carefully any dissipation limits. Be sure to provide extra ventilation and additional heatsinking, and check the power supply for unhappiness as well. For major changes in operating current, the emitter resistors and other biasing components s h o u l d a l s o b e proportionately reduced in value. ## **Spot Size** Even with excellent video bandwidth, if you have an out-of-focus, blooming, or changing spot size, it can completely mask character sharpness. Spot size ends up the ultimate limit to resolution, regardless of video bandwidth. Once again, brightness and contrast settings will have a profound effect, with too much of either blooming the spot. Most sets have a focus jumper in which ground or a positive voltage is selected. You can try intermediate values of voltage for maximum sharpness. Extra power supply filtering can sometimes minimize hum and noise modulation of the spot. Anything that externally raises display contrast will let you run with a smaller beam current and a sharper spot. Using circularly polarized filters, graticule masks, or simple colored filters can Fig. 12. Contrast Enhancing Filter Materials. Circularly polarized filters: Polaroid Corp. Cambridge MA 02139 Anti-reflection filters: Panelgraphic Corp. 10 Henderson Dr. West Caldwell NJ 07006 Light control film: 3M Visual Products Div. 3M Center St. Paul MN 55101 Acrylic plexiglas filter sheets: Rohm and Haas Philadelphia PA 19105 Fig. 13. Standard rf interface levels. Impedance = 300Ω . Carrier frequency per Fig. 14. minimize display washout from ambient lighting. Fig. 12 lists several sources of material for contrast improvement. Much of this is rather expensive, with pricing from \$10 to \$25 per square foot being typical. Simply adding a hood and positioning the display away from room lighting will also help and is obviously much cheaper. ## Direct Rf Entry If we want the convenience of a "free" display, the freedom from hot chassis problems, and "use it anywhere" ability, direct rf entry is the obvious choice. Its two big limitations are the need for FCC type approval, and a limited video bandwidth that in turn limits the number of characters per line and the number of dots per character. An rf interface standard is shown in Fig. 13. It consists of an amplitude modulated carrier of one of the standard television channel video frequencies of Fig. 14. Channel 2 is most often used with a 55.250 MHz carrier frequency, except in areas where a local commercial Channel 2 broadcast is intolerably strong. Circuit cost, filtering problems, and stability problems tend to increase with increasing channel number. The sync tips are the strongest part of the signal, representing 100% modulation, often something around 4 millivolts rms across a 300 Ohm line. The black level is 75% of the sync level, or about 3 millivolts for 4 millivolt sync tips. White level is less than 10% of maximum. Note that the signal is weakest when white and strongest when sync. This is the exact opposite of the video interface of Fig. 1. Rf modulators suitable for clip-on rf entry TV typewriter use are called Class 1 TV Devices by the FCC. A Class 1 TV device is supposed to meet the rules and regulations summarized in Fig. 15. Fig. 16 shows us a block diagram of the essential parts of a TV modulator. We start Fig. 14. Television Picture Carrier Frequencies. Fig. 15. FCC Regulations on Class 1 TV Devices. More complete information appears in subpart H of Part 15 and subpart F of Part 2 of the Federal Communications Commission Rules and Regulations. It is available at many large technical libraries. A Class 1 TV device generates a video modulated rf carrier of a standard television channel frequency. It is directly connected to the antenna terminals of the TV set. The maximum rms rf voltage must be less than 6 millivolts using a 300 Ohm output line. The maximum rf voltage on any frequency more than 3 MHz away from the operating channel must be more than 30 dB below the peak in-channel output voltage. An antenna disconnect switch of at least 60 dB attenuation must be provided. No user adjustments are permitted that would exceed any of the above specifications. Residual rf radiation from case, leads and cabinet must be less than 15 microvolts per meter. A Class 1 TV device must not A Class 1 TV device must not interfere with TV reception. Type approval of the circuit is required. A filing fee of \$50 and an acceptance fee of \$250 is involved.