;” SQUARED =";X

50 NEXT I

55 DATA 5.24,6.75,30.8,72.65,89.72
60 END

Each data item may be read only once in this program. BASIC keeps
track of data with a “pointer.” When the first READ statement is
encountered, the “pointer” indicates that the first item in the first
DATA statement (the one with the lowest statement number) is to be
read; the pointer is then moved to the second item of data, and so on.

In this example, after the loop has executed five times, the pointer
remains at the end of the data list. To reread the data, it is necessary to
reset the pointer. A RESTORE statement moves the pointer back to
the first data item.

Sample Program Using RESTORE with READ and DATA.

20 FORI=1TO5

30 READ A

40 LET X=A12

50 PRINT A; “SQUARED =";X
60 NEXT I

80 RESTORE

BASIC 2-31

100 FOR J=1 TO 5

110 READ B

120 LET Y=Bt4

130 PRINT B; “TO THE FOURTH POWER =Y
140 NEXT J

150 DATA 5.24,6.75,30.8,72.65,89.72

160 END

GENERAL FORM:

statement number READ variable , variable , . . .
statement number DATA number , number , . . .
statement number RESTORE

Purpose

The READ statement instructs BASIC to read an item from a DATA
statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left
to right within the DATA statement.

The RESTORE statement resets the pointer to the first data item,
allowing data to be reread.

2-32 BASIC

2.5 PROGRAM HALTS — TEMPORARY, PERMANENT

2.5.1 WAIT STATEMENT

EXAMPLE:

900 WAIT (1000)
990 WAIT (3000)

GENERAL FORM:

statement number WAIT (expression | max. value of 32767)

Purpose

Introduces delays into a program. WAIT causes the program to wait
the specified number of milliseconds (maximum 32767 milliseconds)
before continuing execution.

Comments

The time delay produced by WAIT is not precisely the number of
milliseconds specified because there is no provision to account for time
elapsed during calculation or terminal-computer communication.

One millisecond = 1/1000 second.

BASIC 2-33

2.5.2 END AND STOP STATEMENTS

EXAMPLES:

200 IF A # 27.5 THEN 350

300 STOP

500 IF B # A THEN 9999

550 PRINT “B = A”
600 END
9999 END

GENERAL FORM:

any statement number STOP
any statement number END

highest statement number in program END

Purpose
Terminates execution of the program.

Comments

The highest numbered statement in the program must be an END
statement.

2-34 BASIC

END and STOP statements may be used in any portion of the program
to terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

The RUN command is used to rerun programs terminated by STOP
or END statements; execution always begins at the lowest numbered
statement in the program.

2.6 SAMPLE PROGRAM

If you understand the effects of the statement types presented up to
this point, skip to the “COMMANDS” section.

The sample program on the next two pages uses several BASIC state-
ment types.

Running the program gives a good idea of the various effects of the
PRINT statement on teleprinter output. If you choose to run the pro-
gram, you may save time by omitting the REM statements.

After running the program, compare your output with that shown under
“RUNNING THE SAMPLE PROGRAM.” If there is a difference, LIST
your version and compare it with the one presented on the next two
pages. Check the commas and semicolons; they must be used carefully.

BASIC 235

2.6.1 LISTING OF SAMPLE PROGRAM

19 REMARK: “REMARK” OR “REM” IS USED TO INDICATE
REMARKS OR COMMENTS

20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF
HIS PROGRAM.

30 REM: THE COMPUTER LISTS AND PUNCHES THE “REM”
LINE, BUT DOES NOT

40 REM: EXECUTEIT.

50 REM: “PRINT” USED ALONE GENERATES A “RETURN”
“LINEFEED”

60 PRINT

7¢ PRINT “THIS PROGRAM WILL AVERAGE ANY GROUP OF
NUMBERS YOU SPECIFY.” '

80 PRINT

90 PRINT “IT WILL ASK ALL NECESSARY QUESTIONS AND
GIVE INSTRUCTIONS.”

100 PRINT

119 PRINT “PRESS THE RETURN KEY AFTER YOU TYPE YOUR
REPLY.”

120 PRINT
130 PRINT

140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE
INITIALIZED

150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO).
160 LET A=N=R1=S=0

180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO
SPECIFY HOW MANY

190 REM: NUMBERS HE WANTS TO AVERAGE.
200 PRINT “HOWMANY NUMBERS DO YOU WANT TO AVERAGE”;
219 INPUT N

2.36 BASIC

220
230

240

250
260
270
280
300

310

PRINT
PRINT “O.K., TYPE IN ONE OF THE “N;” NUMBERS AFTER

EACH QUES. MARK.”

PRINT “DON’T FORGET TO PRESS THE RETURN KEY AFTER
EACH NUMBER.”

PRINT
PRINT “NOW, LET’S BEGIN”
PRINT
PRINT

REM: “N” IS NOW USED TO SET UP A “FOR-NEXT” LOGP
WHICH WILL READ

REM: 1 TO “N” NUMBERS AND KEEP A RUNNING TOTAL.

320 FORIF1 TON
330 INPUT A

340 LET S=S+A
350 NEXT1

360

370

380

390

400

410
420

430
440

REM: “I” IS A VARIABLE USED AS A COUNTER FOR THE
NUMBER OF TIMES

REM: THE TASK SPECIFIED IN THE “FOR-NEXT” LOOP IS
PERFORMED.

REM: “I” INCREASES BY 1 EACH TIME THE LOOP IS
EXECUTED.

REM: “A” IS THE VARIABLE USED TO REPRESENT THE
NUMBER TO BE

AVERAGED. THE VALUE OF “A” CHANGES EACH TIME
THE

REM: USER INPUTS A NUMBER.

REM: “S” WAS CHOSEN AS THE VARIABLE TO REPRESENT
THE SUM

REM: OF ALL NUMBERS TO BE AVERAGED.

REM: AFTER THE LOOP IS EXECUTED “N” TIMES, THE
PROGRAM CONTINUES.

BASIC 2-37

460 REM: A SUMMARY IS PRINTED FOR THE USER.
470 PRINT

480 PRINT

490 PRINT N; “NUMBERS WERE INPUT.”

509 PRINT

519 PRINT “THEIR SUM IS:”;S

520 PRINT

530 PRINT “THEIR AVERAGE IS:”;S/N

540 PRINT

550 PRINT

570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF
QUITTING OR

580 REM: RESTARTING THE PROGRAM.

590 PRINT “DO YOU WANT TO AVERAGE ANOTHER GROUP OF
NUMBERS?”

600 PRINT
610 PRINT “TYPE 1IF YES, @IF NO”

620 PRINT “BE SURE TO PRESS THE RETURN KEY AFTER YOUR
ANSWER.”

630 PRINT

640 PRINT “YOUR REPLY";
650 INPUT R1

660 IF R1=1 THEN 120

670 REM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN
THE REPLY.

680 IF R1#0 THEN 700
690 GO TO 720

700 PRINT “TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0
IF NO.”

710 GO TO 640
720 END

2-38 BASIC

2.6.2 RUNNING THE SAMPLE PROGRAM

RUN ReTurN

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU
SPECIFY.

IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUC-
TIONS.

PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.
HOW MANY NUMBERS DO YOU WANT TO AVERAGE? 5 ReTURN

OXK., TYPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES.
MARK.

DONT FORGET TO PRESS THE RETURN KEY AFTER EACH
NUMBER.

NOW, LET’S BEGIN

? 99 RETURN

? 87.6 RETURN

? 92.7 RETURN

? 79.5 RETURN

? 84 RETURN

5 NUMBERS WERE INPUT.

THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, 0 IF NO

BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 RETURN

TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO.

YOUR REPLY? 1 ReTURN

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? S RETURN

BASIC 2-39

2.7 COMMANDS

Note the difference between commands and statements. (See “State-
ments” in this section.)

Commands are also instructions. They are executed immediately, do
not have line numbers, and may not be used in a program. They are
used to manipulate programs, and for utility purposes.

Do not try to memorize all of the details in the COMMANDS subsection.
The various commands and their functions will become clear to you as
you begin to write your own programs.

2.7.1 RUN

EXAMPLE: RUN RETURN
GENERAL FORM: RUN
Purpose

Starts execution of a program at the lowest numbered statement.

Comments

A running program may be terminated by pressing any key. To terminate
a running program at some point when input is required, type:

S RETURN

240 BASIC

2.7.2 LIST

EXAMPLE: LIST ReTurn
or

LIST 100 ReTurN

GENERAL FORM: LIST

LIST statement number

Purpose

Produces a listing of all statements in a program (in statement number
sequence) when no statement number is specified.

When a statement number is specified, the listing begins at that
statement.

Comments

A listing may be stopped by pressing any key.

BASIC 2-41

2.7.3 SCRATCH

EXAMPLE: SCRATCH RETURN
GENERAL FORM: SCRATCH
or
SCR
Purpose

Deletes (from memory) the program currently being accessed from the
teleprinter.

Comments

SCRATCH erases everything in the user’s area of computer memory.

SCRATCHed programs are not recoverable. For information about
saving programs on paper tape, see the PLIST command in this section.

242 BASIC

2.7.4 TAPE

EXAMPLE: TAPE RETURN
GENERAL FORM: TAPE
or
TAP
Purpose

Informs the computer that following input is from paper tape being
read from the terminal tape reader.

Comments

BASIC responds to the TAPE command with a linefeed.

TAPE suppresses linefeeds following statements.

Error messages are printed as the tape is input; the tape reader is held
inactive while they are being printed.

BASIC 243

2.7.5 PTAPE

EXAMPLE: PTAPE return
GENERAL FORM: PTAPE
or
PTA
Purpose

Causes the computer to read in a program from the punched tape
photoreader.

Comments

If the computer does not have a photoreader, the message:

STOP
READY

is printed on the terminal, and BASIC waits for further input.

BASIC responds to the PTAPE command with a /inefeed.

244 BASIC

2.7.6 PLIST

EXAMPLE: PLIST ReTumRn
GENERAL FORM: PLIST
or

PLIST statement number

Purpose

Causes the program in memory to be punched onto paper tape, with
leading and trailing guide holes; also produces a listing of the program’
on the HP modified ASR-33 terminal; one listing is produced on the
HP modified ASR-35 in ‘KT’ mode.

Comments

Be sure to press the ““ON” button on the terminal paper tape punch
before pressing return after PLIST.

If there is no paper tape punch on the terminal, a listing is printed.

BASIC uses the high-speed punch if available, otherwise the terminal
punch is used.

BASIC 2-45/246

ADVANCED BASIC 3

This section describes further capabilities of BASIC.

The experienced programmer has the option of skipping the “Vocabulary”
subsection, and briefly reviewing the commands and functions presented
here. Matrices are explained in the next chapter.

The inexperienced programmer need not spend a great deal of time
on programmer-defined and standard functions. They are shortcuts,
and some programming experience is necessary before their applications
become apparent.

BASIC 31

3.1 TERMS

3.1.1 TERM: ROUTINE

A sequence of program statements which produces a certain result.

Purpose

Routines are used for frequently performed operations, saving the
programmer the work of defining an operation each time he uses it,
and saving computer memory space.

Comments

A routine may also be called a program, subroutine, or sub-program.

The task performed by a routine is defined by the programmer.

Examples of routines and subroutines are given in this section.

32 BASIC

3.1.2 TERM: ARRAY OR MATRIX

An ordered collection of numeric data (numbers).

Comments

Arrays are divided into columns (vertical) and rows (horizontal):

ROWS

wZEooO]o

Arrays may have one or two dimensions. For example,

4.3 is a one-dimensional array,

6,
3,
o,

O N D,

, 4
» 1 .
, 8 isatwo-dimensional array.

Array elements are referenced by their row and column position. For
instance, if the two examples above were arrays A and Z respectively,
2.1 would be A(2); similarly, @ would be Z(3,1). The references to
array elements are called subscripts, and set apart with parentheses.
For example, P(1,5) references the fifth element of the first row of array
P; 1 and 5 are subscripts. In X(M,N) M and N are the subscripts.

BASIC 3-3

3.1.3 TERM: STRING

Zero to B85 teleprinter characters enclosed by quotation marks (one
line on a teleprinter terminal).

Comments

Sample strings: “ANY CHARACTERS!?%/.-..”
“TEXT 1234567...”

Quotation marks may not be used within a string. Strings are used only
in PRINT statements.

The statement number, PRINT, and quotation marks are not included
in the 65 character count. Each statement may contain up to 72
characters. Maximum string length is 72 characters minus 6 characters
for “PRINT”, two for the quotation marks, and the number of
characters in the statement number.

3.1.4 TERM: FUNCTION

The mathematical relationship between two variables (X and Y, for
example) such that for each value of X there is one and only one value
of Y.

34 BASIC

Comments

The independent variable in a function is called an argument; the
dependent variable is the function value. For instance, if X is the argu-
ment, the function value is the square root of X, and Y takes the value
of the function.

3.1.5 TERM: WORD

The amount of computer memory space occupied by two teleprinter
characters.

Comments

Numbers require two words of memory space when stored as numbers.
When used within a string, numbers require 1/2 word of space per
character in the number.

BASIC 3-5

3.2 SUBROUTINES AND FUNCTIONS

The following pages explain BASIC features useful for repetitive
operations — subroutines, programmer-defined functions and standard
functions.

The programmer-defined features, such as GOSUB, FOR . . . NEXT with
STEP, and DEF FN become more useful as the user gains experience
and learns to use them as shortcuts.

Standard mathematical and trigonometric functions are convenient
timesavers for programmers at any level. They are treated as numeric
expressions by BASIC.

3.2.1 GOSUB...RETURN

EXAMPLE:

50 READ A2
60 IF A2<100 THEN 80
70 GOSUB 400

380 STOP (STOP, END, or GO TO frequently precedes the
first statement of a subroutine to prevent accidental
entry.)

390 REM- -THIS SUBROUTINE ASKS FOR A 1 OR @ REPLY.
400 PRINT “A2 IS>100”

36 BASIC

410 PRINT “DO YOU WANT TO CONTINUE”;
420 INPUT N

43p IF N #0 THEN 450

440 LET A2 = 0

450 RETURN

600 END
GENERAL FORM:

statement number GOSUB statement number starting subroutine

statement number RETURN

Purpose

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB state-
ment which transferred control.

GOSUB. .. RETURN eliminates the need to repeat frequently used
groups of statements in a program.

Comments

The portion of the program to which control is transferred must
logically end with a RETURN statement. RETURN statements may be

used at any desired exit point in a subroutine.

BASIC 3-7

Subroutines should be entered only with GOSUB statements rather than
GO TO’s, to avoid unexpected RETURN errors (which cause the
program to stop execution).

GOSUB. .. RETURN’s may be logically “nested” to a level of nine
during execution. There is no limit on physical nesting in a program.

This sequence shows logically nested GOSUB’s:

10 INPUT
20 GOSUB 100

100 IF C>0 THEN 120
110 LET C=-C

120 GOSUB 200

130 RETURN

200 LET A=SQR(C)
210 LET C=SQR(A)
220 RETURN

300 END

3-8 BASIC

The order in which this program is executed is:

when C>0: when C<=0:
10 10
20 20

100 109

120 119

200 120

210 200

220 210

130 220

statements after 20 130

statements after 20

Note that the first GOSUB executed is 100, and that the second GOSUB
(200) is “nested” in the first, that is, the second GOSUB is executed
before the RETURN in the first GOSUB. The structure is simple:

GOSUB #1

GOSUB #2

RETURN FOR #2

RETURN FOR #1

GOSUB #2 is logically nested inside GOSUB #1; a maximum of 9
GOSUB’s may be nested in this manner.

BASIC 39

3.2.2 FOR...NEXT WITH STEP

EXAMPLES:

20 FOR I5 = 1 TO 20 STEP 2

40 FOR N2 = ¢ TO -10 STEP -2

80 FOR P = 1 TO N STEP X5

90 FOR X = N TO W STEP (N12-V)

GENERAL FORM:

statement no. FOR simple var. = expression TO
expression STEP expression

Purpose

Allows the user to specify the size of the increment of the FOR variable.

Comments

The step size need not be an integer. For instance,
100 FOR N = 1 TO 2 STEP .01
is a valid statement which produces approximately 100 loop executions,

incrementing N by .01 each time.

Since no binary computer represents all decimal numbers exactly,
round-off errors may increase or decrease the number of steps when a
non-integer step size is used.

310 BASIC

A step size of 1 is assumed if STEP is omitted from a FOR statement.

A negative step size may be used, as shown in statement 4 above.

3.2.3 GENERAL MATHEMATICAL FUNCTIONS

EXAMPLES:

642 PRINT EXP(N); ABS(N)

652 IF RND (9)>=.6 THEN 900
662 IF INT (R) # 5 THEN 910
672 PRINT SQR (X); LOG (X)

GENERAL FORM:

The general mathematical functions may be used as expressions,
or as parts of an expression.

Purpose

Facilitates the use of common mathematical functions by pre-defining
them as:

ABS (expression) the absolute value of the expression;

EXP (expression) the constant ¢ raised to the power of the
expression value (in statement 642 above, ¢tN);

INT (expression) the largest integer < the expression;

LOG (expression) the logarithm of the positively valued expres-

sion to the base e;

BASIC 3-11

RND (expression) a random number between 1 and 9; the expres-
sion is a dummy argument;

SQR (expression) the square root of the positively valued ex-
pression.

Comments

The RND function is restartable; the sequence of random numbers
using RND is identical each time a program is RUN.

3.2.4 TRIGONOMETRIC FUNCTIONS

EXAMPLES:

500 PRINT SIN(X): COS(Y)

510 PRINT 3*SIN(B); TAN (C2)

520 PRINT ATN (22.3)

530 IF SIN (A2) <1 THEN 800

540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 99

Purpose

Facilitates the use of common trigonometric functions by pre-defining
them, as:

SIN (expression) the sine of the expression (in radians);

COS (expression) the cosine of the expression (in radians);

312 BASIC

TAN (expression) the tangent of the expression (in radians);

ATN (expression) the arctangent of the expression (returns the
angle in radians.)

Comments

The function is of the value of the expression (the value in parentheses,
also called the argument).

The trigonometric functions may be used as expressions or parts of
an expression.

3.2.5 DEF FN— FUNCTION DEFINITION

EXAMPLE:

60 DEF FNA (B2) = A12 + (B2/C)
70 DEF FNB (B3) = 7*B312
80 DEF FNZ (X) = X/5

GENERAL FORM:

statement no. DEF FN single letter A to Z
(simple var.) = expression

BASIC 3-13

Purpose

Allows the programmer to define functions.

Comments

The simple variable is a “dummy” variable whose purpose is to indicate
where the actual argument of the function is used in the defining
expression. After a function has been defined, the value of that function
is referenced whenever the function is used by the programmer. For
example, in this sequence:

10 LET Y = 100

20 DEF FNA (Y) = Y/10

30 PRINT FNA (Y)

40 END

RUN

10

When FNA (Y) is called for in statement 30, the formula defined for
FNA in statement 20 is used to determine the value printed.

A maximum of 26 programmer-defined functions are possible in a
program (FNA to FNZ).

Any operand in the program may be used in the defining expression;
however such circular definitions as:

19 DEF FNA (Y)
20 DEF FNB (X)

FNB (X)
FNA (Y)

]

cause infinite looping.

See the vocabulary at the beginning of this section for a definition of
“function” and an explanation of “arguments.”

314 BASIC

3.2.6 COM STATEMENT

EXAMPLES:

1 COM A(10), B(3,3) first program
1 COM C(5), D(5), F(8,3) subsequent program

GENERAL FORM:

lowest statement no. COM subscripted array var.,
separated by commas

Purpose

Allows a BASIC program to store data in memory for retrieval by a
subsequent BASIC program.

Comments

The data designated by a COM statement is accessible only as an array;
since COM designates a common array of data, the same array variable
cannot appear in both DIM and COM statements within a program.

COM must be the first statement entered and the lowest numbered
statement in a program.

The common area is a block of contiguous data in memory (two
computer words per number). The storage space is allotted in the order
that the arrays appear in the COM statement; the elements within an
array are stored row by row.

BASIC 3-15

It is the user’s responsibility to see that the portions of the common
area are accessed properly by subsequent programs. For example, if the
first program starts with the statement 1 COM A(19), B(3,3) and a
subsequent program with 1 COM C(5), D(5), F(3,3), the common
storage area elements are assigned as follows:

Element First Program Second Program
Position Reference Reference
1 A1) C(1)

2 A(2) C(2)

3 A(3) C(3)

4 A(4) C(4)

5 A(5) C(5)

6 A(6) D)

7 A(T) D(2)

8 A(8) D(3)

9 A(9) D(4)
10 A(10) D(5)
11 B(1,1) F(Q1,1)
12 B(1,2) F(1,2)
13 B(1,3) F(1,3)
14 B(2,1) F(2,1)
15 B(2,2) F(2,2)
16 B(2,3) F(2,3)
17 B(3,1) F(3,1)
18 B(3,2) F(3,2)
19 B(3,3) F(3,3)

A reference in the first program to B(1,1) accesses the same element as
a reference to F(1,1) in the second program. If A contained only 9
elements, however, the B(1,1) and F(1,1) references would access
different elements.

The length of the common area may vary between programs, but for
any two programs, information may be transferred only via the portion
which is common to both.

316 BASIC

If the first program declares 1 COM A(10), B(5,5) and a succeeding
program contains 1 COM D(10), E(5,5), F(10), the values of F would be
unpredictable. If the second program contained 1 COM D(10) only, the
contents of B would be destroyed.

3.2.7 THE TAB AND SGN FUNCTIONS

EXAMPLES:

500 IF SGN (X) # ¢ THEN 800

510 LET Y = SGN(X)

520 PRINT TAB (5); A2; TAB (20)“TEXT”
530 PRINT TAB (N),X,Y,Z2

540 PRINT TAB (X+2) “HEADING”; R5

GENERAL FORM:

The TAB and SGN may be used as expressions, or parts of an
expression. The function forms are:

TAB (expression indicating number of spaces to be moved)

SGN (expression)

Purpose

TAB (expression) is used only in a PRINT statement, and causes the
termina)l typeface to move to the space number specified by the expres-
sion (@ to 71). The expression value after TAB is rounded to the nearest
integer. Expression values greater than 71 cause a ReTURN linefeed to
be generated.

SGN (expression) returns a 1 if the expression is greater than @, returns
a @ if the expression equals @, returns a -1 if the expression is less
than 0.

BASIC 3-17/3-18

MATRICES 4

4.1 TERMS

This section explains matrix manipulation. It is intended to show the
matrix capabilities of BASIC and assumes that the programmer has some
knowledge of matrix theory.

4.1.1 TERM: MATRIX (ARRAY)

An ordered collection of numeric data (numbers).

Matrix elements are referenced by subscripts following the matrix vari-
able, indicating the row and column of the element. For example, if
matrix A is:

123
45 6
789

the element 5 is referenced by A(2,2); likewise, 8 is A(3,2).

See 3.1.2 for a more complete description of matrices.

BASIC 41

4.1.2 DIM STATEMENT

EXAMPLES:

110 DIM A (50), B(20,20)
120 DIM Z (5,20)
130 DIM S (5,25)
140 DIM R (4,4)

GENERAL FORM:

statement number DIM matrix variable (integer). . .
or

statement number DIM matrix variable (integer , integer). . .

Purpose

Reserves working space in memory for a matrix.

The maximum integer value (matrix bound) is 255.

Comments

The integers refer to the number of matrix elements if only one
dimension is supplied, or to the number of rows and columns respec-
tively, if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10
elements if one-dimensional, or 10 rows and columns if two-dimensional.

42 BASIC

The working size of a matrix may be smaller than its physical size. For
example, an array declared 9 x 9 in a DIM statement may be used to
store fewer than 81 elements; the DIM statement supplies only an upper
bound on the number of elements.

The absolute maximum matrix size depends on the memory size of
the computer.

4.1.3 MAT...ZER

EXAMPLES:
305 MAT A = ZER
310 MAT Z = ZER (N)
315 MAT X = ZER (30, 10)
320 MAT R = ZER (N, P)
GENERAL FORM:

statement number MAT matrix variable = ZER

or

statement number MAT matrix variable = ZER (expression)
or

statement number MAT matrix variable = ZER
(expression , expression)

Purpose

Sets all elements of the specified matrix equal to 0; a new working size
may be established.

BASIC 4-3

Comments

The new working size in a MAT . .. ZER is an implicit DIM statement,
and may not exceed the limit set by the DIM statement on the total
number of elements in an array.

Since O has a logical value of “false,” MAT ... ZER is useful in logical
initialization.

4.1.4 MAT...CON

EXAMPLES:
205 MAT C = CON
210 MAT A = CON (N,N)
220 MAT Z = CON (5,20)
230 MAT Y = CON (50)
GENERAL FORM:

CON

"

statement number MAT matrix variable

or

it

statement number MAT matrix variable = CON (expression)

or

i

statement number MAT matrix variable = CON

{ expression , expression)

44 BASIC

Purpose

Sets up a matrix with all elements equal to 1; a new working size may
be specified, within the limits of the original DIM statement on the total
number of elements.

Comments

The new working size (an implicit DIM statement) may be omitted as
in example statement 205.

Note that since 1 has a logical value of “true,” the MAT . .. CON state-
ment is useful for logical initialization.

The expressions in new size specifications should evaluate to integers.
Non-integers are rounded to the nearest integer value.

BASIC 45

4.2 INPUTTING SINGLE MATRIX ELEMENTS

EXAMPLES:

600 INPUT A(5)

610 INPUT B(5,8)

620 INPUT R(X), N, A(3,3),S.T

630 INPUT Z(X,Y), P3, W

640 INPUT Z(X,Y), Z(X+1, Y+1), Z(X+R3, Y+52)

GENERAL FORM:

statement number INPUT matrix variable (expression). ..
or

statement number INPUT matrix variable
{ expression , expression) ...

Purpose

Allows input of a specified matrix element from the teleprinter.

Comments

The subscripts (in expressions) used after the matrix variable designate
the row and column of the matrix element. Do not confuse these expres-
sions with working size specifications, such as those following a MAT
READ statement.

Expression used as subscripts should evaluate to integers. Non-integers
are rounded to the nearest integer value.

Inputting, printing, and reading individual array elements are logically
equivalent to simple variables and may be intermixed in INPUT, PRINT,
and READ statements.

46 BASIC

4.3 PRINTING

4.3.1 PRINTING SINGLE MATRIX ELEMENTS

EXAMPLES:

800 PRINT A(3)

810 PRINT A (3,3);

820 PRINT F(X);E; C5;R(N)

830 PRINT G(X,Y)

840 PRINT Z(X,Y), Z(1,5), Z(X+N), Z(Y+M)

GENERAL FORM:

statement number PRINT matrix variable (expression) . ..
or
statement number PRINT matrix variable
(expression , expression) . ..
Purpose
Causes the specified matrix element(s) to be printed.

Comments

Expressions used as subscripts should evaluate to integers. Non-integers
are rounded to the nearest integer value.

A trailing semicolon packs output into twelve elements per teleprinter
line, if possible (statement 81@ above). A trailing comma or RETURN
prints five elements per line.

Expressions (or subscripts) following the matrix variable designate the
row and column of the matrix element. Do not confuse these with new
working size specifications, such as those following a MAT IDN (identity
matrix) statement.

BASIC 4-7

4.3.2 MAT PRINT

EXAMPLES:

500 MAT PRINT A
505 MAT PRINT A;
515 MAT PRINT A,B,C
520 MAT PRINT AB,.C;

GENERAL FORM:

statement number MAT PRINT matrix variable
or

statement number MAT PRINT matrix variable ,
matrix variable . . .

Purpose

Causes an entire matrix to be printed, row by row, with double spacing
between rows.

Comments

Matrices may be printed in “packed” rows up to 12 elements wide by
using the “;” separator, as in example statement 535. Separation with
commas or a RETURN prints 5 elements per row.

48 BASIC

4.4 READING

4.4.1 READING MATRIX ELEMENTS

EXAMPLES:

900 READ A(6)

910 READ A(9,9)

920 READ C(X); P; R7

930 READ C(X,Y)

940 READ Z(X)Y), P(R2, S5), X(4)

GENERAL FORM:

statement number READ matrix variable (expression)
or

statement number READ matrix variable
(expression , expression) ...

Purpose

Causes the specified matrix element to be read from the current DATA
statement.

Comments

3

Expressions (used as subscripts) should evaluate to integers. Non-integers
are rounded to the nearest integer.

BASIC 49

Expressions following the matrix variable designate the row and column
of the matrix element. Do not confuse these with working size specifica-
tions, such as those following MAT READ statement.

The MAT READ statement is used to read an entire matrix from DATA
statements. See details in this section.

4.42 MAT READ

EXAMPLES:

350 MAT READ A

370 MAT READ B(5),C,D
380 MAT READ Z (5,8)
3990 MAT READ N (P3,Q7)

GENERAL FORM:

statement number MAT READ matrix variable
or

statement number MAT READ matrix variable (expression). ..
or

_statement number MAT READ matrix variable
{ expression , expression ...

Purpose

Reads an entire matrix from DATA statements. A new working size
may be specified, within the limits of the original DIM statement.

410 BASIC

Comments

MAT READ causes the entire matrix to be filled from the current DATA
statement in the row, column order: 1,1; 1,2; 1,3; etc. In this case, the
DIM statement controls the number of elements read.

4.5 MATRIX ARITHMETIC

4.5.1 MATRIX ADDITION

EXAMPLES:
310 MATC =B + A
320 MAT X =X+ Y

330 MATP=N+M
GENERAL FORM:

statement number MAT matrix variable = matrix
variable + matrix variable

Purpose

Establishes a matrix equal to the sum of two matrices of identical
dimensions; addition is performed element by element.

Comments

The resulting matrix must be previously mentioned in a DIM statement
if it has more than 10 elements, or 10 x 10 elements if two-dimensional.
Dimensions must be the same as the operand matrices.

BASIC 4-11

The same matrix may appear on both sides of the = sign, as in example
statement 320.

4.5.2 MATRIX SUBTRACTION

EXAMPLES:

550 MAT C= A -B
560 MATB =8B - Z
570 MAT X = X - A

u

GENERAL FORM:

statement number MAT matrix variable = matrix
variable — matrix variable

Purpose

Establishes a matrix equal to the difference of two matrices of identical
dimensions; subtraction is performed element by element.

Comments

The resulting matrix must be previously mentioned in a DIM statement
if it has more than 19 elements, or 19 x 10 elements if t wo-dimensional.
Its dimension must be the same as the operand matrices.

The same matrix may appear on both sides of the = sign, as in example
statement 560.

4-12 BASIC

4.5.3 MATRIX MULTIPLICATION

EXAMPLES:

930 MAT Z =B * C
940 MAT X = A *A
950 MAT C =2 * B

GENERAL FORM:

statement number MAT matrix variable = matrix
varigble * matrix variable

Purpose

Establishes a matrix equal to the product of the two specified matrices.

Comments

Following the rules of matrix multiplication, if the dimensions of matrix
B = (PN) and matrix C = (N,Q), multiplying matrix B by matrix C
results in a matrix of dimensions (P,Q).

Note that the product matrix must have an appropriate working size.

The same matrix variable may not appear on both sides of the = sign.

BASIC 413

4.5.4 SCALAR MULTIPLICATION

EXAMPLES:
110 MAT A= (5) * B
115 MAT C = (10) * C
120 MAT C = (W/3) * X

130 MAT P = (Q7T*N5) * R
GENERAL FORM:

statement number MAT matrix variable =
(expression) * matrix variable

Purpose

Establishes a matrix equal to the product of a matrix multiplied by a
specified expression (number); that is, each element of the original
matrix is multiplied by the number.

Comments

The resulting matrix must be previously mentioned in a DIM statement
if it contains more than 1@ elements (10 x 10 if two-dimensional).

The same matrix variable may appear on both sides of the = sign.

Both matrices must have the same working size.

4-14 BASIC

4.6 COPYING A MATRIX

EXAMPLES:
405 MAT B = A
410 MAT X =Y
420 MAT Z = B
GENERAL FORM;

statement number MAT matrix variable = matrix variable

Purpose

Copies a specified matrix into a matrix of the same dimensions; copying
is performed element by element.

Comments

The resulting matrix must be previously mentioned in a DIM statement
if it has more than 10 elements, or 10 x 10 if two-dimensional. It must
have the same dimensions as the copied matrix.

BASIC 4-15

4.7 IDENTITY MATRIX

EXAMPLES:

205 MAT A = IDN

210 MAT B = IDN (3,3)

215 MAT Z = IDN (Q5, Q5)

220 MAT S = IDN (8, 6)
GENERAL FORM:

statement number MAT array variable = IDN
or

statement number MAT array variable = IDN
{ expression , expression)

Purpose

Establishes an identity matrix (all @’s, with a diagonal from left to right
of all 1’s); a new working size may be specified.

Comments
The IDN matrix must be two-dimensional and square.

Specifying a new working size has the effect of a DIM statement.
Sample identity matrix:

106 0
01 0
0 01

416 BASIC

4.8 MATRIX MANIPULATION

4.8.1 MATRIX TRANSPOSITION

EXAMPLES:

959 MAT Z = TRN (A)

969 MAT X = TRN (B)
979 MAT Z = TRN (C)
GENERAL FORM:

statement number MAT matrix variable = TRN
(matrix variable)

Purpose

Establishes a matrix as the transposition of a specified matrix (transposes
rows and columns).

Comments

Sample transposition:

Original Transposed
123 1 47
4 56 25 8
789 369

Note that the dimensions of the resulting matrix must be the reverse of
the original matrix. For instance, if A has dimensions of 6,5 and MAT C =

TRN (A), C must have dimensions of 5,6.

Matrices cannot be transposed or inverted into themselves.

BASIC 4-17

4.8.2 MATRIX INVERSION

EXAMPLES:

380 MAT A = INV(B)

399 MAT C = INV(A)
400 MAT Z = INV(Z)
GENERAL FORM:

statement number MAT matrix variable = INV
(matrix variable)

Purpose

Establishes a square matrix as the inverse of the specified square matrix
of the same dimensions.

Comments

The inverse is the matrix by which you multiply the original matrix to
obtain an identity matrix.

For example:

Original Inverse Indentity
100 100 100
110 X ~110 = 010
111 -1 1 0061

Number representation in BASIC is accurate to 6-7 decimal digits;
matrix elements are rounded accordingly.

418 BASIC

LOGICAL OPERATIONS 5

5.1 LOGICAL VALUES AND NUMERIC VALUES

A distinction should be made between logical values and the numeric
values produced by logical evaluation, when using the logical capability
of BASIC.

The logical value of an expression is determined by definitions estab-
lished in the user’s program.

The numeric values produced by logical evaluation are assigned by
BASIC. The user may not assign these values.

Logical value is the value of an expression or statement, using the
criteria:

any non-zero expression value = “true”

any expression value of zero = “false”

When an expression or statement is logically evaluated, it is assigned
one of two numeric values, either:

1, meaning the expression or statement is “true,”
or

0, meaning the expression or statement is “false.”

BASIC 5-1

5.2 RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evaluations:

1. Asasimple check on the numeric value of an expression.

EXAMPLES: 150 IF B=7 THEN 600
200 IF A9#27.65 THEN 700
300 IF (Z/19)>0 THEN 800

When a statement is evaluated, if the IF condition is currently “true”
(for example, B = 7 in statement 150), then control is transferred to
the specified statement; if it is not “true,” control passes to the next
statement in the program.

Note that the numeric value produced by the logical evaluation is
unimportant when the relational operators are used in this way.
The user is concerned only with the presence or absence of the
condition indicated in the IF statement.

2. As a check on the numeric value produced by logically evaluating
an expression, that is: “true” = 1, “false” = 0.

EXAMPLES: 610 LET X=27

615 PRINT X=27

620 PRINT X#27

630 PRINT X>=27
The example PRINT statements give the numeric values produced
by logical evaluation. For instance, statement 615 is interpreted by
BASIC as “Print 1 if X equals 27, 0 if X does not equal 27.” There

are only two logical alternatives; 1 is used to represent ‘“true,” and
0 “false.”

The numeric value of the logical evaluation is dependent on, but
distinct from, the value of the expression. In the example above,
X equals 27, but the numeric value of the logical expression X=27
is 1 since it describes a “true” condition.

5-2 BASIC

5.3 BOOLEAN OPERATORS

There are two ways to use the Boolean Operators.

1. Aslogical checks on the value of an expression or expressions.

EXAMPLES: 510 IF A1 OR B THEN 670
520 IF B3 AND C9 THEN 680
530 IF NOT C9 THEN 690
540 IF X THEN 700

Statement 510 is interpreted: “If either Al is ‘true’ (has a non-zero
value) or B is ‘true’ (has a non-zero value), then transfer control to
statement 670.”

Similarly, statement 540 is interpreted: “If X is ‘true’ (has a non-
zero value), then transfer control to statement 700.

The Boolean operators evaluate expressions for their logical values
only: these are “true” = any non-zero value, “false” = zero. For
example, if B3 = 9 and C9 = -5, statement 520 would evaluate to
“true,” since both B3 and C9 have a non-zero value.

2. As a check on the numeric value produced by logically evaluating
an expression, that is: “true” = 1, “false” = Q.

EXAMPLES: 499 LET B=C =17
500 PRINT B AND C
510 PRINT C OR B
520 PRINT NOT B

BASIC 5-3

Statements 500 — 520 return a numeric value of either 1, indicating
that the statement has a logical value of “‘true,” or @, indicating a
logical value of “false.”

Note that the criteria for determining the logical values are:

“true” = any non-zero expression value,

“false” = an expression value of 0.

The numeric value 1 or @ is assigned accordingly.

5.4 SOME EXAMPLES

These examples show some of the possibilities for combining logical
operators in a statement.

It is advisable to use parentheses wherever possible when combining
logical operators.

EXAMPLES:

310 IF (A9 AND B7)=0 OR (A9 + B7)>100 THEN 900
310 PRINT (A>B) AND (X<Y)

320 LET C = NOT D

330 IF (C7 OR D4) AND (X2 OR Y3) THEN 930
340 IF (Al AND B2) AND (X2 AND Y3) THEN 940

54 BASIC

The numerical value of “‘true” or “false” may be used in algebraic
operations. For example, this sequence counts the number of zero
values in DATA statements.

90 LET X = 0

100 FORI =1 TO N

110 READ A

120 LET X = X+(A=0)

130 NEXT I

140 PRINT N; ‘“VALUES WERE READ.”
150 PRINT X; “WERE ZEROS.”

160 PRINT (N-X); “WERE NON-ZERO.”

Note that X is increased by 1 or @ each time A is read; when A= 0, the
expression A = @ is “true,” and X is increased by 1.

BASIC 5-5/5-6

SYNTAX REQUIREMENTS OF BASIC 6

LEGEND

= “isdefined as...”

‘ 66,7

or

< > enclose an element of BASIC

LANGUAGE RULES

1. The <COM statement >, if any exists, must be the first statement
presented and have the lowest sequence number; the last statement
must be an <END statement >.

2. A sequence number may not exceed 9999 and must be non-zero.

3. Exponent integers may not have more than two digits.

4. A formal bound may not exceed 255 and must be non-zero.

5. A subroutine number must lie between 1 and 63, inclusive.

6. Strings may not contain the quote character (‘).

7. A <bound part > for an IDN must be doubly subscripted.

8. An array may not be inverted or transposed into itself.

9. An array may not be replaced by itself multiplied by another array.

BASIC 6-1

< basic program >

< program statement >

< sequence number >

< basic statement >

< let statement >
< let head >

< formula >

< conjunction >

< Boolean primary >

< arithmetic expression >

< term >

< factor >

6-2 BASIC

< program statement > | < basic pro-
gram > < program statement >(1)

< sequence number > < basic state-
ment > carriage return

< integer >(2)

< let statement > | < dim

statement > | < com statement > |

< def statement > | < rem

statement > | <go to statement > |
< if statement > | < for statement > |
< next statement > |

< gosub statement > | < return
statement > | < end statement > |

< stop statement > | < wait
statement > | < call statement > |

< data statement > | < read
statement > | < restore statement > |
< input statement > | < print
statement > | < mat statement >

<let head > < formula >

LET < variable >=| < let head >
< variable > =

< conjunction > | < formula > OR
< conjunction >

< Boolean primary > | < conjunction >
AND < Boolean primary >

< arithmetic expression > |

< Boolean primary >

< relational operator > < arithmetic
expression >

< term > | <arithmetic expression >
+ <term > | < arithmetic expression>
- <term >

< factor > | < term > * < factor > |
<term >/ < factor >

< primary > | <sign > < primary > |
NOT < primary >

< primary >
< relational operator >

< operand >

< variable >

< simple variable >

< subscripted variable >

< array identifier >
< subscript head >

< subscript >
<letter >

< digit >

< left bracket >
< right bracket >
< sign >

< unsigned number >

< decimal part >

< integer >
< exponent >

< system function >

< system function name >

< parameter part >

< actual parameter >

W

N

W

W

i

i

N

W

N

woowooww

N

W

4

W

< operand > | < primary > *
< operand >

>I<|I>=<=|=#]|<>

< variable > | < unsigned number > |
< system function > | < function > |
< formula operand >

< simple variable > | < subscripted
variable >
< letter > | < letter > < digit >

< array identifier > < subscript head>
< subseript > < right bracket >

< letter >

< left bracket > | < left bracket >
< subscript >

< formula >

A|BICIDIEIFIGIHIIIJIK|LIMIN]
OIPIQIRISITIUIVIWIX|Y|Z

01112i314(516171819
it
)]
+ | =

< decimal part > | < decimal part >
< exponent >

:= <integer > | < integer > . < integer >

{.<integer >
< digit > | < integer > < digit >

E < integer > |E <sign >
< integer >(3)

< system function name >
< parameter part >

SIN | COS | TAN | ATN | EXP |
LOG | ABS | SQR | INT | RND | SGN

< left bracket > < actual parameter >
< right bracket >

< formula >

BASIC 6-3

< function >

< formula operand >

< dim statement >
< formal array list >

< formal array >

< formal bound head >

< formal bound >
< com statement >
< def statement >

< formal parameter >
< rem statement >

< character string >

< goto statement >
<if statement >

< for statement >

< for head >

< for variable >
< initial value >
<limit value >
< step size >

64 BASIC

FN <letter > < parameter part >

<left bracket > < formula > <right
bracket >

DIM < formal array list >

< formal array > | < formal array
list > , < formal array >

< array identifier > < formal bound
head > < formal bound >
< right bracket >

< left bracket > | <left bracket >
< formal bound >,

< integer >(4)
COM < formal array list >

-DEF FN <letter > < left bracket >

< formal parameter > < right
bracket > = < formula >

< simple variable >
REM < character string >

any teletype character except carriage
return, alt mode, escape, rubout, line
feed, null, control B, control C, or
left arrow

GO TO < sequence number >

IF < formula > THEN < sequence
number >

< for head > | < for head >
STEP <step size >

FOR < for variable > = < initial
value > TO < limit value >

< simple variable >
< formula >
<formula >
< formula >

< next statement >
< gosub statement >
< return statement >
< end statement >

. < stop statement >
< wait statement >

< call statement >

< call head >

< subroutine number >

< data statement >

< constant >

< read statement >
< variable list >

< restore statement >
<input statement >
< print statement >

< print head >

< print part >

< string >
< delimiter >

NEXT < for variable >
GOSUB < sequence number >
RETURN

END

STOP

WAIT < parameter part >

CALL < call head > <right
bracket >

< left bracket > < subroutine
number > | < call head >,
< actual parameter >

< integer >(5)

DATA < constant > | < data
statement > , < constant >

< unsigned number > | <sign >
< unsigned number >

READ < variable list >

< variable > | < variable list >,
< variable >

RESTORE
INPUT < variable list >

< print head > | < print head >
< print formula >

PRINT | < print head >
< print part >

< string > [< string > < delimiter >
| < print formula > < delimiter >

| < print formula > <string > |

< print formula > < string >

< delimiter >

“ < character string > »(6)

N

BASIC 6-5

< print formula >

< mat statement >

< mat body >

< mat read >

< actual array >

< bound part >

< actual bound head >

< actual bound >
< mat print >

< mat print part >

< mat replacement >

< mat formula >

< mat function >

< mat initialization >

< array parameter >

< mat operator >

6-6 BASIC

< formula > | TAB < parameter
part >

MAT < mat body >

< mat read > | <mat print > |
< mat replacement >

READ < actual array > | < mat
read > , < actual array >

< array identifier > | < array
identifier > < bound part >

< actual bound head >
< actual bound > < right bracket >

< left bracket > | < left bracket >
< actual bound >,

< formula >

PRINT < mat print part > | PRINT
< mat print part > < delimiter >

< array identifier > | < mat print
part > < delimiter > < array
identifier >

< array identifier > = < mat
formula >

< array identifier > | < mat
function > | < array identifier >

< mat operator > < array

identifier > | < formula operand >*
< array identifier >

< mat initialization > | < mat
initialization > < bound part > |
INV < array parameter > |

TRN < array parameter >

ZER | CON | IDN (7)

< left bracket > < array identifier >
< right bracket > (8)

+1=1*(9)

FOR ADVANCED PROGRAMMERS 7

7.1 MODIFYING HP BASIC

As indicated in the configuration instructions, an HP BASIC system
configured with PBS may include user-written assembly language sub-
routines. These subroutines are accessed with a CALL statement while
a BASIC program is running. HP BASIC may also be run under the
HP Magnetic Tape System (MTS), provided that the amount of core
memory in the configured tape of HP BASIC is the same as the MTS
under which it is run.

The information in this section is intended to help the programmer in
modifying HP BASIC. Users are reminded that HP cannot be responsible
for non-standard or user-modified software.

7.2 CALL STATEMENT

EXAMPLE:
20 CALL (5, A(10),1, 1188, 10)
GENERAL FORM:

statement number CALL (statement number , parameter list)

Purpose

Allows addition of absolute assembly language routines (such as input-

output drivers) to BASIC, for specialized configurations. CALL transfers
control to the specified assembly language subroutine.

BASIC 7-1

Comments

Subroutines executed by CALL are not constrained by BASIC and have
absolute control of the computer. The assembly language subroutine
may, therefore, alter any portion of the system, including BASIC. For
this reason, it is recommended that only programmers proficient in
assembly language attempt to add CALL subroutines to BASIC
programs.

CALL subroutines are “loaded into the computer” through the photo-
reader or terminal tape reader either at configuration time or as a load-
time overlay.

The CALL subroutine number is a positive integer between 1 and 63
specifying the desired subroutine. If no such subroutine number exists,
the statement is rejected.

The other parameters, separated by commas, may be any formula and
their number is dependent upon the subroutine called. For example, a
subroutine designated by 5 is appended to the system to take readings
from an A to D subsystem and store them in an array. The parameters
specify the array into which the values are inserted, the channel number
of the first point to be measured, the setup for the A to D converter
and the number of points to be measured. A representative call for this
subsystem is:

20 CALL (5, A[1], 1, 1188, 10)
Number of points
A to D setup
Starting channel number

First element of data array

Subroutine number

12 BASIC

When using the CALL statement, it is important that correct parameters
be specified. Accidentally reversing the first and second parameters
could destroy the core-resident BASIC system, unless precautions have
been taken by the writer of the called subroutine to protect the
BASIC system.

The parameters of a CALL statement provide the dynamic link between
BASIC and the called subroutine. Prior to transferring control to the
subreutine, BASIC evaluates the parameters and stacks the addresses of
the resuits. Upon entering the subroutine, the A-register contains the
address of this stack (i.e., the address of the addresses of the parameter
values). The A-register initially points to the address of the first
parameter; successively decrementing the A-register causes it to point to
successive parameter addresses. For example, if the A-register = 17302
when a subroutine is entered, the first parameter address is 17302, the
second 17301, the third 173080, etc.

The parameter addresses passed by BASIC give the subroutine access to
values in the BASIC program. The only way a called subroutine can
transmit results to a BASIC program is to store them by means of a
parameter address.

Transmittal of quantities of data between a BASIC program and a called
subroutine is most conveniently handled through arrays. Since only
addresses are passed to a subroutine, an array parameter must be an
element of the array (in general this would be the first element of the
array). It is important to remember that arrays are stored by rows, and
that each element is a floating point number occupying two (16-bit)
words. Hence, if an array A has M columns per row, the address of
A[1J] is (address A[1,11+ 2(M(I-1) + (J-1)).

To output from a subroutine to the terminal:

1. Load a buffer address into the B-register.

2. Load a character count into the A-register.

3. Execute a JSB 102B, 1.

BASIC 7-3

The referenced block of core is then interpreted as an ASCII string and
output, followed by a rReTurN linefeed if the count was negative.

Whenever data is transferred from a called subroutine through the
address of a parameter, there is a danger that the BASIC system or a
program might be destroyed. This situation can arise when parameters
are specified incorrectly or insufficient space is allocated in a data array.
For example, constants such as 2 or -~1.1 in a BASIC program are stored
in the program as they appear; therefore, storing through the address
of a constant parameter changes the actual constant in the CALL
statement. A subsequent execution of that statement may lead to un-
predictable results. A parameter that is an expression (for example, A
AND B or NOT A AND B) is evaluated and the result placed in a
temporary location. Since the parameter address references this tempor-
ary location, storing into it will not harm the BASIC system or pro-
gram. However, the value stored there is lost to the BASIC program. If
a called subroutine stores more values in an array than the array can
hold, the resulting overflow of data may destroy the BASIC system
or program.

Users of CALL statements should be cautioned against using unsuitable
parameters in CALL statements (especially against using a simple variable
or a constant where an array element is expected). Also, when using
arrays as parameters it is good practice to include the dimensions of the
array as additional parameters to allow a means of checking within
the subroutine.

An effective protection requires additional programming effort. BASIC
contains sets of pointers delimiting the areas of memory within which
different types of parameters exist. By checking parameter addresses
against these bounds, the subroutine can verify that they are of the
expected type. If X represents the parameter address, the following
applies:

a. Constant parameter (1128) <X < (113g)

b. Simple variable parameter (1168) < X <(1178)

74 BASIC

c. Array parameter 1) In common storage (1108) <X
<(1128)

2) Not in common storage (1138)
<X <(1158)

d. Expression parameter (1158) <X <(1208)

where (1128) means the contents of location number octal
112.

7.3 BYE COMMAND

EXAMPLE: BYE
GENERAL FORM: BYE
Purpose

Produces a HLT 778 when used under the HP BASIC system; or causes
transfer of control from the HP BASIC system to the Magnetic Tape
System (MTS) executive when used in an MTS based HP BASIC system.

Comments

HP BASIC may be configured as part of an HP Magnetic Tape System.

If it is intended to run under the Magnetic Tape System, PBS may be
configured separately or together with the HP BASIC interpreter.

User-written assembly language subroutines may be added to an MTS
based HP BASIC system; they may be configured along with the drivers
and interpreter using PBS or added while preparing the MTS.

BASIC 7-5

Note that configuration of an HP BASIC system cannot be done under
the control of an MTS; rather a configured system may be one of the
subsystems supplied when creating an MTS.

Remember that an HP BASIC system running under MTS must specify
the same core memory size as the MTS.

7.4 FIRST AND LAST WORDS OF AVAILABLE MEMORY

The first word of available memory (FWAM) is contained in location
1108 in the HP BASIC system.

The last word of available memory (LWAM) is contained in location
1118 in the HP BASIC system.

Comments

When HP BASIC is run under MTS, FWAM is contained in location
1108; LWAM is dynamically determined and placed in location 106g
after the system is loaded.

7.5 FIRST WORD AVAILABLE IN BASE PAGE

The address of the first word available in base page is contained in
location 1148. All locations from the location referenced in 114g
through 17778 are not used by BASIC, and are therefore available for
CALL subroutines or other modifications.

7-6 BASIC

7.6 LINK POINTS

For ease in user modification, locations 2018 through 3228 contain links
to various subportions and subroutines of BASIC often used in creating
customized systems. The identity and locations of these links is fixed
(will not change with subsequent versions), but the contents of these
locations are subject to change if the routines they point to move as a
result of future revisions. The assembly language listing of the HP BASIC
interpreter captions each link briefly. Since these links are an integral
part of BASIC, the user is responsible for interpreting and using this
information.

7.7 LINKAGES TO SUBROUTINES

BASIC accesses called subroutines through a table containing linkage
information. Entries in the table, one per subroutine, are two words in
length. Bits 5-0 of the first word contain the number identifying the
subroutine (chosen freely from 1 to 778 inclusive) and bits 15-8 contain
the number of parameters passed to the subroutine. (CALL statements
with an incorrect number of parameters are rejected by the syntax
analyzer.) The second word contains the absolute address of the entry
point of the subroutine. (Control is transferred via a JSB.) Although
subroutine numbers need not be assigned in any particular order, all
entries in the table must be contiguous. An acceptable auxiliary tape
contains the following:

1. An ORG statement to originate the program at an address greater
than that of the last word of the BASIC system. The address of
this last word + 1 is contained in location 1108 of the standard
BASIC system. Hence, a suitable lower limit for the origin address
can be determined by loading BASIC and examining location
110s.

2. ' The subroutine linkage table described above.

3. The assembly language subroutines.

BASIC 7-7

4. Code to set the following linkage addresses:

a. In location 110g put the address of the last word + 1 used in
the auxiliary tape.

b. In location 1218 put the address of the first word of the
subroutine linkage table.

¢. In location 1228 put the address of the last word + 1 of the
subroutine linkage table.

Assuming, for example, that location 1108 of the standard BASIC
system contains 13142g; an acceptable auxiliary tape could be assembled
from the following code:

ORG 13142B
SBTBL OCT 2406 Subroutine 6 has 5 parameters
DEF SBé6
OCT 1421 Subroutine 17 has 3 parameters
DEF SB17
ENDTB EQU *
SB6 NOP
Subroutine #6 body
JMP SB6,1
SB17 NOP
Subroutine #17 body
JMP SB17, 1
LSTWD EQU =*
ORG 110B

1-8 BASIC

DEF
ORG
DEF
DEF
END

LSTWD
121B
SBTBL
ENDTB

Acceptable calls to subroutines SB6 and SB17 might be

CALL (6, A, B, 1, N*3, SIN(X+Y))
CALL (17, Al1], 5, N)

NOTE: Location 1118 of the standard BASIC system contains the
address of the last word of available memory. It is not
possible to create a system which requires more space than
that existing between the addresses in locations 1108 and
1118. Systems using all or most of this space leave very little
space for the user of the system.

7.8 DELETING THE MATRIX SUBROUTINES

This assembly language pseudo-program shows a method of deleting the
MAT execution package to gain more user space, or for replacing it with
CALL routines or other customized code.

ORG < contents of 2108 >

OCT 0,0
ORG 110B

DEF < contents of 2118 >

This sequence has the effect of preventing the syntax processor from
recognizing “MAT” and of resetting the first word of available memory

pointer to the first word of the matrix execution package.

BASIC 7-8/7-10

GENERATING HP BASIC A

An HP BASIC system consists of the HP BASIC interpreter and the
Prepare BASIC System (PBS) programs. Assembly language subroutines
written by the user may be included.

The HP BASIC tape consists of the HP BASIC interpreter. The PBS
tape contains drivers for the terminal, photoreader, high-speed punch,

and the routines necessary to configure these drivers into an HP
BASIC system.

An HP BASIC system is generated by:

I
[

Loading the configuration program (PBS) into memory.

Loading other tapes (HP BASIC, user subroutines) to be
included on the system tape.

Using PBS to configure the HP BASIC System and to dump
it onto a single tape.

Loading the configured HP BASIC System tape into memory
along with any separate programs (HP BASIC, user sub-
routines) included in the system.

- Computer
L Museum

BASIC A-1

CONFIGURING AN HP BASIC SYSTEM

1.

10.

Decide which elements the configured HP BASIC system tape will
contain,

The three choices are:

a. I/O drivers, BASIC, user subroutines
b. I/O drivers, BASIC

c. I/O drivers.

Turn on all necessary peripheral devices (teleprinter, tape punch,
ete).

Make sure the computer has halted.

Use the Basic Binary Loader (BBL) or the Basic Binary Disc
Loader (BBDL) to load the PBS tape into memory.*

If option a or b was chosen in step 1, use the BBL or the BBDL to
load the HP BASIC tape into memory. If option a or b was not
chosen, skip to step 7.

If option a was chosen in step 1, then use the BBL or BBDL to
load the user-subroutine tapes into memory. If option a was not
chosen, skip to step 7.

Set a starting address of 28.

Set the switch register to the octal select code of the terminal.
(Set bit 15 OFF.)

Start PBS execution.
The PBS program types:
PHOTOREADER I/0 ADDRESS?
Type the photoreader octal select code on the teleprinter key-

board, then press the rReTuRN key. If there is no photoreader, then
press RETURN key only.

*[fan operator error is made or if any tape does not load properly, return
to step 3 to reload PBS.

A-2 BASIC

11.

12.

13.

14.

15.

16.

PBS then types:
PUNCH I/O ADDRESS?
Type the high-speed punch octal select code on the teleprinter
keyboard, then press the ReTurRN key. If there is no high-speed
punch, press the RETURN key only.
PBS then asks:
SYSTEM DUMP 1I/O ADDRESS?
Type the high-speed punch octal select code on the teleprinter
keyboard, then press the return key. If no high-speed punch
exists, press the ReTURN key only.
PBS then asks:
CORE SIZE?

Enter the computer core size (8, 16, 24 or 32), then press the
RETURN key. (Pressing rReTurN only indicates an 8K memory size.)

If a high-speed punch is available, a configured HP BASIC system
tape is punched. If a high-speed punch is not available, the message:

TURN ON TTY PUNCH, PRESS RUN
is printed, and the computer halts.

Turn the teleprinter punch on and start the computer, without
modifying the contents of any computer register.

The configured HP BASIC system tape is punched on the tele-
printer punch and the computer halts.

To punch another copy of the system tape, merely restart the
computer without modifying any register contents.

NOTE: After the configured system tape is punched (Steps 14, 15 and

16), the configured system remains intact in memory. To
run the system right away on the same computer that con-
figured it, start at Step 4 when using PROCEDURE 2 (to
avoid loading in the configured system tape). If the system is
to run on a computer different from the one that configured it,
or on the same computer at a later time, start at Step 1 when
using PROCEDURE 2.

BASIC A-3

LOADING THE CONFIGURED HP BASIC SYSTEM

1. Turn on all necessary peripheral equipment (teleprinter, tape input
device, etc.).

2. Make sure that the computer has halted.

3. Load the configured HP BASIC system tape using the BBL or
BBDL.

4. If the HP BASIC interpreter was not included as part of the
configured HP BASIC system tape, load the HP BASIC interpreter
tape into memory using the BBL or BBDL.

5. If any user subroutines are to be included in the system and if they
are not part of the HP BASIC system tape previously loaded, load
the user-subroutine tapes using the BBL or BBDL.

6. Set a starting address of 100g.

7. Start program execution. The message:

READY

is typed. HP BASIC is ready for use.

A4 BASIC

HEWLETT-PACKARD COMPANY, 11 NOLFE ROAD, CUPERTING, GALIFDRNIA 55014 PRINTED IN L.5.A.

Ll
b—
-
Q
LuJ
><
L

