(a) Black and white - baseband video. (b) Black and white - Channel two rf. ## (c) Color - baseband video. modulated. This translates up to a 6 MHz rf channel with a vestigial lower sideband as shown in Fig. 18(b). To generate color, we add a new pilot or subcarrier at a magic frequency of 3.579545 MHz — see Fig. 18(c). What was the video is now called the luminance, and is the same as the brightness in a black and white system. The new subcarrier and its modulation is called the chrominance signal and determines what color gets displayed and how saturated the color is to be. Since the black and white information is a sampled data system that is scanned at the vertical and horizontal rates, there are lots of discrete holes in the video spectrum that aren't used. The color subcarrier is designed to stuff itself into these holes (exactly in a NSTC color system, and pretty much in a TVT display). Both chrominance and luminance signals use the LUMINANCE CHROMINANCE SOUND (d) Color - Channel two rf. same spectral space, with the one being where the other one isn't, overlapping comb style. The phase or relative delay of the chrominance signal with respect to a reference determines the instantaneous color, while the amplitude of this signal with respect to the luminance sets the saturation of the color. Low amplitudes generate white or pastel shades, while high amplitudes of the chrominance signal produce saturated and deep colors. At least eight cycles of a reference or burst color phase are 'transmitted immediately following each horizontal sync pulse as a timing reference, as shown in Fig. 19. The burst is around 25% of maximum amplitude, or about the peak to peak height of a sync pulse. The TV set has been trained at the factory to sort all this out. After video detection, the set splits out the chrominance channel with a bandpass amplifier and then synchronously demodulates it with respect to an internal 3.58 MHz reference. The phase of this demodulation sets the color and the amplitude sets the saturation by setting the ratios of electron beam currents on the picture tube's red, blue and green guns. Meanwhile, the luminance channel gets amplified as brightness style video. It is delayed with a delay line to make up for the time delay involved in the narrower band color processing channel. It is then filtered with two traps the 4.5 MHz sound trap, and a new trap to get rid of any remaining 3.58 MHz color subcarrier that's left. The luminance output sets the overall brightness by modulating the cathodes of all three color guns simultaneously. Just after each horizontal sync pulse, the set looks for the reference burst and uses this reference in a phase F_{ig} . 19 Adding a color reference burst to the back porch of the horizontal sync pulses.